JPH08196616A - Manufacture for in vivo degradation absorbable surgical material - Google Patents

Manufacture for in vivo degradation absorbable surgical material

Info

Publication number
JPH08196616A
JPH08196616A JP7268998A JP26899895A JPH08196616A JP H08196616 A JPH08196616 A JP H08196616A JP 7268998 A JP7268998 A JP 7268998A JP 26899895 A JP26899895 A JP 26899895A JP H08196616 A JPH08196616 A JP H08196616A
Authority
JP
Japan
Prior art keywords
molecular weight
polylactic acid
average molecular
strength
viscosity average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7268998A
Other languages
Japanese (ja)
Other versions
JP3141088B2 (en
Inventor
Yasuo Shikinami
保夫 敷波
Yoshito Ikada
義人 筏
Jiyoukou Gen
丞烋 玄
Kaoru Tsuta
薫 蔦
Hidekazu Bouya
英和 棒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOMATERIAL UNIVERSE KK
Takiron Co Ltd
Original Assignee
BIOMATERIAL UNIVERSE KK
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOMATERIAL UNIVERSE KK, Takiron Co Ltd filed Critical BIOMATERIAL UNIVERSE KK
Priority to JP07268998A priority Critical patent/JP3141088B2/en
Publication of JPH08196616A publication Critical patent/JPH08196616A/en
Application granted granted Critical
Publication of JP3141088B2 publication Critical patent/JP3141088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: To provide an in vivo degradation absorbable surgical material which is tough and excellent in hydrolysis-resistance, by melt-molding and drawing a polylactic acid polymer having a specific range of high viscosity average molecular weight under a specific adjusted temperature condition. CONSTITUTION: A polylactic acid polymer having viscosity average molecular weight of 300,000 to 600,000 is used as a raw material, and is melt-molded in a temperature range of 220 deg.C or less which is more than the melting point of the polylactic acid polymer and at which molecular weight reduction is suppressed in a minimum extent, and drawing is performed under a temperature range of 60∼180 deg.C at which molecular weight of the polymer is not further reduced. The obtained drawn molding has the same degree as bone or a little higher than that on compressive bending strength and a compressive bending elastic modulus, that is, toughness and excellent hydrolysis- resistance, and also is an in vivo degradation absorbable surgical material, by which strength keeping characteristics in vivo is improved, and the surgical material is degraded and absorbed gradually after passing a period necessary for adhesion of fracture of a bone or the like, thereby a bad influence of remaining as a foreign body in vivo can be excluded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸又は乳酸
−グリコール酸共重合体(以下、両者をポリ乳酸系ポリ
マーと略称する)からなる、強靱で耐加水分解性に優れ
た新規な生体内分解吸収性の延伸成形物の外科用材料の
新規な製造法に関する。さらに、本発明の外科用材料の
新規な製造法は、出発原料として粘度平均分子量が30
万〜60万のポリ乳酸系ポリマーを使用して、該ポリ乳
酸系ポリマーの融点以上、該ポリマーの分子量低下を最
低限に抑える220℃以下の温度範囲で溶融成形し、次
いで該ポリマーの更なる分子量低下を招かない特定範囲
の60〜180℃の温度条件下で延伸を行う点に特徴を
有する。
TECHNICAL FIELD The present invention relates to a novel in vivo living body made of polylactic acid or a lactic acid-glycolic acid copolymer (both are abbreviated as polylactic acid-based polymers hereinafter) and having excellent hydrolysis resistance. TECHNICAL FIELD The present invention relates to a novel method for producing a surgical material of a resorbable stretch-formed product. Furthermore, the novel method for producing a surgical material of the present invention has a viscosity average molecular weight of 30 as a starting material.
10,000 to 600,000 polylactic acid-based polymers are used and melt-molded in a temperature range of not less than the melting point of the polylactic acid-based polymer and 220 ° C. or less for minimizing the decrease in the molecular weight of the polymer, and then further polymerizing the polymer. It is characterized in that stretching is carried out under the temperature condition of 60 to 180 ° C. in a specific range that does not cause a decrease in molecular weight.

【0002】より詳細には、本発明の方法により得られ
た延伸成形物の外科用材料は、骨と同程度かやや高い圧
縮曲げ強度と圧縮曲げ弾性率、即ち強靱さと優れた耐加
水分解性を有し且つ生体内分解吸収性の材料であって、
生体内における強度の保持特性が大巾に向上し、更に骨
折等の癒合に必要な期間中はその特性を保持するが、そ
の期間を経過すると徐々に分解・吸収されて異物として
長期に生体内に存在することにより生じる様々な悪影響
を除外できる、と云う効果を有する。
More specifically, the surgical material of the stretch-molded product obtained by the method of the present invention has a compressive bending strength and a compressive bending elastic modulus which are as high as those of bone and are slightly high, that is, toughness and excellent hydrolysis resistance. And a biodegradable and absorbable material,
The strength retention property in the body is greatly improved, and the property is maintained during the period required for fusion such as bone fracture, but after that period, it is gradually decomposed and absorbed, and as a foreign substance for a long time in the body. It has an effect that various adverse effects caused by the presence of the can be eliminated.

【0003】[0003]

【従来の技術】整形外科や口腔外科においては、骨折部
の整復に高強度の骨接合プレートやビス等が使用されて
いる。このような骨接合用の人工材料は、骨折が治癒す
るまでの期間だけ機能し、治癒後は骨の弱化を防ぐため
にもできるだけ早期に抜き去る必要がある。現在、臨床
で広く使用されている骨接合プレート等は殆どが金属製
であり、最近セラミックス製のものも出現してきた。し
かし、これらは材料そのものの弾性率が高すぎて骨を変
質させるとか、金属イオンの溶出による生体損傷性等の
問題がある。
2. Description of the Related Art In orthopedic surgery and oral surgery, high-strength osteosynthesis plates and screws are used to reduce fractures. Such artificial materials for osteosynthesis function only until the fracture heals, and after the healing, it is necessary to remove the bone as early as possible to prevent weakening of the bone. At present, most of the osteosynthesis plates and the like which are widely used clinically are made of metal, and recently, those made of ceramics have also appeared. However, these have problems such as deterioration of bone due to too high elastic modulus of the material itself, and biological damage due to elution of metal ions.

【0004】従って、骨と同程度かやや高い弾性率を持
ち、且つ生体内分解吸収性である材料を骨接合に用いる
ならば、抜ていのための再手術が不必要になるだけでな
く、異物が長期にわたって生体内に存在することにより
生じる様々な悪影響を除外できるはずである。かかる事
情から、生体内分解吸収性材料であるポリ乳酸又は乳酸
−グリコール酸共重合体を用いた骨接合材の開発が活発
に進められている。例えば、Makromol Chem.Suppl.Vol.
5,p30〜41(1981)には、M.Vert;F.Chabotらは、骨接合プ
レートとしてポリ乳酸や乳酸−グリコール酸共重合体を
合成し、ポリ乳酸100%のもので圧縮曲げ弾性率が
3.4GPa(340kg/mm2)という低い値を報
告している。
[0004] Therefore, if a material having a modulus of elasticity that is about the same as or slightly higher than that of bone and is biodegradable and absorbable is used for bone joining, not only is reoperation for pulling out unnecessary, but also It should be possible to exclude various adverse effects caused by the long-term presence of a foreign body in the living body. Under such circumstances, development of an osteosynthesis material using polylactic acid or a lactic acid-glycolic acid copolymer which is a biodegradable and absorbable material has been actively promoted. For example, Makromol Chem. Suppl. Vol.
5, p30-41 (1981), M.Vert; F.Chabot et al. Synthesized polylactic acid or lactic acid-glycolic acid copolymer as an osteosynthesis plate, and made 100% of polylactic acid a compressive bending elastic modulus. Reports a low value of 3.4 GPa (340 kg / mm 2 ).

【0005】また、第9回USA バイオマテリアル学会要
旨集,6号.p47.(1983) には、D.C.Tuncは圧縮曲げ弾性率
510kg/mm2 という値のポリ乳酸骨接合プレート
を報告している。また、特開昭59−97654号公報
には、吸収性の骨固定用器具として使用できるポリ乳酸
又は乳酸−グリコール酸共重合体の合成法が開示されて
いるが、この場合に該骨固定用材料として挙げられてい
るのは重合生成物自体であり、このポリ乳酸の引張強度
が約580kg/cm2 と低い値であり、しかもこの材
料の成形加工については何ら説明されておらず、その強
度を人の骨程度に上げる試みは示されていない。
Also, in the 9th USA Biomaterials Society Abstracts, No. 6, p47. (1983), DC Tunc reports a polylactic acid bone-bonding plate having a compressive bending elastic modulus of 510 kg / mm 2 . Further, JP-A-59-97654 discloses a method for synthesizing a polylactic acid or a lactic acid-glycolic acid copolymer which can be used as an absorbable bone fixing device. The material listed as the material is the polymerization product itself, and the tensile strength of this polylactic acid is a low value of about 580 kg / cm 2 , and the molding process of this material is not explained at all, and its strength No attempt has been made to raise the bone to human bones.

【0006】つい最近、Biomaterials,Vol.8,p42(1987)
には、P.Tormala他がグリコール酸−乳酸共重合体繊維
により強化されたグリコール酸−乳酸共重合体の複合体
からなる骨接合プレートを報告しており、その圧縮曲げ
強度が265MPa (26.5kg/ mm2 ) と高い
が、in vitro加水分解に伴う強度劣化が極めて速く、約
1ケ月で強度がなくなっている。また、J.W.Leenslag,
A.J.Pennings らは、粘度平均分子量約100万のポリ
乳酸を合成し、その高分子量ポリ乳酸の骨接合プレート
の圧縮曲げ弾性率が5GPa(500kg/mm2 )と
いう値であると報告している。
[0006] Recently, Biomaterials, Vol.8, p42 (1987)
In P. Tormala et al. Reported an osteosynthesis plate composed of a glycolic acid-lactic acid copolymer composite reinforced with glycolic acid-lactic acid copolymer fibers, and its compressive bending strength was 265 MPa (26. It is as high as 5 kg / mm 2 ), but the strength deterioration due to in vitro hydrolysis is extremely rapid, and the strength disappears in about 1 month. Also, JWLeenslag,
AJPennings et al. Reported that polylactic acid having a viscosity average molecular weight of about 1,000,000 was synthesized, and the compression bending elastic modulus of the bone bonding plate of the high molecular weight polylactic acid was 5 GPa (500 kg / mm 2 ).

