JP3141088B2 - Method for producing biodegradable and absorbable surgical materials - Google Patents

Method for producing biodegradable and absorbable surgical materials

Info

Publication number
JP3141088B2
JP3141088B2 JP07268998A JP26899895A JP3141088B2 JP 3141088 B2 JP3141088 B2 JP 3141088B2 JP 07268998 A JP07268998 A JP 07268998A JP 26899895 A JP26899895 A JP 26899895A JP 3141088 B2 JP3141088 B2 JP 3141088B2
Authority
JP
Japan
Prior art keywords
molecular weight
polylactic acid
strength
average molecular
viscosity average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07268998A
Other languages
Japanese (ja)
Other versions
JPH08196616A (en
Inventor
保夫 敷波
義人 筏
丞烋 玄
薫 蔦
英和 棒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMG Inc
Takiron Co Ltd
Original Assignee
BMG Inc
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMG Inc, Takiron Co Ltd filed Critical BMG Inc
Priority to JP07268998A priority Critical patent/JP3141088B2/en
Publication of JPH08196616A publication Critical patent/JPH08196616A/en
Application granted granted Critical
Publication of JP3141088B2 publication Critical patent/JP3141088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ポリ乳酸又は乳酸
−グリコール酸共重合体(以下、両者をポリ乳酸系ポリ
マーと略称する)からなる、強靱で耐加水分解性に優れ
た新規な生体内分解吸収性の延伸成形物の外科用材料の
新規な製造法に関する。さらに、本発明の外科用材料の
新規な製造法は、原料として粘度平均分子量が30万〜
60万のポリ乳酸系ポリマーを使用して、該ポリ乳酸系
ポリマーの融点以上、該ポリマーの分子量低下を最低限
に抑える220℃以下の温度範囲で溶融成形し、次いで
該ポリマーの更なる分子量低下を招かない特定範囲の6
0〜180℃の温度条件下で延伸を行う点に特徴を有す
る。 【0002】より詳細には、本発明の方法により得られ
た延伸成形物の外科用材料は、骨と同程度かやや高い圧
縮曲げ強度と圧縮曲げ弾性率、即ち強靱さと優れた耐加
水分解性を有し且つ生体内分解吸収性の材料となり、生
体内における強度の保持特性が大巾に向上し、更に骨折
等の癒合に必要な期間中はその強度を保持するが、その
期間を経過すると徐々に分解・吸収されて異物として長
期に生体内に存在することにより生じる様々な悪影響を
除外できる、と云う特性を有するものである。 【0003】 【従来の技術】整形外科や口腔外科においては、骨折部
の整復に高強度の骨接合プレートやビス等が使用されて
いる。このような骨接合用の人工材料は、骨折が治癒す
るまでの期間だけ機能し、治癒後は骨の弱化を防ぐため
にもできるだけ早期に抜き去る必要がある。現在、臨床
で広く使用されている骨接合プレート等は殆どが金属製
であり、最近セラミックス製のものも出現してきた。し
かし、これらは材料そのものの弾性率が高すぎて骨を変
質させるとか、金属イオンの溶出による生体損傷性等の
問題がある。 【0004】従って、骨と同程度かやや高い弾性率を持
ち、且つ生体内分解吸収性である材料を骨接合に用いる
ならば、抜ていのための再手術が不必要になるだけでな
く、異物が長期にわたって生体内に存在することにより
生じる様々な悪影響を除外できるはずである。かかる事
情から、生体内分解吸収性材料であるポリ乳酸又は乳酸
−グリコール酸共重合体を用いた骨接合材の開発が活発
に進められている。例えば、Makromol Chem.Suppl.Vol.
5,p30〜41(1981)には、M.Vert,F.Chabotらは、骨接合プ
レートとしてポリ乳酸や乳酸−グリコール酸共重合体を
合成し、ポリ乳酸100%のもので圧縮曲げ弾性率が
3.4GPa(340kg/mm2)という低い値を報
告している。 【0005】また、第9回USA バイオマテリアル学会要
旨集,6号.p47.(1983) には、D.C.Tuncは圧縮曲げ弾性率
510kg/mm2 という値のポリ乳酸骨接合プレー
トを報告している。また、特開昭59−97654号公
報には、吸収性の骨固定用器具として使用できるポリ乳
酸又は乳酸−グリコール酸共重合体の合成法が開示され
ているが、この場合に該骨固定用材料として挙げられて
いるのは重合生成物自体であり、このポリ乳酸の引張強
度が約580kg/cm2 と低い値であり、しかもこの
材料の成形加工については何ら説明されておらず、その
強度を人の骨程度に上げる試みは示されていない。 【0006】つい最近、Biomaterials,Vol.8,p42(1987)
には、P.Tormala他がグリコール酸−乳酸共重合体繊維
により強化されたグリコール酸−乳酸共重合体の複合体
からなる骨接合プレートを報告しており、その圧縮曲げ
強度が265MPa (26.5kg/ mm2 ) と高い
が、in vitro加水分解に伴う強度劣化が極めて速く、約
1ケ月で強度がなくなっている。また、J.W.Leenslag,
A.J.Pennings らは、粘度平均分子量が約100万のポ
リ乳酸を合成し、その高分子量ポリ乳酸の骨接合プレー
トの圧縮曲げ弾性率が5GPa(500kg/mm2
という値であると報告している。 【0007】また、「人工臓器」Vol.16,No.3(1987) に
は、中村らが、ポリ乳酸に無機物質であるハイドロキシ
アパタイト(HA)少量(5〜20重量%)含有させ
熱圧縮成形によりプレート状に成形後、延伸して円柱状
ピンを得たと報告しているが、これは、あくまでもHA
の存在下での延伸であって、ポリ乳酸系ポリマー単独
延伸の可能性については全く示唆していない。このよう
に、従来のポリ乳酸系骨接合材の圧縮曲げ強度等の機械
的性質を向上させて骨のそれに近づけるための研究が数
多く報告され、様々な方法が試みられているが、未だ臨
床で十分に使用されて満足できる圧縮曲げ強度等を有
し、且つ治癒後は徐々に分解吸収される生体内分解吸収
性材料は開発されていない。 【0008】 【発明が解決しようとする課題】本発明は、上記の課題
に鑑みてなされたもので、従来公知のポリ乳酸系骨接合
材の圧縮曲げ強度と圧縮曲げ弾性率等の機械的特性と耐
加水分解性を共に大きく上回る、高い圧縮曲げ強度並び
に圧縮曲げ弾性率を有し且つ耐加水分解性に優れたポリ
乳酸系の生体内分解吸収性の延伸成形物の外科用材料の
製造法を提供することを目的とする。 【0009】 【課題を解決するための手段】本発明者らは上記課題を
種々検討した結果、特定範囲の高い粘度平均分子量を持
つポリ乳酸系ポリマーを特定の調整された温度条件下で
溶融成形し且つ延伸することにより、該延伸成形物の外
科用材料の圧縮曲げ強度及び圧縮曲げ弾性率が骨と同程
度かやや高いようにできることを見出し、本発明を完成
するに至った。即ち、本発明は; 粘度平均分子量が
30万〜60万のポリ乳酸又は乳酸−グリコール酸共重
合体を、その融点以上220℃以下の温度条件下で溶融
成形し、更に60〜180℃の温度条件下で延伸する、
強靱で耐加水分解性に優れた生体内分解吸収性の外科用
材料の製造法を提供する。また、 上記溶融成形した
後の粘度平均分子量が20万以上である点にも特徴を有
する。また 上記延伸が熱媒体中にて一軸延伸する
点にも特徴を有する。 ここで、本発明において「耐加水
分解性に優れる」とは、骨癒合に必要な3ケ月程度は必
要な強度を保持し、骨の癒合後は徐々に分解吸収されて
生体内に異物として長期間残らない加水分解性をいう。 【0010】以下、本発明を具体的に説明する。本発明
に係るポリ乳酸系生体内分解吸収性の延伸成形物の外科
用材料の製造方法を以下に説明する。原料であるポリ乳
酸系ポリマー、特にポリ乳酸は、例えば光学活性を有す
るL体又はD体の乳酸から常法(C.E.Loweによる米国特
許第2,668,162 号明細書) に従って乳酸の環状二量体で
あるラクチドを合成した後、そのラクチドを開環重合す
ることによって得られるものである。このポリ乳酸は、
溶融成形時の分子量低下を考慮すると、少なくとも粘度
平均分子量が30万以上のものであることが必要であ
り、該分子量が高いものほど高い圧縮曲げ強度、圧縮曲
げ弾性率を有する外科用材料を得るのに適する。しか
し、該分子量があまり高すぎると、溶融成形、特に押出
成形の際に高温・高圧が必要となるため分子量の大幅な
低下を招き、結果的に溶融成形後の分子量が20万を下
回るようになるので、これを延伸しても目的とする高い
圧縮曲げ強度、高い圧縮曲げ弾性率を有する外科用材料
を得ることが困難となる。従って、原料であるポリ乳酸
の粘度平均分子量は30万〜60万程度、好ましくは4
0〜50万程度の分子量であることが望ましい。 【0011】また、本発明では、原料として上記ポリ乳
酸に代えて乳酸−グリコール酸共重合体も用いられる。
この共重合体は、ポリ乳酸と同程度の粘度平均分子量を
有し、乳酸含有割合の大きい方が適しており、なかでも
乳酸とグリコール酸の重量比が99:1〜75:25の
範囲にあるものが好ましく使用される。グリコール酸が
少量で上記範囲内の場合には、得られる外科用材料が優
れた耐加水分解性を有するため、37℃の生理食塩水中
に3ケ月間浸漬しても(骨折の癒合に必要と考えられる
3ケ月間生体内に埋植させた状況に相当する)殆ど圧縮
曲げ強度、圧縮曲げ弾性率などの強度劣化を生じない
が、グリコール酸が上記範囲を越えて増加すると、耐加
水分解性が低下して早期に該強度劣化を招くという不都
合が生じるからである。 【0012】本発明の方法により得られる外科用材料
は、上記特定範囲内の高い粘度平均分子量を有するポリ
乳酸系ポリマーを原料とし、これをロッド又は帯状(プ
レート状)など所定の形状に溶融成形、例えば押出成
形、プレス成形した後、更に長軸方向に一軸に延伸する
ことによって得られる。溶融成形の中でも、特に押出成
形は生産性が良いので好ましく利用でき、この場合通常
の押出機を用いることができる。溶融成形(例えば押出
成形)の条件は、上記ポリ乳酸系ポリマーの融点以上、
220℃以下の温度範囲とする必要がある。この場合
に、溶融成形温度がポリ乳酸系ポリマーの融点より低い
と溶融成形が困難となり、逆に220℃を越えるとポリ
乳酸系ポリマーの分子量低下が著しくなり、溶融成形後
の粘度平均分子量が20万を下回るからである。 【0013】溶融成形時のポリ乳酸系ポリマーの分子量
低下を最小限に抑えるには、原料ポリ乳酸系ポリマーの
融点より僅かに高い温度で溶融成形することが大切であ
る。従って、原料ポリ乳酸系ポリマーとして上述のよう
に40〜50万程度の粘度平均分子量を有するものを使
用する場合には、200℃以下の温度条件で溶融成形す
ることが望ましい。同様に、溶融押出成形の圧力条件
は、原料ポリ乳酸系ポリマーの分子量低下を極力抑える
ために、溶融したポリ乳酸系ポリマーの粘度(粘度平均
分子量)に応じて押出可能な最小限の押出圧力とするの
が望ましい。 【0014】従って、原料ポリ乳酸系ポリマーの粘度平
均分子量が60万までの場合には、260kg/cm2
以下、該分子量が40〜50万程度の場合には170〜
210kg/cm2 程度の押出圧力とするのが適当であ
る。なお、溶融成形の前に、原料のポリ乳酸系ポリマー
のペレットを予め減圧加熱乾燥して水分を十分に除去し
ておくのが好ましい。溶融成形によって得られた成形物
は、その粘度平均分子量が20万以上に保たれているの
で、かなりの圧縮曲げ強度、圧縮曲げ弾性率を有する
が、まだ目的とする(骨に匹敵する)値には及ばない。 【0015】そこで、本発明では、上記溶融成形物を更
に流動パラフィン、油等の熱媒体中で長軸方向(押出方
向)に一軸延伸することにより、ポリマー分子を配向さ
せて圧縮曲げ強度、圧縮曲げ弾性率を向上させている。
この一軸延伸は60〜180℃での温度条件で行うこと
が必要である。この延伸温度が60℃より低い温度で
は、溶融成形物のガラス転移点に近すぎるため延伸によ
る分子配向が不十分となり、逆に180℃より高い温度
では成形物の分子量低下をきたし、いずれの場合も延伸
によって満足に圧縮曲げ強度、圧縮曲げ弾性率を向上さ
せることが困難となる。好ましい温度条件は、溶融成形
後の成形物の分子量によって変動するが、その分子量が
20万〜25万程度であれば100℃前後である。 【0016】また、延伸倍率は2倍又はそれ以上であっ
て外科材料に適する程度の範囲が望ましい。2倍より小
さい延伸倍率では分子配向が不十分となり、満足に圧縮
曲げ強度、圧縮曲げ弾性率を向上させることが困難とな
るからである。従来、ポリ乳酸系ポリマーを単独で使用
して骨に匹敵する高い圧縮曲げ強度、圧縮曲げ弾性率並
びに優れた耐加水分解性を有する外科用材料、特に骨接
合用材料は得られなかった。然るに、上述のように、本
発明の方法により得られた新規な外科用材料では、30
万〜60万程度という特定範囲の高い粘度平均分子量を
持つ原料ポリ乳酸系ポリマーを選択し且つ溶融成形温度
条件を特定範囲(その融点以上、220℃以下)とした
ので、溶融成形時のポリ乳酸系ポリマーの分子量低下を
最低限に抑えて成形後の粘度平均分子量を20万以上と
することができ、この溶融成形物をガラス転移点付近
(60℃)〜融点付近(180℃)の温度、好ましくは
100℃前後で一軸延伸することにより、初めて高強度
で耐加水分解性に優れた延伸成形物の外科用材料を得る
ことができる点に技術的意義を有する。 【0017】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーからなる生体内分解吸収性