【0007】また、「人工臓器」Vol.16,No.3(1987) に
は、中村らが、ポリ乳酸に無機物質であるハイドロキシ
アパタイト(HA)少量(5〜20重量%)を含有させ
熱圧縮成形によりプレート状に成形後、延伸して円柱状
ピンを得たと報告しているが、これは、あくまでもHA
の存在下での延伸であって、本発明のようにポリ乳酸系
ポリマー単独の延伸の可能性については全く示唆してい
ない。このように、従来のポリ乳酸系骨接合材の圧縮曲
げ強度等の機械的性質を向上させて骨のそれに近づける
ための研究が数多く報告され、様々な方法が試みられて
いるが、未だ臨床で十分に使用されて満足できる圧縮曲
げ強度等を有し、且つ治癒後は徐々に分解吸収される生
体内分解吸収性材料は開発されていない。
In "Artificial Organs" Vol.16, No.3 (1987), Nakamura et al. Reported that polylactic acid contains a small amount (5 to 20% by weight) of hydroxyapatite (HA), which is an inorganic substance, and heat. It is reported that after compression-molding into a plate shape, it was stretched to obtain a cylindrical pin, but this was only for HA.
Stretching in the presence of a polylactic acid-based polymer as in the present invention is not suggested at all. As described above, many studies have been reported to improve the mechanical properties such as the compressive bending strength of the conventional polylactic acid-based osteosynthesis material so as to approach those of the bone, and various methods have been tried, but still in clinical practice. A biodegradable and absorbable material which has been sufficiently used and has satisfactory compressive bending strength and the like and is gradually decomposed and absorbed after healing has not been developed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の課題
に鑑みてなされたもので、従来公知のポリ乳酸系骨接合
材の圧縮曲げ強度と圧縮曲げ弾性率等の機械的特性と耐
加水分解性を大きく上回る、高い圧縮曲げ強度並びに圧
縮曲げ弾性率を有しており且つ耐加水分解性に優れたポ
リ乳酸系の生体内分解吸収性の延伸成形物の外科用材料
の製造法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and mechanical properties such as compressive bending strength and compressive bending elastic modulus of a conventionally known polylactic acid-based bone cement and its hydrolysis resistance. Provided is a method for producing a surgical material of a biodegradable and absorbable stretched polylactic acid-based biodegradation product that has high compressive bending strength and compressive bending elastic modulus that greatly exceed degradability and is excellent in hydrolysis resistance. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題を
種々検討した結果、特定範囲の高い粘度平均分子量を持
つポリ乳酸系ポリマーを特定の調整された温度条件下で
溶融成形し且つ延伸することにより、該延伸成形物の外
科用材料の圧縮曲げ強度及び圧縮曲げ弾性率が骨と同程
度かやや高いようにできることを見出し、本発明を完成
するに至った。即ち、本発明は;粘度平均分子量が30
万〜60万のポリ乳酸又は乳酸−グリコール酸共重合体
を、その融点以上220℃以下の温度条件下で溶融成形
し、更に60〜180℃の温度条件下で延伸することを
特徴とする、強靱で耐加水分解性に優れた生体内分解吸
収性の外科用材料の製造法である。
As a result of various studies on the above-mentioned problems, the inventors of the present invention melt-molded and stretched a polylactic acid-based polymer having a high viscosity-average molecular weight in a specific range under specific controlled temperature conditions. By doing so, it was found that the compression bending strength and the compression bending elastic modulus of the surgical material of the stretched molded article can be made to be about the same as or slightly higher than that of bone, and the present invention has been completed. That is, the present invention has a viscosity average molecular weight of 30.
10,000 to 600,000 polylactic acid or lactic acid-glycolic acid copolymer is melt-molded under a temperature condition of the melting point or more and 220 ° C. or less, and further stretched under a temperature condition of 60 to 180 ° C. This is a method for producing a biodegradable and absorbable surgical material that is tough and has excellent hydrolysis resistance.

【0010】以下、本発明を具体的に説明する。本発明
に係るポリ乳酸系生体内分解吸収性の延伸成形物の外科
用材料の製造方法を以下に説明する。出発原料であるポ
リ乳酸系ポリマー、特にポリ乳酸は、例えば光学活性を
有するL体又はD体の乳酸から常法(C.E.Loweによる米
国特許第2,668,162 号明細書) に従って乳酸の環状二量
体であるラクチドを合成した後、そのラクチドを開環重
合することによって得られるものである。このポリ乳酸
は、溶融成形時の分子量低下を考慮すると、少なくとも
粘度平均分子量が30万以上のものであることが必要で
あり、該分子量が高いものほど高い圧縮曲げ強度、圧縮
曲げ弾性率の外科用材料を得るのに適する。しかし、該
分子量があまり高すぎると、溶融成形、特に押出成形の
際に高温・高圧が必要となるため分子量の大幅な低下を
招き、結果的に溶融成形後の分子量が20万を下回るよ
うになるので、目的とする高い圧縮曲げ強度、高い圧縮
曲げ弾性率の外科用材料を得ることが困難となる。従っ
て、該原料のポリ乳酸の粘度平均分子量は30万〜60
万程度、好ましくは40〜50万程度の分子量であるこ
とが望ましい。
Hereinafter, the present invention will be described specifically. A method for producing a surgical material of a polylactic acid-based biodegradable and absorbable stretch molded product according to the present invention will be described below. The polylactic acid-based polymer as a starting material, particularly polylactic acid, is, for example, a lactide which is a cyclic dimer of lactic acid from an optically active L- or D-form lactic acid according to a conventional method (CE Lowe, US Pat. No. 2,668,162). Is obtained by synthesizing the above compound and then subjecting the lactide to ring-opening polymerization. This polylactic acid needs to have at least a viscosity average molecular weight of 300,000 or more in consideration of a decrease in molecular weight during melt molding. The higher the molecular weight, the higher the compression bending strength and the compression bending elastic modulus in surgery. Suitable for obtaining materials. However, if the molecular weight is too high, high temperature and high pressure are required during melt molding, especially extrusion molding, resulting in a large decrease in molecular weight, and as a result, the molecular weight after melt molding falls below 200,000. Therefore, it becomes difficult to obtain the intended surgical material having high compressive bending strength and high compressive bending elastic modulus. Therefore, the viscosity average molecular weight of the raw material polylactic acid is 300,000 to 60.
It is desirable that the molecular weight is about 10,000, preferably about 400,000 to 500,000.

【0011】また、本発明では、出発原料として上記ポ
リ乳酸に代えて乳酸−グリコール酸共重合体も用いられ
る。この共重合体は、ポリ乳酸と同程度の粘度平均分子
量を有し、乳酸含有割合の大きい方が適しており、なか
でも乳酸とグリコール酸の重量比が99:1〜75:2
5の範囲にあるものが好ましく使用される。グリコール
酸が少量で上記範囲内の場合には、得られる外科用材料
が優れた耐加水分解性を有するため、37℃の生理食塩
水中に3ケ月間浸漬しても(骨折の癒合に必要と考えら
れる3ケ月間生体内に埋植させた状況に相当する)殆ど
圧縮曲げ強度、圧縮曲げ弾性率などの強度劣化を生じな
いが、グリコール酸が上記範囲を越えて増加すると、耐
加水分解性が低下して早期に該強度劣化を招くという不
都合が生じるからである。
In the present invention, a lactic acid-glycolic acid copolymer is also used as a starting material in place of the above polylactic acid. This copolymer has a viscosity average molecular weight similar to that of polylactic acid, and is preferably one having a large lactic acid content ratio. Among them, the weight ratio of lactic acid to glycolic acid is 99: 1 to 75: 2.
Those in the range of 5 are preferably used. When the amount of glycolic acid is in a small amount within the above range, the resulting surgical material has excellent hydrolysis resistance. Therefore, even if the glycolic acid is immersed in physiological saline at 37 ° C. for 3 months (necessary for fusion of bone fracture) Almost no deterioration in strength such as compressive bending strength and compressive bending elastic modulus occurs, which is equivalent to the situation of being implanted in the body for 3 months. However, when glycolic acid increases beyond the above range, hydrolysis resistance This is because there is an inconvenience in that the strength deteriorates and the strength deteriorates at an early stage.

【0012】本発明の方法により得られる外科用材料
は、上記特定範囲内の高い粘度平均分子量を有するポリ
乳酸系ポリマーを出発原料とし、これをロッド又は帯状
(プレート状)など所定の形状に溶融成形、例えば押出
成形、プレス成形した後、更に長軸方向に一軸に延伸す
ることによって得られる。溶融成形の中でも、特に押出
成形は生産性が良いので好ましく利用でき、この場合通
常の押出機を用いることができる。溶融成形(例えば押
出成形)の条件は、上記ポリ乳酸系ポリマーの融点以
上、220℃以下の温度範囲とする必要がある。この場
合に、溶融成形温度がポリ乳酸系ポリマーの融点より低
いと溶融成形が困難となり、逆に220℃を越えるとポ
リ乳酸系ポリマーの分子量低下が著しくなり、溶融成形
後の粘度平均分子量が所定の20万を下回るからであ
る。
The surgical material obtained by the method of the present invention uses a polylactic acid-based polymer having a high viscosity average molecular weight within the above-mentioned specific range as a starting material, and melts this into a predetermined shape such as a rod or a band (plate). It can be obtained by molding, for example, extrusion molding, press molding, and then uniaxially stretching in the major axis direction. Among the melt moldings, extrusion molding is particularly preferable because it has high productivity, and in this case, an ordinary extruder can be used. The conditions for melt molding (for example, extrusion molding) need to be in the temperature range from the melting point of the polylactic acid-based polymer to 220 ° C. In this case, if the melt molding temperature is lower than the melting point of the polylactic acid-based polymer, melt molding becomes difficult, and conversely, if it exceeds 220 ° C., the molecular weight of the polylactic acid-based polymer decreases remarkably, and the viscosity average molecular weight after melt-molding becomes a predetermined value. This is because it is below 200,000.

【0013】溶融成形時のポリ乳酸系ポリマーの分子量
低下を最小限に抑えるには、原料ポリ乳酸系ポリマーの
融点より僅かに高い温度で溶融成形することが大切であ
る。従って、原料ポリ乳酸系ポリマーとして上述のよう
に40〜50万程度の粘度平均分子量を有するものを使
用する場合には、200℃以下の温度条件で溶融成形す
ることが望ましい。同様に、溶融押出成形の圧力条件
は、原料ポリ乳酸系ポリマーの分子量低下を極力抑える
ために、溶融したポリ乳酸系ポリマーの粘度(粘度平均
分子量)に応じて押出可能な最小限の押出圧力とするの
が望ましい。
In order to minimize the decrease in the molecular weight of the polylactic acid polymer during melt molding, it is important to perform melt molding at a temperature slightly higher than the melting point of the raw polylactic acid polymer. Therefore, when the raw material polylactic acid-based polymer having a viscosity average molecular weight of about 400,000 to 500,000 is used, it is desirable to perform melt molding under a temperature condition of 200 ° C. or lower. Similarly, the pressure conditions for melt extrusion molding are set at the minimum extrusion pressure that can be extruded according to the viscosity (viscosity average molecular weight) of the molten polylactic acid-based polymer in order to minimize the decrease in molecular weight of the raw material polylactic acid-based polymer. It is desirable to do.

【0014】従って、原料ポリ乳酸系ポリマーの粘度平
均分子量が60万までの場合には、260kg/cm2
以下、該分子量が40〜50万程度の場合には170〜
210kg/cm2 程度の押出圧力とするのが適当であ
る。なお、溶融成形の前に、原料のポリ乳酸系ポリマー
のペレットを予め減圧加熱乾燥して水分を十分に除去し
ておくのが好ましい。溶融成形によって得られた成形物
は、粘度平均分子量が20万以上に保たれているので、
かなりの圧縮曲げ強度、圧縮曲げ弾性率を有するが、ま
だ目的とする(骨に匹敵する)値には及ばない。
Therefore, when the viscosity average molecular weight of the raw material polylactic acid-based polymer is up to 600,000, 260 kg / cm 2
In the following, when the molecular weight is about 400,000 to 500,000, 170 to
An extrusion pressure of about 210 kg / cm 2 is suitable. Before melt molding, it is preferable that the raw material polylactic acid-based polymer pellets be dried by heating under reduced pressure to sufficiently remove water. Since the molded product obtained by melt molding has a viscosity average molecular weight of 200,000 or more,
It has considerable compressive bending strength and compressive bending elastic modulus, but it is still below the target value (comparable to bone).