材料の延伸された成形物であって、その圧縮曲げ強度が
1.6×103 kg/cm2 以上、圧縮曲げ弾性率が
5.0×102 kg/mm2 以上、溶融成形後の粘度平
均分子量が20万以上である、強靱で耐加水分解性に優
れた外科用材料となる。この外科用材料は、その後に適
当な寸法に切断され、最終的に種々のサイズ及び形状の
骨接合プレート、ピン、ビス、スクリュー等に切削加工
され、整形外科、口腔外科、胸部外科、形成外科等の領
域で臨床に使用できる。 【0018】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーのみよりなるから、生体内
分解吸収性も極めて良好であり、従来の金属又はセラミ
ックス製外科用材料のように生体内で悪影響を与える心
配は殆どない。より詳細には、本発明の方法により得ら
れた新規な外科用材料は、骨と同程度かやや高い圧縮曲
げ強度、圧縮曲げ弾性率を有していて、外科治療に際し
骨折等の部位の固定をし、骨の再生につれて徐々に分解
しても、骨折が修復される3ケ月程度までは強度を保持
し、その後は分解が進んで強度が低下するものの骨が再
生されて全体として強度保持がなされるのである。 【0019】しかも、本発明の方法により、溶融成形時
の分子量低下を最小限に抑えて溶融成形後の粘度平均分
子量を20万以上に保ち、更に延伸によって分子配向及
び結晶配向を与えると、得られた外科用材料はその圧縮
曲げ強度が1.6×103 kg/cm2 以上、圧縮曲げ
弾性率が5.0×102 kg/mm2 以上と、従来のポ
リ乳酸系外科用材料では到達できなかった高い圧縮曲げ
強度、高い圧縮曲げ弾性率を示し、また、耐加水分解性
も向上し、37℃の生理食塩水中に約3ケ月浸漬しても
(骨折の癒合に必要と考えられる3ケ月間生体内に埋植
させた状況に相当する)、殆ど強度低下を生じることが
ない効果がある。 【0020】本発明の方法では、溶融成形後の粘度平均
分子量を20万以上にすることが重要である。このよう
な粘度平均分子量を持つ成形物を延伸して得られる外科
用材料は、埋植時において骨と同程度かやや高い初期圧
縮曲げ強度及び初期圧縮曲げ弾性率を与え、さらに癒合
に必要と考えられる3ケ月間該骨接合材を生体内にイン
プラントさせても圧縮曲げ強度、圧縮曲げ弾性率を低下
させないように保持できる。また、溶融成形後の粘度平
均分子量が20万より低いと、これを延伸しても上記初
期の圧縮曲げ強度及び圧縮曲げ弾性率は目標値(骨と同
じかそれを上回る値)を下回り、骨接合材の分解も早く
なって使用できなくなり、外科用材料としては強度的並
びに、耐加水分解性の両面で実用化できなくなる。 【0021】本発明において、溶融成形後の粘度平均分
子量は20万以上であることが望ましいとしたが、その
上限は一義的に定めることができないすなわち、原料
ポリ乳酸系ポリマーの望ましい粘度平均分子量は30万
〜60万であるので60万を越えることはないが、使用
する原料ポリ乳酸系ポリマーの 分子量、共重合比、成形
温度や押出圧力等の溶融成形条件等にかなりの幅がある
うえ、上記分子量、共重合比、成形条件により分子量低
下の程度が変化するので上限を一義的に定めることがで
きないのである。 【0022】また、本発明により得られる新規な外科用
材料において、その圧縮曲げ強度が1.6×10 3 kg
/cm 2 以上、圧縮曲げ弾性率が5.0×10 2 kg/
mm 2 以上であるとしたが、その上限は一義的に定める
ことができないすなわち、これら外科用材料の強度特
性の下限は、溶融成形後の粘度平均分子量値が20万の
成形物を延伸したことに由来するものであり、従って、
その上限は原料ポリ乳酸系ポリマーの特定範囲の粘度平
均分子量の上限値(60万)に由来して決まる溶融成形
後の粘度平均分子量の上限の成形物を延伸したことに基
づくが、原料ポリ乳酸系ポリマーの分子量、共重合比、
溶融成形条件、延伸倍率等にかなりの幅があるうえ、こ
れらによりその圧縮曲げ強度、圧縮曲げ弾性率が変化す
るので一義的に上限を定めることができないのである。 【0023】 【実施例】本発明を実施例により詳細に説明するが、こ
れらは本発明の範囲を制限しない。実施例中に示した圧
縮曲げ強度及び圧縮曲げ弾性率はJIS K−7203
に基づいて測定したものである。 (実施例1) 初期の粘度平均分子量が44万のポリ乳酸のペレットを
減圧下に120〜140℃で一昼夜乾燥し、この乾燥ペ
レットを押出機に入れて減圧下に約20分間放置した
後、下記表1に示した温度条件で、角棒又は丸棒状に溶
融押出成形した。得られた角棒又は丸棒状成形物の粘度
平均分子量を測定したところ、下記表1に示すように2
2万であった。 【0024】なお、この場合の粘度式は: 【数1】 〔η〕=5.45×10-4v 0.73(クロロホルム 25℃) を用いた。次いで、この成形物を100℃の流動パラフ
ィン中で長軸方向に2倍に一軸延伸し、これを切断して
試験片(寸法:幅10mm×厚み5mm×長さ80m
m)を作製した。得られた試験片の圧縮曲げ強度及び圧
縮曲げ弾性率を測定したところ、下記表1に示すよう
に、圧縮曲げ強度が1,720kg/cm2 、圧縮曲げ
弾性率が610kg/mm2 であった。 【0025】更に、この試験片を37℃の生理食塩水中
に3ケ月間浸漬し、その後、該試験片の圧縮曲げ強度及
び圧縮曲げ弾性率を測定したところ、下記表1に示すよ
うに、圧縮曲げ強度が1,700kg/cm2 、圧縮曲
げ弾性率が600kg/mm2 であり、強度劣化が殆ど
見られなかった。 【0026】(実施例2) 初期の粘度平均分子量が42万のポリ乳酸のペレットを
用いた以外は実施例1と同様にして試験片を作製し、こ
の試験片の初期及び3ケ月間浸漬後の圧縮曲げ強度、圧
縮曲げ弾性率並びに溶融押出成形後の粘度平均分子量を
測定した。その結果を下記表1に示す。 【0027】(実施例3) 初期の粘度平均分子量が40万の乳酸−グリコール酸共
重合体(乳酸:グリコール酸=90:10)を用いた以
外は実施例1と同様にして試験片を作製し、この試験片
の初期及び3ケ月間浸漬後の圧縮曲げ強度、圧縮曲げ弾
性率並びに溶融押出成形後の粘度平均分子量を測定し
た。その結果を下記表1に示す。 【0028】(実施例4〜5) 延伸温度をそれぞれ70℃と170℃に変更した以外は
実施例1と同様にして2種類の試験片を作製し、この試
験片の初期及び3ケ月間浸漬後の圧縮曲げ強度、圧縮曲
げ弾性率並びに溶融押出成形後の粘度平均分子量を測定
した。その結果を下記表1に併せて示す。 【0029】(比較例1〜2) 初期の粘度平均分子量がそれぞれ70万及び28万のポ
リ乳酸を用いて、溶融押出成形の温度条件を下記表1に
示す温度に変更した以外は実施例1と同様にして2種類
の試験片を作製し、この試験片の初期及び3ケ月間浸漬
後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出成形
後の粘度平均分子量を測定した。その結果を下記表1に
併せて示す。 【0030】 【表1】 【0031】前記表1より、実施例1〜5の溶融成形後
の粘度平均分子量はいずれも20万以上であり、これを
延伸した生体内分解吸収性の外科用材料は、圧縮曲げ強
度が1.6×103 kg/cm2 以上、圧縮曲げ弾性率
が5.0×102 kg/mm2 以上と優れた強度を有し
ており、また、生理食塩水中で3ケ月間浸漬しても殆ど