【0015】そこで、本発明では、上記溶融成形物を更
に流動パラフィン、油等の熱媒体中で長軸方向(押出方
向)に一軸延伸することにより、ポリマー分子を配向さ
せて圧縮曲げ強度、圧縮曲げ弾性率を向上させている。
この一軸延伸は60〜180℃での温度条件で行うこと
が必要である。この延伸温度が60℃より低い温度で
は、ポリ乳酸系材料のガラス転移点に近すぎるため延伸
による分子配向が不十分となり、逆に180℃より高い
温度では材料の分子量低下をきたし、いずれの場合も延
伸によって満足に圧縮曲げ強度、圧縮曲げ弾性率を向上
させることが困難となる。好ましい温度条件は、溶融成
形後のポリ乳酸系材料の分子量によって変動するが、そ
の分子量が20万〜25万程度であれば100℃前後で
ある。
Therefore, in the present invention, the above melt-molded product is further uniaxially stretched in the longitudinal direction (extrusion direction) in a heat medium such as liquid paraffin or oil to orient the polymer molecules to achieve compressive bending strength and compression. The bending elastic modulus is improved.
This uniaxial stretching needs to be performed under the temperature condition of 60 to 180 ° C. If the stretching temperature is lower than 60 ° C., the molecular orientation due to stretching becomes insufficient because the glass transition point of the polylactic acid-based material is too close, and conversely, if the temperature is higher than 180 ° C., the molecular weight of the material decreases. Also, it becomes difficult to satisfactorily improve the compressive bending strength and the compressive bending elastic modulus by stretching. The preferable temperature condition varies depending on the molecular weight of the polylactic acid-based material after melt molding, but if the molecular weight is about 200,000 to 250,000, it is around 100 ° C.

【0016】また、延伸倍率は2倍又はそれ以上とする
のが望ましい。2倍より小さい延伸倍率では分子配向が
不十分となり、満足に圧縮曲げ強度、圧縮曲げ弾性率を
向上させることが困難となるからである。従来、ポリ乳
酸系材料を単独で使用して骨に匹敵する高い圧縮曲げ強
度、圧縮曲げ弾性率並びに優れた耐加水分解性を有する
外科用材料、特に骨接合用材料は得られなかった。然る
に、上述のように、本発明の方法により得られた新規な
外科用材料では、30万〜60万程度という特定範囲の
高い粘度平均分子量を持つ原料ポリ乳酸系ポリマーを選
択し且つ溶融成形温度条件を特定範囲(その融点以上、
220℃以下)としたので、溶融成形時のポリ乳酸系ポ
リマーの分子量低下を最低限に抑えることができ、ま
た、溶融成形後の粘度平均分子量を20万以上としたポ
リ乳酸系材料をガラス転移点付近(60℃)〜融点付近
(180℃)の温度、好ましくはそのガラス転移点に近
い温度(100℃程度)で一軸延伸することにより、初
めて高強度で耐加水分解性に優れた延伸成形物の外科用
材料を提供できる点に技術的意義を有する。
It is desirable that the draw ratio is 2 times or more. If the stretching ratio is less than 2, the molecular orientation becomes insufficient, and it becomes difficult to satisfactorily improve the compressive bending strength and the compressive bending elastic modulus. Heretofore, it has not been possible to obtain a surgical material, particularly a bone-bonding material, which has a high compressive bending strength, a compressive bending elastic modulus comparable to bone and excellent hydrolysis resistance, using a polylactic acid type material alone. However, as described above, in the novel surgical material obtained by the method of the present invention, a raw material polylactic acid-based polymer having a high viscosity average molecular weight in a specific range of about 300,000 to 600,000 is selected and the melt molding temperature is selected. A certain range of conditions (above its melting point,
220 ° C. or less), it is possible to minimize the decrease in the molecular weight of the polylactic acid-based polymer during melt molding, and the glass transition of the polylactic acid-based material having a viscosity average molecular weight of 200,000 or more after melt molding is performed. Stretch molding with high strength and excellent hydrolysis resistance for the first time by uniaxially stretching at a temperature from around the point (60 ° C) to around the melting point (180 ° C), preferably at a temperature near the glass transition point (about 100 ° C). It has technical significance in that it can provide a surgical material for a product.

【0017】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーからなる生体内分解吸収性
材料の延伸された成形物であって、その圧縮曲げ強度が
1.6×103 kg/cm2 以上、圧縮曲げ弾性率が
5.0×102 kg/mm2 以上、溶融成形後の粘度平
均分子量が20万以上である、強靱で耐加水分解性に優
れた外科用材料となる。この外科用材料は、その後に適
当な寸法に切断され、最終的に種々のサイズ及び形状の
骨接合プレート、ピン、ビス、スクリュー等に切削加工
され、整形外科、口腔外科、胸部外科等の領域で臨床に
使用できる。
The novel surgical material obtained by the method of the present invention is a stretched molded article of a biodegradable and absorbable material composed of a polylactic acid type polymer, and its compressive bending strength is 1.6 × 10. 3 kg / cm 2 or more, a compression flexural modulus 5.0 × 10 2 kg / mm 2 or more, surgical material viscosity average molecular weight after the melt molding is 200,000 or more, which is excellent in toughness and resistance to hydrolysis Becomes This surgical material is then cut to size and finally machined into various sizes and shapes of osteosynthesis plates, pins, screws, screws, etc. in areas such as orthopedic surgery, oral surgery, thoracic surgery, etc. It can be used clinically.

【0018】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーのみよりなるから、生体内
分解吸収性も極めて良好であり、従来の金属又はセラミ
ックス製外科用材料のように生体内で悪影響を与える心
配は殆どない。より詳細には、本発明の方法により得ら
れた新規な外科用材料は、骨と同程度かやや高い圧縮曲
げ強度、圧縮曲げ弾性率を有していて、外科治療に際し
骨折等の部位の固定をし、骨の再生につれて徐々に分解
しても、骨折が修復される3ケ月程度までは強度を保持
し、その後は分解が進んで強度が低下するものの骨が再
生されて全体として強度保持がなされるのである。
Since the novel surgical material obtained by the method of the present invention is composed of only polylactic acid-based polymer, it has a very good biodegradability and absorbability, and is similar to the conventional metallic or ceramic surgical materials. There is almost no fear of adverse effects in the living body. More specifically, the novel surgical material obtained by the method of the present invention has a compressive bending strength and a compressive bending elastic modulus that are comparable to or slightly higher than those of bone, and fixes a site such as a fracture during surgical treatment. Even if it gradually decomposes as the bone regenerates, it retains its strength up to about three months after the fracture is repaired. After that, the bone is regenerated and the strength is maintained as a whole, although the decomposition progresses and the strength decreases. It is done.

【0019】しかも、本発明の方法により得られた新規
な外科用材料では、溶融成形時の分子量低下を最小限に
抑えて溶融成形後の粘度平均分子量を20万以上に保
ち、更に延伸によって分子配向及び結晶配向を与えてい
るため、その圧縮曲げ強度が1.6×103 kg/cm
2 以上、圧縮曲げ弾性率が5.0×102 kg/mm2
以上と、従来のポリ乳酸系外科用材料では到達できなか
った高い圧縮曲げ強度、高い圧縮曲げ弾性率を示し、ま
た、耐加水分解性も向上し、37℃の生理食塩水中に約
3ケ月浸漬しても(骨折の癒合に必要と考えられる3ケ
月間生体内に埋植させた状況に相当する)、殆ど強度劣
化を生じることがない効果がある。
Furthermore, in the novel surgical material obtained by the method of the present invention, the decrease in the molecular weight during melt molding is minimized to maintain the viscosity average molecular weight after melt molding at 200,000 or more, and further the molecular weight is increased by stretching. Because of the orientation and crystal orientation, its compressive bending strength is 1.6 × 10 3 kg / cm
2 or more, compressive bending elastic modulus is 5.0 × 10 2 kg / mm 2
In addition to the above, high compressive bending strength and high compressive bending elastic modulus, which could not be reached by conventional polylactic acid-based surgical materials, are shown. Further, hydrolysis resistance is improved, and the material is immersed in physiological saline at 37 ° C for about 3 months. Even if it is (corresponding to the situation of being implanted in a living body for 3 months, which is considered necessary for healing a bone fracture), there is an effect that almost no strength deterioration occurs.

【0020】本発明の方法により得られた新規な外科用
材料は、溶融成形後の粘度平均分子量が20万以上であ
る必要がある。このような粘度平均分子量値であると、
埋植時において骨と同程度かやや高い初期圧縮曲げ強度
及び初期圧縮曲げ弾性率を与え、さらに癒合に必要と考
えられる3ケ月間該骨接合材を生体内にインプラントさ
せても圧縮曲げ強度、圧縮曲げ弾性率を低下させないよ
うに保持できる。また、溶融成形後の粘度平均分子量が
20万より低いと、上記初期の圧縮曲げ強度及び圧縮曲
げ弾性率は目標値(骨と同じかそれを上回る値)を下回
り、骨接合材の分解も早くなって使用できなくなり、外
科用材料としては強度的並びに、耐加水分解性の両面で
実用化できなくなる。
The novel surgical material obtained by the method of the present invention must have a viscosity average molecular weight of 200,000 or more after melt molding. With such a viscosity average molecular weight value,
At the time of implantation, it gives a compressive bending strength and an initial compressive bending elastic modulus that are slightly higher than those of bone, and even if the bone cement is implanted in a living body for 3 months, which is considered necessary for fusion, It can be held so as not to reduce the compressive bending elastic modulus. Further, when the viscosity average molecular weight after melt molding is lower than 200,000, the initial compressive bending strength and compressive bending elastic modulus are below the target values (values equal to or higher than those of bone), and the bone cement decomposes quickly. Therefore, it cannot be used as a surgical material, and cannot be put to practical use in terms of both strength and hydrolysis resistance.

【0021】[0021]

【実施例】本発明を実施例により詳細に説明するが、こ
れらは本発明の範囲を制限しない。実施例中に示した圧
縮曲げ強度及び圧縮曲げ弾性率はJIS K−7203
に基づいて測定したものである。 (実施例1)初期の粘度平均分子量が44万のポリ乳酸
のペレットを減圧下に120〜140℃で一昼夜乾燥
し、この乾燥ペレットを押出機に入れて減圧下に約20
分間放置した後、下記表1に示した温度条件で、角棒又
は丸棒状に溶融押出成形した。得られた角棒又は丸棒状
成形物の粘度平均分子量を測定したところ、下記表1に
示すように22万であった。
EXAMPLES The present invention will be described in detail by way of examples, which do not limit the scope of the present invention. The compressive bending strength and the compressive bending elastic modulus shown in the examples are JIS K-7203.
It was measured based on. (Example 1) Polylactic acid pellets having an initial viscosity average molecular weight of 440,000 were dried under reduced pressure at 120 to 140 ° C for a whole day and night, and the dried pellets were put into an extruder and dried under reduced pressure for about 20 minutes.
After standing for a minute, the mixture was melt-extruded into a square rod or a round rod under the temperature conditions shown in Table 1 below. When the viscosity-average molecular weight of the obtained square bar or round bar-shaped molded product was measured, it was 220,000 as shown in Table 1 below.

【0022】なお、この場合の粘度式は:The viscosity equation in this case is:

【数1】 〔η〕=5.45×10-4v 0.73(クロロホルム 25℃) を用いた。次いで、この成形物を100℃の流動パラフ
ィン中で長軸方向に2倍に一軸延伸し、これを切断して
試験片(寸法:幅10mm×厚み5mm×長さ80m
m)を作製した。得られた試験片の圧縮曲げ強度及び圧
縮曲げ弾性率を測定したところ、下記表1に示すよう
に、圧縮曲げ強度が1,720kg/cm2 、圧縮曲げ
弾性率が610kg/mm2 であった。
## EQU1 ## [η] = 5.45 × 10 −4 M v 0.73 (chloroform 25 ° C.) was used. Next, this molded product was uniaxially stretched in the long axis direction to 100% in liquid paraffin at 100 ° C. and cut to obtain a test piece (dimensions: width 10 mm × thickness 5 mm × length 80 m).
m) was prepared. When the compression bending strength and the compression bending elastic modulus of the obtained test piece were measured, the compression bending strength was 1,720 kg / cm 2 and the compression bending elastic modulus was 610 kg / mm 2 , as shown in Table 1 below. .

【0023】更に、この試験片を37℃の生理食塩水中
に3ケ月間浸漬し、その後、該試験片の圧縮曲げ強度及
び圧縮曲げ弾性率を測定したところ、下記表1に示すよ
うに、圧縮曲げ強度が1,700kg/cm2 、圧縮曲
げ弾性率が600kg/mm2 であり、強度劣化が殆ど
見られなかった。
Further, the test piece was dipped in a physiological saline solution at 37 ° C. for 3 months, and then the compressive bending strength and the compressive bending elastic modulus of the test piece were measured. The bending strength was 1,700 kg / cm 2 and the compressive bending elastic modulus was 600 kg / mm 2 , with almost no deterioration in strength.

【0024】(実施例2)初期の粘度平均分子量が42
万のポリ乳酸のペレットを用いた以外は実施例1と同様
にして試験片を作製し、この試験片の初期及び3ケ月間
浸漬後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出
成形後の粘度平均分子量を測定した。その結果を下記表
1に示す。
Example 2 The initial viscosity average molecular weight is 42.
A test piece was prepared in the same manner as in Example 1 except that polylactic acid pellets were used. The test piece was subjected to compression bending strength, compression bending elastic modulus, and melt extrusion after initial immersion for 3 months. The viscosity average molecular weight was measured. The results are shown in Table 1 below.

【0025】(実施例3)初期の粘度平均分子量が40
万の乳酸−グリコール酸共重合体(乳酸:グリコール酸
=90:10)を用いた以外は実施例1と同様にして試
験片を作製し、この試験片の初期及び3ケ月間浸漬後の
圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出成形後の
粘度平均分子量を測定した。その結果を下記表1に示
す。
Example 3 The initial viscosity average molecular weight is 40.
A test piece was prepared in the same manner as in Example 1 except that a lactic acid-glycolic acid copolymer (lactic acid: glycolic acid = 90: 10) was used, and the test piece was compressed at the initial stage and after immersion for 3 months. Bending strength, compressive bending elastic modulus, and viscosity average molecular weight after melt extrusion molding were measured. The results are shown in Table 1 below.

【0026】(実施例4〜5)延伸温度をそれぞれ70
℃と170℃に変更した以外は実施例1と同様にして2
種類の試験片を作製し、この試験片の初期及び3ケ月間
浸漬後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出
成形後の粘度平均分子量を測定した。その結果を下記表
1に併せて示す。
(Examples 4 to 5) The stretching temperature was 70
2 in the same manner as in Example 1 except that the temperature was changed to 0 ° C and 170 ° C.
Various kinds of test pieces were prepared, and the compression bending strength, the compression bending elastic modulus, and the viscosity average molecular weight after melt extrusion molding of the test pieces were measured at the initial stage and after immersion for 3 months. The results are also shown in Table 1 below.

【0027】(比較例1〜2)初期の粘度平均分子量が
それぞれ70万及び28万のポリ乳酸を用いて、溶融押
出成形の温度条件を下記表1に示す温度に変更した以外
は実施例1と同様にして2種類の試験片を作製し、この
試験片の初期及び3ケ月間浸漬後の圧縮曲げ強度、圧縮
曲げ弾性率並びに溶融押出成形後の粘度平均分子量を測
定した。その結果を下記表1に併せて示す。
Comparative Examples 1 and 2 Example 1 was repeated, except that polylactic acid having initial viscosity average molecular weights of 700,000 and 280,000 was used, and the temperature conditions for melt extrusion were changed to the temperatures shown in Table 1 below. Two types of test pieces were prepared in the same manner as in, and the compression bending strength, the compression bending elastic modulus, and the viscosity average molecular weight after melt extrusion molding of the test pieces were measured at the initial stage and after immersion for 3 months. The results are also shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】前記表1より、実施例1〜5により得られ
た本発明の生体内分解吸収性の延伸成形物の外科用材料
は、いずれも溶融成形後の粘度平均分子量が20万以上
であって、圧縮曲げ強度が1.6×103 kg/cm2
以上、圧縮曲げ弾性率が5.0×102 kg/mm2
上と優れた強度を有しており、また、生理食塩水中で3
ケ月間浸漬しても殆ど強度劣化を生じない高耐加水分解
性を有することが分かる。これに対し、比較例1の材料
は、分子量が70万と極めて高いポリ乳酸を用いたにも
拘らず、溶融押出成形の温度及び圧力が高いため、成形
後の分子量が20万を下回り、一軸延伸しても、結果的
に圧縮曲げ強度及び圧縮曲げ弾性率が目標値を下回り、
満足な強度が得られないことが分かる。また、比較例2
は、分子量が30万より低いため、溶融押出成形の温度
及び圧力を低くして分子量低下を極力抑えても、成形後
の分子量が20万を遙かに下回り、そのために一軸延伸
しても、満足な強度が得られないことが分かる。
From Table 1 above, the biodegradable and absorbable stretch-molded surgical materials of the present invention obtained in Examples 1 to 5 all had a viscosity average molecular weight of 200,000 or more after melt molding. Compressive bending strength is 1.6 × 10 3 kg / cm 2
As described above, it has excellent strength with a compressive bending elastic modulus of 5.0 × 10 2 kg / mm 2 or more.
It can be seen that it has a high hydrolysis resistance with almost no strength deterioration even after soaking for a month. On the other hand, the material of Comparative Example 1 had a high molecular weight of 700,000, but the temperature and pressure of melt extrusion were high, so the molecular weight after molding was less than 200,000, and the uniaxial Even when stretched, as a result, the compressive bending strength and compressive bending elastic modulus are below the target values,
It can be seen that satisfactory strength cannot be obtained. In addition, Comparative Example 2
Since the molecular weight is lower than 300,000, even if the temperature and pressure of melt extrusion molding are lowered to suppress the decrease in molecular weight as much as possible, the molecular weight after molding is far below 200,000, and therefore uniaxially stretched, It can be seen that satisfactory strength cannot be obtained.

【0030】[0030]

【発明の効果】以上の説明及び実施例の結果から明らか
ように、本発明の方法は、(イ) 出発原料として特定範囲
の高い粘度平均分子量を有するポリ乳酸系ポリマーを使
用し、(ロ)該ポリマーの分子量低下を最低限に抑える特
定の温度範囲で溶融成形し、 (ハ)該ポリマーの更なる分
子量低下を招かない特定の温度条件下で延伸を行うとい
う、特定の調整された条件下でポリ乳酸系生体内分解吸
収性の延伸成形物の外科用材料を製造したので、
As is clear from the above description and the results of the examples, the method of the present invention uses (a) a polylactic acid-based polymer having a high viscosity average molecular weight in a specific range as a starting material, and (b) Melt molding in a specific temperature range that minimizes the decrease in the molecular weight of the polymer, and (c) a specific adjusted condition that stretching is performed under a specific temperature condition that does not cause a further decrease in the molecular weight of the polymer. Since a surgical material for stretch-molded polylactic acid-based biodegradable and absorbable material was manufactured with

【0031】従来のポリ乳酸系外科用材料では得られな
かった高い圧縮曲げ強度、圧縮曲げ弾性率を具備し、且
つ耐加水分解性にも優れた外科用材料を得ることがで
き、整形外科、口腔外科、又は胸部外科等の領域におい
て、骨接合用のプレート、スクリュー、ピン又はビス等
として頗る好適に使用することができる。また、本発明
の製造法は、樹脂成形の分野で汎用される溶融成形の工
程に延伸の工程を付加するのみであるから、なんら特別
の装置を準備することなく容易且つ高能率で実施でき、
且つ必要に応じて連続工程も可能であり、量産性、作業
性等に優れるといった効果がある。
It is possible to obtain a surgical material having high compressive bending strength and compressive bending elastic modulus, which is not obtained by the conventional polylactic acid-based surgical material, and is also excellent in hydrolysis resistance. In the field of oral surgery or thoracic surgery, it can be suitably used as a bone-bonding plate, screw, pin or screw. Further, the production method of the present invention can be easily and highly efficiently carried out without preparing any special device, since it only adds the step of stretching to the step of melt molding which is generally used in the field of resin molding.
In addition, continuous processes are possible if necessary, and there is an effect that mass productivity and workability are excellent.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年10月23日[Submission date] October 23, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸又は乳酸
−グリコール酸共重合体(以下、両者をポリ乳酸系ポリ
マーと略称する)からなる、強靭で耐加水分解性に優れ
た新規な生体内分解吸収性の延伸成形物の外科用材料の
新規な製造法に関する。さらに、本発明の外科用材料の
新規な製造法は、原料として粘度平均分子量が30万〜
60万のポリ乳酸系ポリマーを使用して、該ポリ乳酸系
ポリマーの融点以上、該ポリマーの分子量低下を最低限
に抑える220℃以下の温度範囲で溶融成形し、次いで
該ポリマーの更なる分子量低下を招かない特定範囲の6
0〜180℃の温度条件下で延伸を行う点に特徴を有す
る。
TECHNICAL FIELD The present invention relates to a novel in-vivo body made of polylactic acid or a lactic acid-glycolic acid copolymer (both are abbreviated as polylactic acid-based polymers hereinafter), which is tough and has excellent hydrolysis resistance. TECHNICAL FIELD The present invention relates to a novel method for producing a surgical material of a resorbable stretch-formed product. Furthermore, the novel method for producing a surgical material of the present invention has a viscosity average molecular weight of 300,000 to 300,000 as a raw material.
600,000 polylactic acid-based polymers are used and melt-molded in a temperature range of not less than the melting point of the polylactic acid-based polymer and 220 ° C. or less to minimize the decrease of the molecular weight of the polymer, and then further decrease the molecular weight of the polymer. 6 of the specific range that does not invite
It is characterized in that stretching is performed under a temperature condition of 0 to 180 ° C.

【0002】より詳細には、本発明の方法により得られ
た延伸成形物の外科用材料は、骨と同程度かやや高い圧
縮曲げ強度と圧縮曲げ弾性率、即ち強靭さと優れた耐加
水分解性を有し且つ生体内分解吸収性の材料となり、生
体内における強度の保持特性が大巾に向上し、更に骨折
等の癒合に必要な期間中はその強度を保持するが、その
期間を経過すると徐々に分解・吸収されて異物として長
期に生体内に存在することにより生じる様々な悪影響を
除外できる、と云う特性を有するものである
More specifically, the surgical material of the stretch-molded product obtained by the method of the present invention has a compressive bending strength and a compressive bending elastic modulus which are as high as or slightly higher than those of bone, that is, toughness and excellent hydrolysis resistance. It becomes a material that has the property of being biodegradable and absorbable in vivo, the strength retention properties in vivo are greatly improved, and it retains its strength during the period required for fusion such as bone fracture, but after that period It has a characteristic that various adverse effects caused by being gradually decomposed and absorbed and existing as a foreign substance in the living body for a long time can be excluded.

【0003】[0003]

【従来の技術】整形外科や口腔外科においては、骨折部
の整復に高強度の骨接合プレートやビス等が使用されて
いる。このような骨接合用の人工材料は、骨折が治癒す
るまでの期間だけ機能し、治癒後は骨の弱化を防ぐため
にもできるだけ早期に抜き去る必要がある。現在、臨床
で広く使用されている骨接合プレート等は殆どが金属製
であり、最近セラミックス製のものも出現してきた。し
かし、これらは材料そのものの弾性率が高すぎて骨を変
質させるとか、金属イオンの溶出による生体損傷性等の
問題がある。
2. Description of the Related Art In orthopedic surgery and oral surgery, high-strength osteosynthesis plates and screws are used to reduce fractures. Such artificial materials for osteosynthesis function only until the fracture heals, and after the healing, it is necessary to remove the bone as early as possible to prevent weakening of the bone. At present, most of the osteosynthesis plates and the like which are widely used clinically are made of metal, and recently, those made of ceramics have also appeared. However, these have problems such as deterioration of bone due to too high elastic modulus of the material itself, and biological damage due to elution of metal ions.