強度劣化を生じない高耐加水分解性を有することが分か
る。これに対し、比較例1の材料は、分子量が70万と
極めて高いポリ乳酸を用いたために、溶融押出成形の温
度及び圧力を高くしないと押出しできず、成形後の分子
量が20万を下回り、一軸延伸しても、結果的に圧縮曲
げ強度及び圧縮曲げ弾性率が目標値を下回り、満足な強
度が得られないことが分かる。また、比較例2は、分子
量が30万より低いため、溶融押出成形の温度及び圧力
を低くして分子量低下を極力抑えても、成形後の分子量
が20万を遙かに下回り、そのために一軸延伸しても、
満足な強度が得られないことが分かる。 【0032】 【発明の効果】以上の説明及び実施例の結果から明らか
ように、本発明の方法は、 (イ)原料として特定範囲の高
い粘度平均分子量を有するポリ乳酸系ポリマーを使用
し、 (ロ)該ポリマーの分子量低下を最低限に抑える特定
の温度範囲で溶融成形し、 (ハ)該ポリマーの更なる分子
量低下を招かない特定の温度条件下で延伸を行うとい
う、特定の調整された条件下でポリ乳酸系生体内分解吸
収性の延伸成形物の外科用材料を製造したので、 【0033】従来のポリ乳酸系外科用材料では得られな
かった高い圧縮曲げ強度、圧縮曲げ弾性率を具備し、且
つ耐加水分解性にも優れた外科用材料を得ることがで
き、整形外科、口腔外科、又は胸部外科等の領域におい
て、骨接合用のプレート、スクリュー、ピン又はビス等
として頗る好適に使用することができる。また、本発明
の製造法は、樹脂成形の分野で汎用される溶融成形の工
程に延伸の工程を付加するのみであるから、なんら特別
の装置を準備することなく容易且つ高能率で実施でき、
且つ必要に応じて連続工程も可能であり、量産性、作業
性等に優れるといった効果がある。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to polylactic acid or lactic acid.
-Glycolic acid copolymer (hereinafter referred to as polylactic acid-based poly
Tough, excellent hydrolysis resistance
New biodegradable and absorbable stretch-formed surgical material
It relates to a new manufacturing method. Further, the surgical material of the present invention
The new production method has a viscosity average molecular weight of 300,000-
Using 600,000 polylactic acid-based polymers, the polylactic acid-based polymer
Above the melting point of the polymer, minimal decrease in molecular weight of the polymer
Melt molding at a temperature range of 220 ° C or less to suppress
A specific range of 6 which does not cause a further decrease in the molecular weight of the polymer.
Characterized in that stretching is performed under a temperature condition of 0 to 180 ° C.
You. More particularly, it is obtained by the process according to the invention.
The stretch-formed surgical material is compressed at a pressure similar to or slightly higher than that of bone.
Flexural strength and compressive flexural modulus, that is, toughness and excellent heat resistance
It is water-degradable and biodegradable and absorbable.
Significantly improved strength retention properties in the body and further fractures
While maintaining its strength during the period necessary for fusion of
After the period elapses, it is gradually decomposed and absorbed and becomes a long
Adverse effects caused by the presence in the body during
It has the characteristic that it can be excluded. [0003] 2. Description of the Related Art In orthopedic surgery and oral surgery, fractures
Of high-strength osteosynthesis plates and screws for reduction
I have. Such artificial materials for osteosynthesis can heal fractures
Function only for a period of time before healing to prevent bone weakening
It is necessary to pull out as soon as possible. Currently clinical
Most osteosynthesis plates, etc., which are widely used, are made of metal
In recent years, ceramics have also appeared. I
However, these materials alter the bone because the elasticity of the material itself is too high.
Quality or damage to the body due to elution of metal ions
There's a problem. [0004] Therefore, it has the same or slightly higher elastic modulus as bone.
And a material that is biodegradable and absorbable for osteosynthesis
Then, only the re-operation for pulling out becomes unnecessary.
And the presence of foreign substances in the body for a long time
It should be possible to rule out the various adverse effects that occur. Such a thing
From the circumstances, polylactic acid or lactic acid is a biodegradable and absorbable material
-Active development of osteosynthesis using glycolic acid copolymer
It is being advanced. For example, Makromol Chem.Suppl.Vol.
5, pp. 30-41 (1981), M. Vert, F. Chabot et al.
Polylactic acid or lactic acid-glycolic acid copolymer
Synthesized, 100% polylactic acid with compression bending elastic modulus
3.4 GPa (340 kg / mmTwo)
Tells. [0005] The 9th USA Biomaterials Society
Shoshushu, No. 6, p47. (1983) shows that D.C.
But510kg / mmTwo Polylactic acid bone joint play value
Report. Also, Japanese Unexamined Patent Publication No. 59-97654
According to the report, polymilk that can be used as a resorbable bone fixation device
A method for synthesizing an acid or lactic acid-glycolic acid copolymer is disclosed.
However, in this case, it is mentioned as the bone fixing material.
What is present is the polymerization product itself, and the tensile strength of this polylactic acid
The degree is about 580kg / cmTwo And low value, and this
There is no explanation about the forming of the material.
No attempt has been made to increase the strength to that of a human bone. More recently, Biomaterials, Vol. 8, p42 (1987)
P. Tormala et al. Are glycolic acid-lactic acid copolymer fibers
Of glycolic acid-lactic acid copolymer reinforced by phenol
Have reported an osteosynthesis plate consisting of
Strength is 265MPa (26.5kg / mmTwo ) And high
However, the strength degradation accompanying in vitro hydrolysis is extremely fast,
The strength is gone in one month. Also, J.W.Leenslag,
A.J.Pennings and colleagues report that the viscosity average molecular weight is about 1 million.
Synthesizes lactic acid and plays the role of high-molecular-weight polylactic acid in osteosynthesis
The compressive bending elastic modulus is 5 GPa (500 kg / mmTwo )
Is reported. [0007] Also, "Artificial Organs" Vol.16, No.3 (1987)
Reported that Nakamura et al.
Apatite (HA)ToContains a small amount (5-20% by weight)
Formed into a plate by thermocompression molding, then stretched and columnar
It is reported that he got a pin, but this is just HA
Stretching in the presence ofPolylactic acid polymer aloneof
There is no indication of the possibility of stretching. like this
In addition, conventional machines such as the compression bending strength of
Research to improve the mechanical properties and approach that of bone
Many reports have been made and various methods have been tried, but still
Satisfactory compression bending strength, etc., used sufficiently on the floor
And gradually decomposed and absorbed after healing
No material has been developed. [0008] SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems.
In view of the above, conventionally known polylactic acid-based osteosynthesis
Mechanical properties such as compression bending strength and compression bending elastic modulus
High compressive bending strength that greatly exceeds both hydrolytic properties
Polyamide with excellent compression bending modulus and excellent hydrolysis resistance
Lactic acid based biodegradable and absorbable stretch molded surgical material
It aims to provide a manufacturing method. [0009] Means for Solving the Problems The present inventors have solved the above problems.
As a result of various studies, it has a high viscosity average molecular weight in a specific range.
Polylactic acid-based polymer under specific adjusted temperature conditions
By melt-forming and stretching, the outside of the stretch-formed product is
Compressive bending strength and compressive bending modulus of dental materials are comparable to bone
Completed the present invention, finding that it could be slightly higher
I came to. That is, the present invention:   Viscosity average molecular weight
300,000 to 600,000 polylactic acid or lactic acid-glycolic acid copolymer
Melt the coalesced under the temperature condition between its melting point and 220 ° C
Molded, and further stretched under a temperature condition of 60 to 180 ° C.
Surgical for biodegradable and absorbable tough and excellent hydrolysis resistance
Provide a method of manufacturing the material. Also,The above melt molded
Another characteristic is that the subsequent viscosity average molecular weight is 200,000 or more.
I do. Also,The above stretching is performed uniaxially in a heat medium
The point is also characteristic. Here, in the present invention, "water-resistant
"Excellent decomposability" means that it takes about three months for bone fusion.
Maintains the necessary strength and is gradually decomposed and absorbed after bone fusion
Hydrolytic properties that do not remain as foreign substances in the body for a long time. Hereinafter, the present invention will be described specifically. The present invention
Of polylactic acid-based biodegradable and absorbable stretched products
The method for producing the material for use is described below.materialPoly milk that is
Acid-based polymers, especially polylactic acid, for example, have optical activity
From L- or D-form lactic acid in a conventional manner (C.E.
No. 2,668,162), in the form of a cyclic dimer of lactic acid.
After synthesizing a lactide, the lactide is subjected to ring-opening polymerization.
It is obtained by doing. This polylactic acid
Considering the decrease in molecular weight during melt molding, at least the viscosity
The average molecular weight must be 300,000 or more
The higher the molecular weight, the higher the compression bending strength and compression
ElasticityHavingSuitable for obtaining surgical materials. Only
However, if the molecular weight is too high, melt molding, especially extrusion
High molecular weight is required due to high temperature and pressure required during molding
As a result, the molecular weight after melt molding falls below 200,000.
Because it will turn around,Even if this is stretchedTarget high
Compression bending strength, high compression bending modulusHavingSurgical materials
Is difficult to obtain. Therefore,materialPolylactic acid
Has a viscosity average molecular weight of about 300,000 to 600,000, preferably 4
Desirably, the molecular weight is about 0 to 500,000. In the present invention,materialAs above poly milk
A lactic acid-glycolic acid copolymer is also used in place of the acid.
This copolymer has the same viscosity average molecular weight as polylactic acid.
Have a higher lactic acid content, especially
When the weight ratio of lactic acid to glycolic acid is 99: 1 to 75:25
Those in the range are preferably used. Glycolic acid
If the amount is small and within the above range, the surgical material obtained is excellent.
37 ° C saline solution
Immersion for 3 months (may be necessary for healing of fractures)
Almost compressed (corresponding to the situation of being implanted in the living body for 3 months)
No deterioration in strength such as bending strength and compression bending modulus
However, when glycolic acid increases beyond the above range,
The disadvantage is that the water-decomposability is reduced and the strength is deteriorated early.
This is because a combination occurs. Surgical material obtained by the method of the present invention
Is a polymer having a high viscosity average molecular weight within the above specified range.
Lactic acid based polymermaterialAnd put it in a rod or band
Melt molding into a predetermined shape such as extruded
After shape and press molding, it is further uniaxially stretched in the long axis direction
Obtained by: Among melt molding, especially extrusion molding
Shapes can be used favorably because of their high productivity.