【0004】従って、骨と同程度かやや高い弾性率を持
ち、且つ生体内分解吸収性である材料を骨接合に用いる
ならば、抜ていのための再手術が不必要になるだけでな
く、異物が長期にわたって生体内に存在することにより
生じる様々な悪影響を除外できるはずである。かかる事
情から、生体内分解吸収性材料であるポリ乳酸又は乳酸
−グリコール酸共重合体を用いた骨接合材の開発が活発
に進められている。例えば、Makromol Che
m.Suppl.Vol.5,p30〜41(198
1)には、M.Vert,F.Chabotらは、骨接
合プレートとしてポリ乳酸や乳酸−グリコール酸共重合
体を合成し、ポリ乳酸100%のもので圧縮曲げ弾性率
が3.4GPa(340kg/mm)という低い値を
報告している。
[0004] Therefore, if a material having a modulus of elasticity that is about the same as or slightly higher than that of bone and is biodegradable and absorbable is used for bone joining, not only is reoperation for pulling out unnecessary, but also It should be possible to exclude various adverse effects caused by the long-term presence of a foreign body in the living body. Under such circumstances, development of an osteosynthesis material using polylactic acid or a lactic acid-glycolic acid copolymer which is a biodegradable and absorbable material has been actively promoted. For example, Makromol Che
m. Suppl. Vol. 5, p30-41 (198
1), M. Vert, F.F. Chabot et al. Synthesized polylactic acid and lactic acid-glycolic acid copolymer as an osteosynthesis plate, and reported a low compression flexural modulus of 3.4 GPa (340 kg / mm 2 ) for 100% polylactic acid. There is.

【0005】また、第9回USAバイオマテリアル学会
要旨集,6号.p47.(1983)には、D.C.T
uncは圧縮曲げ弾性率510kg/mmという値
のポリ乳酸骨接合プレートを報告している。また、特開
昭59−97654号公報には、吸収性の骨固定用器具
として使用できるポリ乳酸又は乳酸−グリコール酸共重
合体の合成法が開示されているが、この場合に該骨固定
用材料として挙げられているのは重合生成物自体であ
り、このポリ乳酸の引張強度が約580kg/cm
低い値であり、しかもこの材料の成形加工については何
ら説明されておらず、その強度を人の骨程度に上げる試
みは示されていない。
Also, the 9th USA Biomaterials Society Abstracts, No.6. p47. (1983). C. T
unc compression flexural modulus is reported polylactic acid osteosynthesis plates with a value of 510kg / mm 2. Further, JP-A-59-97654 discloses a method for synthesizing a polylactic acid or a lactic acid-glycolic acid copolymer which can be used as an absorbable bone fixing device. The material listed as the material is the polymerization product itself, and the tensile strength of this polylactic acid is a low value of about 580 kg / cm 2 , and the molding process of this material is not explained at all. No attempt has been made to raise the bone to human bones.

【0006】つい最近、Biomaterials,V
ol.8,p42(1987)には、P.Tormal
a他がグリコール酸−乳酸共重合体繊維により強化され
たグリコール酸−乳酸共重合体の複合体からなる骨接合
プレートを報告しており、その圧縮曲げ強度が265M
Pa(26.5kg/mm)と高いが、in vit
ro加水分解に伴う強度劣化が極めて速く、約1ケ月で
強度がなくなっている。また、J.W.Leensla
g,A.J.Penningsらは、粘度平均分子量が
約100万のポリ乳酸を合成し、その高分子量ポリ乳酸
の骨接合プレートの圧縮曲げ弾性率が5GPa(500
kg/mm)という値であると報告している。
[0006] Recently, Biomaterials, V
ol. 8, p42 (1987), P. Tormal
a et al. reported an osteosynthesis plate composed of a glycolic acid-lactic acid copolymer composite reinforced with a glycolic acid-lactic acid copolymer fiber, and the compressive bending strength thereof was 265M.
High as Pa (26.5 kg / mm 2 ), but in vitro
The deterioration of strength due to ro hydrolysis is extremely rapid, and the strength is lost in about one month. Also, J. W. Leensla
g, A. J. Pennings et al. Synthesized polylactic acid having a viscosity average molecular weight of about 1 million, and the compression bending elastic modulus of the high molecular weight polylactic acid osteosynthesis plate was 5 GPa (500).
It is reported to be a value of kg / mm 2 ).

【0007】また、「人工臓器」Vol.16,No.
3(1987)には、中村らが、ポリ乳酸に無機物質で
あるハイドロキシアパタイト(HA)少量(5〜20
重量%)含有させ熱圧縮成形によりプレート状に成形
後、延伸して円柱状ピンを得たと報告しているが、これ
は、あくまでもHAの存在下での延伸であって、ポリ乳
酸系ポリマー単独の延伸の可能性については全く示唆し
ていない。このように、従来のポリ乳酸系骨接合材の圧
縮曲げ強度等の機械的性質を向上させて骨のそれに近づ
けるための研究が数多く報告され、様々な方法が試みら
れているが、未だ臨床で十分に使用されて満足できる圧
縮曲げ強度等を有し、且つ治癒後は徐々に分解吸収され
る生体内分解吸収性材料は開発されていない。
In addition, "artificial organ" Vol. 16, No.
3 (1987), the Nakamura et al., Polylactic acid which is an inorganic substance hydroxyapatite (HA) a small amount (5-20
After molding on weight%) plate shape by are contained thermal compression molding, although reported to give a cylindrical pin extends, which is merely drawn in the presence of HA, polylactic
It does not suggest the possibility of stretching the acid-based polymer alone . As described above, many studies have been reported to improve the mechanical properties such as the compressive bending strength of the conventional polylactic acid-based osteosynthesis material so as to approach those of the bone, and various methods have been tried, but still in clinical practice. A biodegradable and absorbable material which has been sufficiently used and has satisfactory compressive bending strength and the like and is gradually decomposed and absorbed after healing has not been developed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の課題
に鑑みてなされたもので、従来公知のポリ乳酸系骨接合
材の圧縮曲げ強度と圧縮曲げ弾性率等の機械的特性と耐
加水分解性を共に大きく上回る、高い圧縮曲げ強度並び
に圧縮曲げ弾性率を有し且つ耐加水分解性に優れたポリ
乳酸系の生体内分解吸収性の延伸成形物の外科用材料の
製造法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and mechanical properties such as compressive bending strength and compressive bending elastic modulus of a conventionally known polylactic acid-based bone cement and its hydrolysis resistance. Disclosed is a method for producing a surgical material for a polylactic acid-based biodegradable and absorbable stretched molded article, which has a high compressive bending strength and a compressive bending elastic modulus, both of which greatly exceed the degradability and is excellent in hydrolysis resistance. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題を
種々検討した結果、特定範囲の高い粘度平均分子量を持
つポリ乳酸系ポリマーを特定の調整された温度条件下で
溶融成形し且つ延伸することにより、該延伸成形物の外
科用材料の圧縮曲げ強度及び圧縮曲げ弾性率が骨と同程
度かやや高いようにできることを見出し、本発明を完成
するに至った。即ち、本発明は;粘度平均分子量が30
万〜60万のポリ乳酸又は乳酸−グリコール酸共重合体
を、その融点以上220℃以下の温度条件下で溶融成形
し、更に60〜180℃の温度条件下で延伸することを
特徴とする、強靭で耐加水分解性に優れた生体内分解吸
収性の外科用材料の製造法である。ここで、本発明にお
いて「耐加水分解性に優れる」とは、骨癒合に必要な3
ケ月程度は必要な強度を保持し、骨の癒合後は徐々に分
解吸収されて生体内に異物として長期間残らない加水分
解性をいう。
As a result of various studies on the above-mentioned problems, the inventors of the present invention melt-molded and stretched a polylactic acid-based polymer having a high viscosity-average molecular weight in a specific range under specific controlled temperature conditions. By doing so, it was found that the compression bending strength and the compression bending elastic modulus of the surgical material of the stretched molded article can be made to be about the same as or slightly higher than that of bone, and the present invention has been completed. That is, the present invention has a viscosity average molecular weight of 30.
10,000 to 600,000 polylactic acid or lactic acid-glycolic acid copolymer is melt-molded under a temperature condition of the melting point or more and 220 ° C. or less, and further stretched under a temperature condition of 60 to 180 ° C. It is a method of producing a biodegradable and absorbable surgical material that is tough and has excellent hydrolysis resistance. Here, in the present invention
“Excellent hydrolysis resistance” means that 3 is necessary for bone fusion.
Hold the required strength for about a month, and gradually
Water that is desorbed and does not remain in the body as a foreign substance for a long time
Says the solution.

【0010】以下、本発明を具体的に説明する。本発明
に係るポリ乳酸系生体内分解吸収性の延伸成形物の外科
用材料の製造方法を以下に説明する。原料であるポリ乳
酸系ポリマー、特にポリ乳酸は、例えば光学活性を有す
るL体又はD体の乳酸から常法(C.E.Loweによ
る米国特許第2,668,162号明細書)に従って乳
酸の環状二量体であるラクチドを合成した後、そのラク
チドを開環重合することによって得られるものである。
このポリ乳酸は、溶融成形時の分子量低下を考慮する
と、少なくとも粘度平均分子量が30万以上のものであ
ることが必要であり、該分子量が高いものほど高い圧縮
曲げ強度、圧縮曲げ弾性率を有する外科用材料を得るの
に適する。しかし、該分子量があまり高すぎると、溶融
成形、特に押出成形の際に高温・高圧が必要となるため
分子量の大幅な低下を招き、結果的に溶融成形後の分子
量が20万を下回るようになるので、これを延伸しても
目的とする高い圧縮曲げ強度、高い圧縮曲げ弾性率を有
する外科用材料を得ることが困難となる。従って、原料
であるポリ乳酸の粘度平均分子量は30万〜60万程
度、好ましくは40〜50万程度の分子量であることが
望ましい。
Hereinafter, the present invention will be described specifically. A method for producing a surgical material of a polylactic acid-based biodegradable and absorbable stretch molded product according to the present invention will be described below. The polylactic acid-based polymer as a raw material , particularly polylactic acid, is prepared from, for example, L-form or D-form lactic acid having optical activity according to a conventional method (CE Lowe, US Pat. No. 2,668,162). It is obtained by synthesizing a lactide which is a cyclic dimer and then subjecting the lactide to ring-opening polymerization.
This polylactic acid needs to have at least a viscosity average molecular weight of 300,000 or more in consideration of a decrease in molecular weight at the time of melt molding. The higher the molecular weight, the higher the compression bending strength and the compression bending elastic modulus . Suitable for obtaining surgical material. However, if the molecular weight is too high, high temperature and high pressure are required during melt molding, especially extrusion molding, resulting in a large decrease in molecular weight, and as a result, the molecular weight after melt molding falls below 200,000. Therefore, even if it is stretched, it has the desired high compressive bending strength and high compressive bending elastic modulus .
It is difficult to obtain a suitable surgical material. Therefore, the raw material
Poly viscosity average molecular weight of lactic acid from 300000 to 600000 about is, preferably it is desirable that the molecular weight of 40-50 250,000.