Extruder can be used. Melt molding (eg extrusion
Molding) conditions are above the melting point of the polylactic acid-based polymer,
It is necessary to set the temperature range to 220 ° C. or lower. in this case
In addition, the melt molding temperature is lower than the melting point of the polylactic acid-based polymer
Melt molding becomes difficult.
The molecular weight of the lactic acid-based polymer decreases significantly, and
Has a viscosity average molecular weight of200,000Because it is below. [0013] Molecular weight of polylactic acid-based polymer during melt molding
In order to minimize the decline, the raw material
It is important to melt-mold at a temperature slightly higher than the melting point.
You. Accordingly, as a raw material polylactic acid-based polymer,
Use a material having a viscosity average molecular weight of about 400,000 to 500,000
If used, melt molding at a temperature of 200 ° C or less
Is desirable. Similarly, pressure conditions for melt extrusion
Minimizes decrease in molecular weight of raw material polylactic acid-based polymer
Therefore, the viscosity of the molten polylactic acid-based polymer (viscosity average
The minimum extrusion pressure that can be extruded according to the molecular weight)
Is desirable. Accordingly, the viscosity of the starting polylactic acid-based polymer is
When the average molecular weight is up to 600,000, 260 kg / cmTwo
Hereinafter, when the molecular weight is about 400,000 to 500,000,
210kg / cmTwo It is appropriate to set the extrusion pressure to about
You. Prior to melt molding, the raw material polylactic acid-based polymer
The pellets are dried in advance by heating under reduced pressure to sufficiently remove moisture.
It is preferable to keep it. Molded product obtained by melt molding
IsThatThe viscosity average molecular weight is kept above 200,000
With considerable compression bending strength and compression bending elastic modulus
However, it is still below the target value (comparable to bone). Therefore, in the present invention, the above-mentioned melt-molded product is renewed.
In the heat transfer medium such as liquid paraffin, oil, etc.
Uniaxially stretching the polymer molecules to orient the polymer molecules.
To improve the compression bending strength and compression bending elastic modulus.
This uniaxial stretching should be performed at a temperature of 60 to 180 ° C.
is necessary. When the stretching temperature is lower than 60 ° C
IsMelt moldingStretching due to too close to the glass transition point of
Insufficient molecular orientation, conversely, temperatures higher than 180 ° C
ThenMoldingMolecular weight decrease, and in all cases, stretching
Satisfactorily improved compression bending strength and compression bending modulus
It becomes difficult to make it. Preferred temperature conditions are melt molding
The molecular weight varies depending on the molecular weight of the subsequent molded product.
If it is about 200,000 to 250,000, it is around 100 ° C. The stretching ratio is 2 times or more.So
Range suitable for surgical materialsdesirable. Less than twice
At low stretch ratio, molecular orientation becomes insufficient and compression is satisfactory
It is difficult to improve flexural strength and compressive flexural modulus.
This is because that. Conventionally, polylactic acidpolymerUsed alone
High compression bending strength and compression bending elasticity comparable to bone
Materials with excellent hydrolysis resistance, especially bone grafts
No joint material was obtained. However, as mentioned above,
The novel surgical material obtained by the method of the invention comprises 30
High viscosity average molecular weight in a specific range of about
Select the raw material polylactic acid polymer to have and melt molding temperature
The conditions were in a specific range (above its melting point, below 220 ° C.)
Therefore, the molecular weight of the polylactic acid-based polymer during melt molding can be reduced.
MinimallySuppress the viscosity average molecular weight after molding to 200,000 or more
This melt molded product can beNear the glass transition point
(60 ° C) to a temperature around the melting point (180 ° C), preferably
100 ℃Before and afterHigh strength for the first time by uniaxial stretching
And stretch-formed surgical materials with excellent hydrolysis resistanceobtain
be able toIt has technical significance in this respect. [0017] A novel surgical device obtained by the method of the present invention.
The material is biodegradable and absorbable made of polylactic acid-based polymer
A stretched product of the material, the compression bending strength of which is
1.6 × 10Three kg / cmTwo As mentioned above, the compression bending elastic modulus
5.0 × 10Two kg / mmTwo Above, the viscosity flatness after melt molding
Has an average molecular weight of 200,000 or more, is tough and has excellent hydrolysis resistance
Surgical material. This surgical material is then applied
Cut to the right size and finally come in various sizes and shapes
Cutting into osteosynthesis plates, pins, screws, screws, etc.
And orthopedics, oral surgery, thoracic surgery,Plastic surgeryEtc.
Can be used clinically in the area. Novel surgical products obtained by the method of the present invention
Since the material consists only of polylactic acid-based polymer,
Decomposition and absorption are very good, and conventional metals or ceramics
Mind that has a negative effect in vivo like surgical materials
There are few arrangements. More particularly, it is obtained by the method of the invention.
New surgical material is used for compression music that is as high as or slightly higher than bone.
With high compression strength and compressive bending elastic modulus.
Fixes fractures, etc., and gradually decomposes as bone regenerates
However, strength is maintained until about 3 months when the fracture is repaired
After that, decomposition progresses and strength decreases, but bones are
It is produced to maintain strength as a whole. Moreover, the method of the present inventionBy, Melt molding
Viscosity reduction after melt molding with minimum molecular weight reduction
The molecular weight is maintained at 200,000 or more,
And crystal orientationWhen given, the resulting surgical material isIts compression
Bending strength is 1.6 × 10Three kg / cmTwo Above, compression bending
The elastic modulus is 5.0 × 10Two kg / mmTwo With the above,
High compression bending not achieved with lactate-based surgical materials
Shows strength, high compressive bending modulus and hydrolysis resistance
Immersion in physiological saline at 37 ° C for about 3 months
(Embedded in the living body for 3 months, which is considered necessary for the healing of fractures
), Almost strengthDeclineCan cause
There is no effect. The method of the present inventionThen, Average viscosity after melt molding
200,000 or more molecular weightIt is important to. like this
High viscosity average molecular weightSurgery obtained by stretching molded products with
MaterialInitial pressure at the time of implantation
Provides compression bending strength and initial compression bending elastic modulus, and further fusion
The osteosynthesis material was introduced into the living body for 3 months,
Compressive bending strength and compressive bending elastic modulus are reduced even when plant is used
Can be held so as not to cause. Also, the viscosity flatness after melt molding
If the average molecular weight is lower than 200,000,Even if this is stretchedAbove first
Compressive bending strength and compressive bending elastic modulus at target
), And the osteosynthesis material disassembles quickly.
Can no longer be used, and as a surgical material
In addition, it cannot be put to practical use in terms of both hydrolysis resistance. [0021]In the present invention, the average viscosity after melt molding
Although it is desirable that the amount of particles is 200,000 or more,
The upper limit cannot be set uniquely.That is, the raw material
Desirable viscosity average molecular weight of polylactic acid polymer is 300,000
It does not exceed 600,000 because it is ~ 600,000
Raw materials of polylactic acid-based polymer Molecular weight, copolymerization ratio, molding
There is considerable variation in melt molding conditions such as temperature and extrusion pressure
In addition, the molecular weight is low depending on the above molecular weight, copolymerization ratio and molding conditions.
Since the lower degree changes, the upper limit can be set uniquely.
I ca n’t come. [0022]Also, a novel surgical device obtained by the present invention
The material has a compressive bending strength of 1.6 × 10 Three kg
/ Cm Two As described above, the compression bending elastic modulus is 5.0 × 10 Two kg /
mm Two It is said that it is above, but the upper limit is determined uniquely
Cannot do.In other words, the strength characteristics of these surgical materials
Lower limit of the viscosity average molecular weight after melt molding is 200,000.
Derived from stretching the molded article, therefore,
The upper limit is the viscosity range of the specific range of the raw polylactic acid polymer.
Melt molding determined from the upper limit of the average molecular weight (600,000)
After stretching the molded product having the upper limit of the viscosity average molecular weight after
The molecular weight of the raw material polylactic acid-based polymer, copolymerization ratio,
There is considerable variation in melt molding conditions, stretch ratio, etc.
These change the compression bending strength and compression bending elastic modulus.
Therefore, it is not possible to set an upper limit uniquely. [0023] The present invention will be described in detail with reference to examples.
They do not limit the scope of the invention. Pressure shown in the examples
The compressive bending strength and compressive bending elastic modulus are JIS K-7203.
Is measured based on (Example 1) Pellets of polylactic acid with initial viscosity average molecular weight of 440,000
Dry under reduced pressure at 120-140 ° C all day and night.
The let was placed in an extruder and left under reduced pressure for about 20 minutes.
Then, it was melted into a square or round bar under the temperature conditions shown in Table 1 below.
It was melt extruded. Viscosity of the obtained square or round bar-shaped molded product
When the average molecular weight was measured, as shown in Table 1 below,
It was 20,000. The viscosity equation in this case is: (Equation 1) [Η] = 5.45 x 10-FourMv 0.73(Chloroform 25 ° C) Was used. Next, the molded product is subjected to liquid paraffin at 100 ° C.
And stretched uniaxially twice in the machine direction in the
Test piece (Dimensions: width 10 mm x thickness 5 mm x length 80 m
m) was prepared. Compression bending strength and pressure of the obtained test piece
When the flexural modulus was measured, as shown in Table 1 below
Has a compressive bending strength of 1,720 kg / cmTwo , Compression bending
The elastic modulus is 610kg / mmTwo Met. Further, the test piece was placed in a physiological saline solution at 37 ° C.
Immersion for 3 months, then the compressive bending strength and
Table 1 below shows the results
Y, the compression bending strength is 1,700 kg / cmTwo , Compressed song
Elasticity is 600kg / mmTwo And strength deterioration is almost
I couldn't see it. (Example 2) Pellets of polylactic acid with initial viscosity average molecular weight of 420,000
A test piece was prepared in the same manner as in Example 1 except that the test piece was used.
Flexural strength and pressure after initial and 3 months immersion
Flexural modulus and viscosity average molecular weight after melt extrusion molding
It was measured. The results are shown in Table 1 below. (Embodiment 3) Lactic acid-glycolic acid having an initial viscosity average molecular weight of 400,000
After using the polymer (lactic acid: glycolic acid = 90: 10)
A test piece was prepared in the same manner as in Example 1 except for the test piece.
Bending strength after initial and 3 months immersion
And viscosity average molecular weight after melt extrusion.
Was. The results are shown in Table 1 below. (Examples 4 and 5) Except that the stretching temperature was changed to 70 ° C and 170 ° C respectively
Two types of test pieces were prepared in the same manner as in Example 1, and
Compressive bending strength and compressive music of specimens at initial stage and after immersion for 3 months
Measurement of viscosity average molecular weight after melt extrusion molding
did. The results are shown in Table 1 below. (Comparative Examples 1 and 2) Initial viscosity average molecular weights of 700,000 and 280,000 respectively
Table 1 below shows the temperature conditions for melt extrusion molding using lactic acid.
Two types in the same manner as in Example 1 except that the temperature was changed to the indicated temperature
And immersion of the specimen for the initial and three months
Compression bending strength, compression bending elastic modulus and melt extrusion
The subsequent viscosity average molecular weight was measured. The results are shown in Table 1 below.
Also shown. [0030] [Table 1] According to Table 1, Examples 1 to 5 are shown.After melt molding
Have a viscosity average molecular weight of 200,000 or more.
StretchedBiodegradable and absorbable surgicalmaterialIs the compression bending strength
The degree is 1.6 × 10Three kg / cmTwo Above, the compression bending modulus
Is 5.0 × 10Two kg / mmTwo With the above and excellent strength
And even when immersed in physiological saline for 3 months
It is known that it has high hydrolysis resistance without causing strength deterioration
You. In contrast, the material of Comparative Example 1 had a molecular weight of 700,000.
Due to the use of extremely high polylactic acid, the temperature of melt extrusion molding
Degree and pressureCan not be extruded unless, Molecule after molding
Even if the amount is less than 200,000 and the film is uniaxially stretched, the compression
Strength and compressive bending modulus are below target
It turns out that a degree cannot be obtained. Also, Comparative Example 2
Since the amount is lower than 300,000, the temperature and pressure of melt extrusion molding
Even if the molecular weight decrease is minimized by lowering the
Is far below 200,000, so even if it is uniaxially stretched,
It turns out that satisfactory strength cannot be obtained. [0032] As is apparent from the above description and the results of the examples.
Thus, the method of the present invention comprises:materialAs a specific range of high
Uses polylactic acid polymer with high viscosity average molecular weight
(B) specifying that the molecular weight reduction of the polymer is minimized.
(C) further molecules of the polymer
It is said that stretching is performed under specific temperature conditions that does not cause a decrease in amount
Under certain adjusted conditions, polylactic acid-based biodegradation
Since the surgical material of the stretch-formed product with good yield was manufactured, It cannot be obtained with conventional polylactic acid-based surgical materials.
High compression bending strength and compression bending elastic modulus, and
Surgical materials with excellent hydrolysis resistance.