【0011】また、本発明では、原料として上記ポリ乳
酸に代えて乳酸−グリコール酸共重合体も用いられる。
この共重合体は、ポリ乳酸と同程度の粘度平均分子量を
有し、乳酸含有割合の大きい方が適しており、なかでも
乳酸とグリコール酸の重量比が99:1〜75:25の
範囲にあるものが好ましく使用される。グリコール酸が
少量で上記範囲内の場合には、得られる外科用材料が優
れた耐加水分解性を有するため、37℃の生理食塩水中
に3ケ月間浸漬しても(骨折の癒合に必要と考えられる
3ケ月間生体内に埋植させた状況に相当する)殆ど圧縮
曲げ強度、圧縮曲げ弾性率などの強度劣化を生じない
が、グリコール酸が上記範囲を越えて増加すると、耐加
水分解性が低下して早期に該強度劣化を招くという不都
合が生じるからである。
In the present invention, a lactic acid-glycolic acid copolymer is also used as a raw material instead of the above polylactic acid.
This copolymer has a viscosity average molecular weight similar to that of polylactic acid, and is preferably one having a large lactic acid content. Among them, the weight ratio of lactic acid to glycolic acid is in the range of 99: 1 to 75:25. Some are preferably used. When the amount of glycolic acid is in a small amount within the above range, the resulting surgical material has excellent hydrolysis resistance. Therefore, even if the glycolic acid is immersed in physiological saline at 37 ° C. for 3 months (necessary for fusion of bone fracture) Almost no deterioration in strength such as compressive bending strength and compressive bending elastic modulus occurs, which is equivalent to the situation of being implanted in the body for 3 months. However, when glycolic acid increases beyond the above range, hydrolysis resistance This is because there is an inconvenience in that the strength deteriorates and the strength deteriorates at an early stage.

【0012】本発明の方法により得られる外科用材料
は、上記特定範囲内の高い粘度平均分子量を有するポリ
乳酸系ポリマーを原料とし、これをロッド又は帯状(プ
レート状)など所定の形状に溶融成形、例えば押出成
形、プレス成形した後、更に長軸方向に一軸に延伸する
ことによって得られる。溶融成形の中でも、特に押出成
形は生産性が良いので好ましく利用でき、この場合通常
の押出機を用いることができる。溶融成形(例えば押出
成形)の条件は、上記ポリ乳酸系ポリマーの融点以上、
220℃以下の温度範囲とする必要がある。この場合
に、溶融成形温度がポリ乳酸系ポリマーの融点より低い
と溶融成形が困難となり、逆に220℃を越えるとポリ
乳酸系ポリマーの分子量低下が著しくなり、溶融成形後
の粘度平均分子量が20万を下回るからである。
The surgical material obtained by the method of the present invention is made of a polylactic acid polymer having a high viscosity average molecular weight within the above-mentioned specific range as a raw material, and is melt-molded into a predetermined shape such as a rod or a strip (plate). For example, it can be obtained by extrusion molding, press molding, and then uniaxially stretching in the major axis direction. Among the melt moldings, extrusion molding is particularly preferable because it has high productivity, and in this case, an ordinary extruder can be used. The conditions for melt molding (for example, extrusion molding) are the melting point of the polylactic acid-based polymer or higher,
The temperature range needs to be 220 ° C. or less. In this case, if the melt molding temperature is lower than the melting point of the polylactic acid-based polymer, the melt molding becomes difficult, and conversely, if it exceeds 220 ° C., the molecular weight of the polylactic acid-based polymer is remarkably decreased, and the viscosity average molecular weight after the melt-molding is 20 %. Because it is less than 10,000 .

【0013】溶融成形時のポリ乳酸系ポリマーの分子量
低下を最小限に抑えるには、原料ポリ乳酸系ポリマーの
融点より僅かに高い温度で溶融成形することが大切であ
る。従って、原料ポリ乳酸系ポリマーとして上述のよう
に40〜50万程度の粘度平均分子量を有するものを使
用する場合には、200℃以下の温度条件で溶融成形す
ることが望ましい。同様に、溶融押出成形の圧力条件
は、原料ポリ乳酸系ポリマーの分子量低下を極力抑える
ために、溶融したポリ乳酸系ポリマーの粘度(粘度平均
分子量)に応じて押出可能な最小限の押出圧力とするの
が望ましい。
In order to minimize the decrease in the molecular weight of the polylactic acid polymer during melt molding, it is important to perform melt molding at a temperature slightly higher than the melting point of the raw polylactic acid polymer. Therefore, when the raw material polylactic acid-based polymer having a viscosity average molecular weight of about 400,000 to 500,000 is used, it is desirable to perform melt molding under a temperature condition of 200 ° C. or lower. Similarly, the pressure conditions for melt extrusion molding are set at the minimum extrusion pressure that can be extruded according to the viscosity (viscosity average molecular weight) of the molten polylactic acid-based polymer in order to minimize the decrease in molecular weight of the raw material polylactic acid-based polymer. It is desirable to do.

【0014】従って、原料ポリ乳酸系ポリマーの粘度平
均分子量が60万までの場合には、260kg/cm
以下、該分子量が40〜50万程度の場合には170〜
210kg/cm程度の押出圧力とするのが適当であ
る。なお、溶融成形の前に、原料のポリ乳酸系ポリマー
のペレットを予め減圧加熱乾燥して水分を十分に除去し
ておくのが好ましい。溶融成形によって得られた成形物
は、その粘度平均分子量が20万以上に保たれているの
で、かなりの圧縮曲げ強度、圧縮曲げ弾性率を有する
が、まだ目的とする(骨に匹敵する)値には及ばない。
Therefore, when the viscosity average molecular weight of the raw material polylactic acid-based polymer is up to 600,000, 260 kg / cm 2
In the following, when the molecular weight is about 400,000 to 500,000, 170 to
An extrusion pressure of about 210 kg / cm 2 is suitable. Before melt molding, it is preferable that the raw material polylactic acid-based polymer pellets be dried by heating under reduced pressure to sufficiently remove water. Since the viscosity average molecular weight of the molded product obtained by melt molding is maintained at 200,000 or more, it has considerable compressive bending strength and compressive bending elastic modulus, but it is still the target value (comparable to bone). Does not reach

【0015】そこで、本発明では、上記溶融成形物を更
に流動パラフィン、油等の熱媒体中で長軸方向(押出方
向)に一軸延伸することにより、ポリマー分子を配向さ
せて圧縮曲げ強度、圧縮曲げ弾性率を向上させている。
この一軸延伸は60〜180℃での温度条件で行うこと
が必要である。この延伸温度が60℃より低い温度で
は、溶融成形物のガラス転移点に近すぎるため延伸によ
る分子配向が不十分となり、逆に180℃より高い温度
では成形物の分子量低下をきたし、いずれの場合も延伸
によって満足に圧縮曲げ強度、圧縮曲げ弾性率を向上さ
せることが困難となる。好ましい温度条件は、溶融成形
後の成形物の分子量によって変動するが、その分子量が
20万〜25万程度であれば100℃前後である。
Therefore, in the present invention, the above melt-molded product is further uniaxially stretched in the longitudinal direction (extrusion direction) in a heat medium such as liquid paraffin or oil to orient the polymer molecules to achieve compressive bending strength and compression. The bending elastic modulus is improved.
This uniaxial stretching needs to be performed under the temperature condition of 60 to 180 ° C. If the stretching temperature is lower than 60 ° C., the molecular orientation due to stretching becomes insufficient because it is too close to the glass transition point of the melt-molded product , and conversely, if the temperature is higher than 180 ° C. , the molecular weight of the molded product decreases. Also, it becomes difficult to satisfactorily improve the compressive bending strength and the compressive bending elastic modulus by stretching. The preferable temperature condition varies depending on the molecular weight of the molded product after melt molding, but if the molecular weight is about 200,000 to 250,000, it is around 100 ° C.

【0016】また、延伸倍率は2倍又はそれ以上であっ
て外科材料に適する程度の範囲が望ましい。2倍より小
さい延伸倍率では分子配向が不十分となり、満足に圧縮
曲げ強度、圧縮曲げ弾性率を向上させることが困難とな
るからである。従来、ポリ乳酸系ポリマーを単独で使用
して骨に匹敵する高い圧縮曲げ強度、圧縮曲げ弾性率並
びに優れた耐加水分解性を有する外科用材料、特に骨接
合用材料は得られなかった。然るに、上述のように、本
発明の方法により得られた新規な外科用材料では、30
万〜60万程度という特定範囲の高い粘度平均分子量を
持つ原料ポリ乳酸系ポリマーを選択し且つ溶融成形温度
条件を特定範囲(その融点以上、220℃以下)とした
ので、溶融成形時のポリ乳酸系ポリマーの分子量低下を
最低限に抑えて成形後の粘度平均分子量を20万以上と
することができ、この溶融成形物をガラス転移点付近
(60℃)〜融点付近(180℃)の温度、好ましくは
100℃前後で一軸延伸することにより、初めて高強度
で耐加水分解性に優れた延伸成形物の外科用材料を得る
ことができる点に技術的意義を有する。
Further, the draw ratio is 2 times or more .
It is desirable that the range is suitable for surgical materials . If the stretching ratio is less than 2, the molecular orientation becomes insufficient, and it becomes difficult to satisfactorily improve the compressive bending strength and the compressive bending elastic modulus. Heretofore, it has not been possible to obtain a surgical material having a high compressive bending strength, a compressive bending elastic modulus which is comparable to that of bone and excellent hydrolysis resistance, particularly a material for osteosynthesis, by using a polylactic acid type polymer alone. Therefore, as mentioned above, the novel surgical material obtained by the method of the present invention is
Since a raw material polylactic acid-based polymer having a high viscosity average molecular weight in a specific range of about 10,000 to 600,000 was selected and the melt molding temperature condition was set to a specific range (above the melting point and below 220 ° C.), polylactic acid during melt molding was selected. The viscosity average molecular weight after molding is set to 200,000 or more by minimizing the decrease in the molecular weight of the base polymer.
This melt-molded product is uniaxially stretched at a temperature near the glass transition point (60 ° C.) to the melting point (180 ° C.), preferably around 100 ° C. , so that it has high strength and excellent hydrolysis resistance for the first time. obtaining a surgical material stretched molded product was
It has technical significance in that it can be done .

【0017】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーからなる生体内分解吸収性
材料の延伸された成形物であって、その圧縮曲げ強度が
1.6×10kg/cm以上、圧縮曲げ弾性率が
5.0×10kg/mm以上、溶融成形後の粘度平
均分子量が20万以上である、強靭で耐加水分解性に優
れた外科用材料となる。この外科用材料は、その後に適
当な寸法に切断され、最終的に種々のサイズ及び形状の
骨接合プレート、ピン、ビス、スクリュー等に切削加工
され、整形外科、口腔外科、胸部外科、形成外科等の領
域で臨床に使用できる。
The novel surgical material obtained by the method of the present invention is a stretched molded article of a biodegradable and absorbable material composed of a polylactic acid type polymer, and its compressive bending strength is 1.6 × 10. 3 kg / cm 2 or more, compressive bending elastic modulus of 5.0 × 10 2 kg / mm 2 or more, viscosity average molecular weight of 200,000 or more after melt molding, tough and excellent in hydrolysis resistance Becomes This surgical material is then cut to the appropriate size and finally machined into osteosynthesis plates, pins, screws, screws, etc. of various sizes and shapes for orthopedic surgery, oral surgery, thoracic surgery, plastic surgery. It can be used clinically in such areas.