In areas such as orthopedic, oral, or thoracic surgery
Plate, screw, pin or screw for osteosynthesis
It can be used very suitably. In addition, the present invention
The manufacturing method of melt molding is widely used in the field of resin molding.
Since it only adds a stretching process to
Can be performed easily and efficiently without preparing any equipment,
In addition, if necessary, continuous process is possible, mass production, work
It has the effect of being excellent in properties and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玄 丞烋 京都市南区東九条南松ノ木町43番地の1 (72)発明者 蔦 薫 大阪市東区安土町2丁目30番地 タキロ ン株式会社内 (72)発明者 棒谷 英和 大阪市東区安土町2丁目30番地 タキロ ン株式会社内 (56)参考文献 特開 平1−198552(JP,A) 特開 昭59−97654(JP,A) 特開 昭61−181469(JP,A) 特開 昭61−259674(JP,A) 特開 昭61−36321(JP,A) 特開 昭61−293445(JP,A) 国際公開89/6143(WO,A1) 人工臓器,Vol.16,No.3, (1987)pp.1419−1422. (58)調査した分野(Int.Cl.7,DB名) A61L 27/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Gen Jongle, 43-1, 43-1, Higashikujo Minamimatsunogicho, Minami-ku, Kyoto-shi (72) Inventor Kaoru 2--30 Azuchicho, Higashi-ku, Osaka, Japan 72) Inventor Hidekazu Yoya, 2-30, Azuchicho, Higashi-ku, Osaka, Japan, within Tagiron Co., Ltd. (56) References JP-A-1-198552 (JP, A) JP-A-59-97654 (JP, A) JP-A-61-181469 (JP, A) JP-A-61-259674 (JP, A) JP-A-61-36321 (JP, A) JP-A-61-293445 (JP, A) International publication 89/6143 (WO, A1) Artificial organ, Vol. 16, No. 3, (1987) pp. 1419-1422. (58) Field surveyed (Int. Cl. 7 , DB name) A61L 27/00

Claims (1)

(57)【特許請求の範囲】 1.粘度平均分子量が30万〜60万のポリ乳酸又は乳
酸−グリコール酸共重合体を、その融点以上220℃以
下の温度条件下で溶融成形し、更に60〜180℃の温
度条件下で延伸することを特徴とする、強靱で耐加水分
解性に優れた生体内分解吸収性の外科用材料の製造法。2.上記溶融成形した後の粘度平均分子量が20万以上
であることを特徴とする、特許請求の範囲第1項記載の
強靱で耐加水分解性に優れた生体内分解吸収性の外科用
材料の製造法。 3.上記延伸が熱媒体中にて一軸延伸することを特徴と
する、 特許請求の範囲第1又は2項記載の強靱で耐加水
分解性に優れた生体内分解吸収性の外科用材料の製造
法。
(57) [Claims] Melt molding a polylactic acid or a lactic acid-glycolic acid copolymer having a viscosity average molecular weight of 300,000 to 600,000 under a temperature condition of a melting point or more and 220 ° C or less, and further stretching under a temperature condition of 60 to 180 ° C. A method for producing a biodegradable and absorbable surgical material having toughness and excellent hydrolysis resistance. 2. The viscosity average molecular weight after the above melt molding is 200,000 or more
2. The method according to claim 1, wherein
Surgical for biodegradable and absorbable tough and excellent hydrolysis resistance
The method of manufacturing the material. 3. The stretching is uniaxially stretching in a heat medium.
To, resistance to water at tough Patent described first or second term claims
Production of biodegradable and absorbable surgical materials with excellent degradability
Law.
JP07268998A 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials Expired - Lifetime JP3141088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07268998A JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07268998A JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62333333A Division JP2587664B2 (en) 1987-12-28 1987-12-28 Biodegradable and absorbable surgical materials

Publications (2)

Publication Number Publication Date
JPH08196616A JPH08196616A (en) 1996-08-06
JP3141088B2 true JP3141088B2 (en) 2001-03-05

Family

ID=17466255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07268998A Expired - Lifetime JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Country Status (1)

Country Link
JP (1) JP3141088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106924822B (en) * 2015-12-31 2020-02-28 先健科技(深圳)有限公司 Absorbable iron-based alloy internal fixation implantation medical instrument

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623402B1 (en) * 1987-11-19 1994-04-29 Solvay ARTICLE OF LACTIC ACID POLYMER FOR USE IN PARTICULAR AS A BIODEGRADABLE PROSTHESIS AND METHOD FOR THE PRODUCTION THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
人工臓器,Vol.16,No.3,(1987)pp.1419−1422.

Also Published As

Publication number Publication date
JPH08196616A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
US5227412A (en) Biodegradable and resorbable surgical material and process for preparation of the same
JP3043778B2 (en) Decomposition-absorbent molded article and method for producing the molded article
JP3779327B2 (en) Degradable material under tissue conditions and method for producing the same
JP2860663B2 (en) Biodegradable and absorbable surgical molding
JP4554084B2 (en) Bioabsorbable, biocompatible polymers for tissue manipulation
US5705181A (en) Method of making absorbable polymer blends of polylactides, polycaprolactone and polydioxanone
JP2587664B2 (en) Biodegradable and absorbable surgical materials
JP2718428B2 (en) Absorbable material for tissue fixation
JP2000084064A (en) Decomposing and absorbing implant material in living body and shape adjustment method therefor
US5529736A (en) Process of making a bone healing device
WO2015043496A1 (en) Bone injury repair and fixation instrument and method of manufacturing same
JPH11206871A (en) In vivo degradable and absorptive bone fixing material and its manufacture
JP3141088B2 (en) Method for producing biodegradable and absorbable surgical materials
JP2912923B2 (en) Biodegradable and absorbable surgical material and method for producing the same
Demina et al. Biodegradable nanostructured composites for surgery and regenerative medicine
KR100772966B1 (en) Biodegradable polymer material for fixing bone which has high flexibility and strength and method for the preparation thereof
JP5218951B2 (en) High strength and high modulus biodegradable bone anchoring material
JP3148932B2 (en) Biodegradable and absorbable plate for internal fixation of fracture
JP3010279B2 (en) Osteosynthesis device
JP2864113B2 (en) Biodegradable absorbable rib fixation pin
JP3023470B2 (en) Method for producing osteosynthesis material having through holes
JP2009132769A (en) LACTIDE/epsilon-CAPROLACTONE COPOLYMER FOR MEDICAL IMPLANT
JP3262969B2 (en) Biodegradable and absorbable osteosynthesis material and method for producing the same
JP3215046B2 (en) Osteosynthesis material
JP2008120888A (en) Biodegradable copolymer and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8