【0018】本発明の方法により得られた新規な外科用
材料は、ポリ乳酸系ポリマーのみよりなるから、生体内
分解吸収性も極めて良好であり、従来の金属又はセラミ
ックス製外科用材料のように生体内で悪影響を与える心
配は殆どない。より詳細には、本発明の方法により得ら
れた新規な外科用材料は、骨と同程度かやや高い圧縮曲
げ強度、圧縮曲げ弾性率を有していて、外科治療に際し
骨折等の部位の固定をし、骨の再生につれて徐々に分解
しても、骨折が修復される3ケ月程度までは強度を保持
し、その後は分解が進んで強度が低下するものの骨が再
生されて全体として強度保持がなされるのである。
Since the novel surgical material obtained by the method of the present invention is composed of only polylactic acid-based polymer, it has a very good biodegradability and absorbability, and is similar to the conventional metallic or ceramic surgical materials. There is almost no fear of adverse effects in the living body. More specifically, the novel surgical material obtained by the method of the present invention has a compressive bending strength and a compressive bending elastic modulus that are comparable to or slightly higher than those of bone, and fixes a site such as a fracture during surgical treatment. Even if it gradually decomposes as the bone regenerates, it retains its strength up to about three months after the fracture is repaired. After that, the bone is regenerated and the strength is maintained as a whole, although the decomposition progresses and the strength decreases. It is done.

【0019】しかも、本発明の方法により、溶融成形時
の分子量低下を最小限に抑えて溶融成形後の粘度平均分
子量を20万以上に保ち、更に延伸によって分子配向及
び結晶配向を与えると、得られた外科用材料はその圧縮
曲げ強度が1.6×10kg/cm以上、圧縮曲げ
弾性率が5.0×10kg/mm以上と、従来のポ
リ乳酸系外科用材料では到達できなかった高い圧縮曲げ
強度、高い圧縮曲げ弾性率を示し、また、耐加水分解性
も向上し、37℃の生理食塩水中に約3ケ月浸漬しても
(骨折の癒合に必要と考えられる3ケ月間生体内に埋植
させた状況に相当する)、殆ど強度低下を生じることが
ない効果がある。
Further, according to the method of the present invention, the decrease in molecular weight during melt molding is minimized, the viscosity average molecular weight after melt molding is kept at 200,000 or more, and further molecular orientation and crystal orientation are given by stretching to obtain The obtained surgical material has a compressive bending strength of 1.6 × 10 3 kg / cm 2 or more and a compressive bending elastic modulus of 5.0 × 10 2 kg / mm 2 or more. It shows high compressive bending strength, high compressive bending elastic modulus that could not be reached, and also improved hydrolysis resistance. Even when immersed in physiological saline at 37 ° C for about 3 months (it is considered necessary for fusion of fractures. It corresponds to the situation of being implanted in a living body for 3 months), and there is an effect that the strength is hardly reduced .

【0020】本発明の方法では、溶融成形後の粘度平均
分子量を20万以上にすることが重要である。このよう
な粘度平均分子量を持つ成形物を延伸して得られる外科
用材料は、埋植時において骨と同程度かやや高い初期圧
縮曲げ強度及び初期圧縮曲げ弾性率を与え、さらに癒合
に必要と考えられる3ケ月間該骨接合材を生体内にイン
プラントさせても圧縮曲げ強度、圧縮曲げ弾性率を低下
させないように保持できる。また、溶融成形後の粘度平
均分子量が20万より低いと、これを延伸しても上記初
期の圧縮曲げ強度及び圧縮曲げ弾性率は目標値(骨と同
じかそれを上回る値)を下回り、骨接合材の分解も早く
なって使用できなくなり、外科用材料としては強度的並
びに、耐加水分解性の両面で実用化できなくなる。
In the method of the present invention, it is important that the viscosity average molecular weight after melt molding is 200,000 or more. Surgery obtained by stretching a molded product having such a viscosity average molecular weight
The material for use gives an initial compressive bending strength and an initial compressive bending elastic modulus that are similar to or slightly higher than those of bones at the time of implantation, and even if the bone cement is considered to be necessary for fusion for 3 months, it can be implanted in a living body. It can be maintained so as not to reduce the compressive bending strength and the compressive bending elastic modulus. Further, if the viscosity average molecular weight after melt molding is lower than 200,000, the initial compressive bending strength and compressive bending elastic modulus are below the target values (values equal to or higher than those of bone) even if they are stretched , The decomposition of the bonding material becomes too fast to use, and it cannot be put to practical use as a surgical material in terms of both strength and hydrolysis resistance.

【0021】本発明において、溶融成形後の粘度平均分
子量は20万以上であることが望ましいとしたが、その
上限は一義的に定めることができない。すなわち、原料
ポリ乳酸系ポリマーの望ましい粘度平均分子量は30万
〜60万であるので60万を越えることはないが、使用
する原料ポリ乳酸系ポリマーの分子量、共重合比、成形
温度や押出圧力等の溶融成形条件等にかなりの幅がある
うえ、上記分子量、共重合比、成形条件により分子量低
下の程度が変化するので上限を一義的に定めることがで
きないのである。
In the present invention, the viscosity average content after melt molding is
Although it is desirable that the child quantity is 200,000 or more,
The upper limit cannot be uniquely determined. That is, the raw material
Desirable viscosity average molecular weight of polylactic acid type polymer is 300,000
Since it is ~ 600,000, it will not exceed 600,000, but it will be used
Raw material Polylactic acid-based polymer molecular weight, copolymerization ratio, molding
There is a wide range of melt molding conditions such as temperature and extrusion pressure.
In addition, depending on the above molecular weight, copolymerization ratio and molding conditions, the molecular weight is low.
Since the degree below will change, the upper limit can be set uniquely.
I can't come.

【0022】また、本発明により得られる新規な外科用
材料において、その圧縮曲げ強度が1.6×10kg
/cm以上、圧縮曲げ弾性率が5.0×10kg/
mm以上であるとしたが、その上限は一義的に定める
ことができない。すなわち、これら外科用材料の強度特
性の下限は、溶融成形後の粘度平均分子量値が20万の
成形物を延伸したことに由来するものであり、従って、
その上限は原料ポリ乳酸系ポリマーの特定範囲の粘度平
均分子量の上限値(60万)に由来して決まる溶融成形
後の粘度平均分子量の上限の成形物を延伸したことに基
づくが、原料ポリ乳酸系ポリマーの分子量、共重合比、
溶融成形条件、延伸倍率等にかなりの幅があるうえ、こ
れらによりその圧縮曲げ強度、圧縮曲げ弾性率が変化す
るので一義的に上限を定めることができないのである。
The novel surgical material obtained by the present invention has a compressive bending strength of 1.6 × 10 3 kg.
/ Cm 2 or more, the compression bending elastic modulus is 5.0 × 10 2 kg /
Although it is set to be mm 2 or more, the upper limit cannot be uniquely determined. That is, the lower limit of the strength characteristics of these surgical materials is derived from stretching a molded product having a viscosity average molecular weight value of 200,000 after melt molding, and therefore,
The upper limit is based on stretching of the molded product having the upper limit of the viscosity average molecular weight after melt molding, which is determined by the upper limit (600,000) of the viscosity average molecular weight of the raw material polylactic acid-based polymer. Molecular weight of copolymer, copolymerization ratio,
Melt molding condition, upon which there is a considerable width stretch ratio, and these by compression flexural strength thereof, the compression flexural modulus turn into strange
Therefore, the upper limit cannot be set uniquely.

【0023】[0023]

【実施例】本発明を実施例により詳細に説明するが、こ
れらは本発明の範囲を制限しない。実施例中に示した圧
縮曲げ強度及び圧縮曲げ弾性率はJIS K−7203
に基づいて測定したものである。 (実施例1)初期の粘度平均分子量が44万のポリ乳酸
のペレットを減圧下に120〜140℃で一昼夜乾燥
し、この乾燥ペレットを押出機に入れて減圧下に約20
分間放置した後、下記表1に示した温度条件で、角棒又
は丸棒状に溶融押出成形した。得られた角棒又は丸棒状
成形物の粘度平均分子量を測定したところ、下記表1に
示すように22万であった。
EXAMPLES The present invention will be described in detail by way of examples, which do not limit the scope of the present invention. The compressive bending strength and the compressive bending elastic modulus shown in the examples are JIS K-7203.
It was measured based on. (Example 1) Polylactic acid pellets having an initial viscosity average molecular weight of 440,000 were dried under reduced pressure at 120 to 140 ° C for a whole day and night, and the dried pellets were put into an extruder and dried under reduced pressure for about 20 minutes.
After standing for a minute, the mixture was melt-extruded into a square rod or a round rod under the temperature conditions shown in Table 1 below. When the viscosity-average molecular weight of the obtained square bar or round bar-shaped molded product was measured, it was 220,000 as shown in Table 1 below.

【0024】なお、この場合の粘度式は:The viscosity formula in this case is:

【数1】 を用いた。次いで、この成形物を100℃の流動パラフ
ィン中で長軸方向に2倍に一軸延伸し、これを切断して
試験片(寸法:幅10mm×厚み5mm×長さ80m
m)を製作した。得られた試験片の圧縮曲げ強度及び圧
縮曲げ弾性率を測定したところ、下記表1に示すよう
に、圧縮曲げ強度が1,720kg/cm、圧縮曲げ
弾性率が610kg/mmであった。
[Equation 1] Was used. Next, this molded product was uniaxially stretched in the long axis direction to 100% in liquid paraffin at 100 ° C. and cut to obtain a test piece (dimensions: width 10 mm × thickness 5 mm × length 80 m).
m) was produced. When the compression bending strength and the compression bending elastic modulus of the obtained test piece were measured, as shown in Table 1 below, the compression bending strength was 1,720 kg / cm 2 and the compression bending elastic modulus was 610 kg / mm 2 . .

【0025】更に、この試験片を37℃の生理食塩水中
に3ケ月間浸漬し、その後、該試験片の圧縮曲げ強度及
び圧縮曲げ弾性率を測定したところ、下記表1に示すよ
うに、圧縮曲げ強度が1,700kg/cm、圧縮曲
げ弾性率が600kg/mmであり、強度劣化が殆ど
見られなかった。
Further, the test piece was dipped in a physiological saline solution at 37 ° C. for 3 months, and the compressive bending strength and the compressive bending elastic modulus of the test piece were measured. The bending strength was 1,700 kg / cm 2 and the compressive bending elastic modulus was 600 kg / mm 2 , and almost no strength deterioration was observed.

【0026】(実施例2)初期の粘度平均分子量が42
万のポリ乳酸のペレットを用いた以外は実施例1と同様
にして試験片を作製し、この試験片の初期及び3ケ月間
浸漬後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出
成形後の粘度平均分子量を測定した。その結果を下記表
1に示す。
Example 2 The initial viscosity average molecular weight is 42.
A test piece was prepared in the same manner as in Example 1 except that polylactic acid pellets were used. The test piece was subjected to compression bending strength, compression bending elastic modulus, and melt extrusion after initial immersion for 3 months. The viscosity average molecular weight was measured. The results are shown in Table 1 below.

【0027】(実施例3)初期の粘度平均分子量が40
万の乳酸−グリコール酸共重合体(乳酸:グリコール酸
=90:10)を用いた以外は実施例1と同様にして試
験片を作製し、この試験片の初期及び3ケ月間浸漬後の
圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出成形後の
粘度平均分子量を測定した。その結果を下記表1に示
す。
Example 3 The initial viscosity average molecular weight is 40.
A test piece was prepared in the same manner as in Example 1 except that a lactic acid-glycolic acid copolymer (lactic acid: glycolic acid = 90: 10) was used, and the test piece was compressed at the initial stage and after immersion for 3 months. Bending strength, compressive bending elastic modulus, and viscosity average molecular weight after melt extrusion molding were measured. The results are shown in Table 1 below.

【0028】(実施例4〜5)延伸温度をそれぞれ70
℃と170℃に変更した以外は実施例1と同様にして2
種類の試験片を作製し、この試験片の初期及び3ケ月間
浸漬後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出
成形後の粘度平均分子量を測定した。その結果を下記表
1に併せて示す。
(Examples 4 to 5) Stretching temperature was 70
2 in the same manner as in Example 1 except that the temperature was changed to 0 ° C and 170 ° C.
Various kinds of test pieces were prepared, and the compression bending strength, the compression bending elastic modulus, and the viscosity average molecular weight after melt extrusion molding of the test pieces were measured at the initial stage and after immersion for 3 months. The results are also shown in Table 1 below.

【0029】(実施例6初期の粘度平均分子量が49
万のポリ乳酸のペレットを用い且つ溶融押出成形の温度
条件を下記表1に示す温度に変更し、延伸温度を105
℃に変更して2.5倍に延伸した以外は実施例1と同様
にして試験片を作製し、この試験片の初期及び3ケ月間
浸漬後の圧縮曲げ強度、圧縮曲げ弾性率並びに溶融押出
成形後の粘度平均分子量を測定した。その結果を下記表
1に併せて示す。
Example 6 Initial viscosity average molecular weight is 49
Tens of thousands of polylactic acid pellets and melt extrusion temperature
The conditions were changed to the temperatures shown in Table 1 below, and the stretching temperature was set to 105.
Same as Example 1 except that the temperature was changed to ° C and the film was stretched 2.5 times.
To prepare a test piece, and the initial and three months of this test piece
Compressive bending strength after immersion, compressive bending elastic modulus and melt extrusion
The viscosity average molecular weight after molding was measured. The results are shown in the table below
1 is also shown.

【0030】(比較例1〜2)初期の粘度平均分子量が
それぞれ70万及び28万のポリ乳酸を用いて、溶融押
出成形の温度条件を下記表1に示す温度に変更した以外
は実施例1と同様にして2種類の試験片を作製し、この
試験片の初期及び3ケ月間浸漬後の圧縮曲げ強度、圧縮
曲げ弾性率並びに溶融押出成形後の粘度平均分子量を測
定した。その結果を下記表1に併せて示す。
Comparative Examples 1 and 2 Example 1 was repeated except that polylactic acid having an initial viscosity average molecular weight of 700,000 and 280,000 was used, and the temperature conditions for melt extrusion were changed to the temperatures shown in Table 1 below. Two types of test pieces were prepared in the same manner as in, and the compression bending strength, the compression bending elastic modulus, and the viscosity average molecular weight after melt extrusion molding of the test pieces were measured at the initial stage and after immersion for 3 months. The results are also shown in Table 1 below.

【0031】[0031]

【表1】 前記表1より、実施例1〜6の溶融成形後の粘度平均分
子量はいずれも20万以上であり、これを延伸した生体
内分解吸収性の外科用材料は、圧縮曲げ強度が1.6×
10kg/cm以上、圧縮曲げ弾性率が5.0×1
kg/mm以上と優れた強度を有しており、ま
た、生理食塩水中で3ケ月間浸漬しても殆ど強度劣化を
生じない高耐加水分解性を有することが分かる。これに
対し、比較例1の材料は、分子量が70万と極めて高い
ポリ乳酸を用いたために、溶融押出成形の温度及び圧力
を高くしないと押出しできず、成形後の分子量が20万
を下回り、一軸延伸しても、結果的に圧縮曲げ強度及び
圧縮曲げ弾性率が目標値を下回り、満足な強度が得られ
ないことが分かる。また、比較例2は、分子量が30万
より低いため、溶融押出成形の温度及び圧力を低くして
分子量低下を極力抑えても、成形後の分子量が20万を
遙かに下回り、そのために一軸延伸しても、満足な強度
が得られないことが分かる。
[Table 1] From Table 1 above, the viscosity average content after melt molding of Examples 1 to 6
The amount of each of these is 200,000 or more, and the biodegradable and absorbable surgical material obtained by stretching the material has a compressive bending strength of 1.6 ×.
10 3 kg / cm 2 or more, compressive bending elastic modulus 5.0 × 1
It has excellent strength of 0 2 kg / mm 2 or more, and also has high hydrolysis resistance that does not cause strength deterioration even when immersed in physiological saline for 3 months. In contrast, the material of Comparative Example 1, to the molecular weight with extremely high polylactic 700,000, the temperature and pressure of the melt extrusion
If it is not high, extrusion is not possible, the molecular weight after molding is less than 200,000, and even if it is uniaxially stretched, as a result, the compressive bending strength and the compressive bending elastic modulus are below the target values, and satisfactory strength may not be obtained. I understand. Moreover, since the molecular weight of Comparative Example 2 is lower than 300,000, the molecular weight after molding is far below 200,000 even if the temperature and pressure of the melt extrusion molding are lowered to suppress the decrease of the molecular weight as much as possible, and therefore uniaxial It can be seen that satisfactory strength cannot be obtained even by stretching.

【0032】[0032]

【発明の効果】以上の説明及び実施例の結果から明らか
ように、本発明の方法は、(イ)原料として特定範囲の
高い粘度平均分子量を有するポリ乳酸系ポリマーを使用
し、(ロ)該ポリマーの分子量低下を最低限に抑える特
定の温度範囲で溶融成形し、(ハ)該ポリマーの更なる
分子量低下を招かない特定の温度条件下で延伸を行うと
いう、特定の調整された条件下でポリ乳酸系生体内分解
吸収性の延伸成形物の外科用材料を製造したので、
As is apparent from the above description and the results of the examples, the method of the present invention uses (a) a polylactic acid-based polymer having a high viscosity average molecular weight in a specific range as a raw material , and Under certain adjusted conditions, such as melt molding in a specific temperature range that minimizes the decrease in the molecular weight of the polymer, and (c) stretching is performed under the specific temperature conditions that do not cause a further decrease in the molecular weight of the polymer. Since we produced a surgical material for polylactic acid-based biodegradable and absorbable stretched molded products,

【0033】従来のポリ乳酸系外科用材料では得られな
かった高い圧縮曲げ強度、圧縮曲げ弾性率を具備し、且
つ耐加水分解性にも優れた外科用材料を得ることがで
き、整形外科、口腔外科、又は胸部外科等の領域におい
て、骨接合用のプレート、スクリュー、ピン又はビス等
として頗る好適に使用することができる。また、本発明
の製造法は、樹脂成形の分野で汎用される溶融成形の工
程に延伸の工程を付加するのみであるから、なんら特別
の装置を準備することなく容易且つ高能率で実施でき、
且つ必要に応じて連続工程も可能であり、量産性、作業
性等に優れるといった効果がある。
It is possible to obtain a surgical material having a high compressive bending strength and a compressive bending elastic modulus, which are not obtained with conventional polylactic acid-based surgical materials, and also excellent in hydrolysis resistance. In the field of oral surgery or thoracic surgery, it can be suitably used as a bone-bonding plate, screw, pin or screw. Further, the production method of the present invention can be easily and highly efficiently carried out without preparing any special device, since it only adds the step of stretching to the step of melt molding which is generally used in the field of resin molding.
In addition, continuous processes are possible if necessary, and there is an effect that mass productivity and workability are excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玄 丞烋 京都市南区東九条南松ノ木町43番地の1 (72)発明者 蔦 薫 大阪市東区安土町2丁目30番地 タキロン 株式会社内 (72)発明者 棒谷 英和 大阪市東区安土町2丁目30番地 タキロン 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Gen Roh, 1 43-43 Higashikujo Minami Matsunoki-cho, Minami-ku, Kyoto (72) Inventor Kaoru Tsuta 2-30 Azuchi-cho, Higashi-ku, Osaka City Takiron Co., Ltd. (72 ) Inventor Hidekazu Banya 2-30 Azuchi-cho, Higashi-ku, Osaka Takiron Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 粘度平均分子量が30万〜60万のポリ乳酸又は乳酸−
グリコール酸共重合体を、その融点以上220℃以下の
温度条件下で溶融成形し、更に60〜180℃の温度条
件下で延伸することを特徴とする、強靱で耐加水分解性
に優れた生体内分解吸収性の外科用材料の製造法。
Polylactic acid or lactic acid having a viscosity average molecular weight of 300,000 to 600,000
A tough and excellent hydrolysis resistant raw material characterized in that the glycolic acid copolymer is melt-molded under the temperature condition of the melting point or more and 220 ° C. or less and further stretched under the temperature condition of 60 to 180 ° C. A method for producing a biodegradable and absorbable surgical material.
JP07268998A 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials Expired - Lifetime JP3141088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07268998A JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07268998A JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62333333A Division JP2587664B2 (en) 1987-12-28 1987-12-28 Biodegradable and absorbable surgical materials

Publications (2)

Publication Number Publication Date
JPH08196616A true JPH08196616A (en) 1996-08-06
JP3141088B2 JP3141088B2 (en) 2001-03-05

Family

ID=17466255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07268998A Expired - Lifetime JP3141088B2 (en) 1995-09-25 1995-09-25 Method for producing biodegradable and absorbable surgical materials

Country Status (1)

Country Link
JP (1) JP3141088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180326127A1 (en) * 2015-12-31 2018-11-15 Lifetech Scientific (Shenzhen) Co., Ltd Iron-based alloy absorbable and implantable medical device for internal fixation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198552A (en) * 1987-11-19 1989-08-10 Solvay & Cie Article made of lactic acid polymer usable as biodegradable artificial prosthesis and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198552A (en) * 1987-11-19 1989-08-10 Solvay & Cie Article made of lactic acid polymer usable as biodegradable artificial prosthesis and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180326127A1 (en) * 2015-12-31 2018-11-15 Lifetech Scientific (Shenzhen) Co., Ltd Iron-based alloy absorbable and implantable medical device for internal fixation
US11819591B2 (en) * 2015-12-31 2023-11-21 Biotyx Medical (Shenzhen) Co., Ltd. Iron-based alloy absorbable and implantable medical device for internal fixation

Also Published As

Publication number Publication date
JP3141088B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US5227412A (en) Biodegradable and resorbable surgical material and process for preparation of the same
JP3043778B2 (en) Decomposition-absorbent molded article and method for producing the molded article
JP4554084B2 (en) Bioabsorbable, biocompatible polymers for tissue manipulation
JP2587664B2 (en) Biodegradable and absorbable surgical materials
US8465771B2 (en) Anisotropic hydrogels
Cheung et al. Biodegradation of a silkworm silk/PLA composite
JP2860663B2 (en) Biodegradable and absorbable surgical molding
JP4644374B2 (en) Poly (propylene fumarate) crosslinked with poly (ethylene glycol)
Hu et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering
US20070299540A1 (en) Methods of making medical implants of poly (vinyl alcohol) hydrogel
JP2718428B2 (en) Absorbable material for tissue fixation
CN111956871B (en) Silk protein/gelatin composite material and application thereof
WO2015043496A1 (en) Bone injury repair and fixation instrument and method of manufacturing same
JP2009516038A (en) Molded body based on crosslinked gelatinous material, method for producing the molded body, and use of the molded body
JPH11206871A (en) In vivo degradable and absorptive bone fixing material and its manufacture
JP2912923B2 (en) Biodegradable and absorbable surgical material and method for producing the same
KR100776297B1 (en) Injectable photo-crosslinked hydrogels, biodegradable implant and drug delivery system using the same, and the preparation method thereof
Demina et al. Biodegradable nanostructured composites for surgery and regenerative medicine
JPH08196616A (en) Manufacture for in vivo degradation absorbable surgical material
Chen et al. The evaluation of thermal properties and in vitro test of carbodiimide or glutaraldehyde cross-linked gelatin for PC 12 cells culture
JP3148932B2 (en) Biodegradable and absorbable plate for internal fixation of fracture
JPH06142182A (en) Internal fixing material for joining bone
JP3010279B2 (en) Osteosynthesis device
JP2864113B2 (en) Biodegradable absorbable rib fixation pin
JP2007313263A (en) Biodegradable and absorbent bone fixation material with high strength/high elastic modulus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8