JPH08321696A - Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith - Google Patents

Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith

Info

Publication number
JPH08321696A
JPH08321696A JP12620995A JP12620995A JPH08321696A JP H08321696 A JPH08321696 A JP H08321696A JP 12620995 A JP12620995 A JP 12620995A JP 12620995 A JP12620995 A JP 12620995A JP H08321696 A JPH08321696 A JP H08321696A
Authority
JP
Japan
Prior art keywords
fin
electronic
cooling
semiconductor element
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12620995A
Other languages
Japanese (ja)
Inventor
Mitsuru Honma
満 本間
Shigeo Ohashi
繁男 大橋
Yoshihiro Kondo
義広 近藤
Tadakatsu Nakajima
忠克 中島
Kenji Onishi
健治 大西
Hiroshi Tsuzaki
寛 津崎
Hitoshi Matsushima
松島  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12620995A priority Critical patent/JPH08321696A/en
Publication of JPH08321696A publication Critical patent/JPH08321696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: To enable heat released from a semiconductor element to be efficiently dissipated into an ambient atmosphere by a method wherein one or more through-holes are provided to the heat dissipating surface of a fin so as to enhance air located between a mounting surface of a heat releasing body such as a semiconductor element and the fin in mobility. CONSTITUTION: Semiconductor devices 50 to 52 are located on a board 30 inside a case 70, and a heat dissipating fin 20 where through-holes 10 are bored is formed on the semiconductor device 50 through the intermediary of a conductive member. Then, convective warm air on the surface of board 30 around the semiconductor device 50 is enhanced in mobility to the outside. The fin 20 is slightly lessened in heat dissipating area by the through-holes 10 provided to its surface, but the inner air is enhanced in mobility, so that the fin 20 is capable of more efficiently dissipating heat into an ambient atmosphere than a conventional flat plate. The fin 20 hardly restrains heat released from both the semiconductor device 52 mounted under the fin 20 and the surface of the board 30 from being dissipated, so that, the fin 2O is capable of efficiently dissipating not only heat released from the semiconductor device 50 which is kept in contact with it but also heat released in all region below the film 20 into an surrounding air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器冷却用放熱フィ
ンおよびそれを用いた電子機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator fin for cooling electronic equipment and an electronic equipment using the same.

【0002】[0002]

【従来の技術】従来の小型電子機器放熱用フィンとし
て、電子機器内部の半導体素子及びパッケージ表面に積
層板(図2(a))または、ピンフィン(図2(b))など
が用いられている。また、特開平6−5751 号公報では、
多孔質金属フォームを放熱フィンとして用いている。
2. Description of the Related Art As a conventional fin for radiating small electronic devices, a laminated plate (FIG. 2 (a)) or a pin fin (FIG. 2 (b)) is used on the surface of a semiconductor element and a package inside the electronic device. . Further, in Japanese Patent Laid-Open No. 6-5751,
Porous metal foam is used as a radiation fin.

【0003】[0003]

【発明が解決しようとする課題】従来の放熱フィン及び
多孔質金属フォームなどでは、小型電子機器内部のよう
な狭い空間内に用いるとき、基板の積層スペースに対し
て大きなフィン高さを有するため、設置できないなどの
問題があった。また、背の低いフィンであっても、狭い
空間内に設置されると流動抵抗となって、フィンへの流
量が減少し、効率の良い冷却ができなかった。
The conventional heat radiation fins and porous metal foams have a large fin height with respect to the substrate stacking space when used in a narrow space such as inside a small electronic device. There was a problem that it could not be installed. Further, even if the fins are short, if they are installed in a narrow space, flow resistance is generated, the flow rate to the fins is reduced, and efficient cooling cannot be performed.

【0004】本発明の目的は、狭い空間内に高密度に実
装される半導体素子などの発熱体の冷却構造について、
半導体素子から発生する熱を効率よく周囲に拡散し、半
導体素子を所定の温度の保つようにする冷却構造を提供
することにある。
An object of the present invention is to provide a cooling structure for a heating element such as a semiconductor element mounted in a narrow space with high density.
Another object of the present invention is to provide a cooling structure that efficiently diffuses heat generated from a semiconductor element to the surroundings and keeps the semiconductor element at a predetermined temperature.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の放熱フィンは、半導体素子などの発熱体実
装面とフィン間の空気が流動しやすいように、放熱面に
単数あるいは複数の貫通孔を設けた。また、自然冷却だ
けでなく、強制対流冷却時も効率よく伝熱する為に、貫
通穴の縁に小さいフィンを付け、半導体素子根元まで、
空気が流動しやすいようにした。
In order to achieve the above-mentioned object, the heat radiation fin of the present invention includes a single or a plurality of heat radiation surfaces so that air between the heat element mounting surface such as a semiconductor element and the fins can easily flow. Through holes are provided. In addition to natural cooling, small fins are attached to the edges of the through holes to efficiently transfer heat during forced convection cooling.
Made the air easy to flow.

【0006】[0006]

【作用】本発明の放熱フィンは、平板状であるので、半
導体基板などの発熱体を有する電子基板が密に積層し、
空間の放熱スペースが著しく制限される場合に有効であ
る。狭い空間内で電子基板上の半導体素子が発熱する
と、半導体素子面以外にその周辺の電子基板上で温度の
高い部分発生する。半導体素子面に設けられた本発明の
放熱フィンは、フィン面に貫通孔が設けられ、接触させ
た発熱体の放熱面積自体を低下させるが、発熱体周辺の
電子基板面で本来隠るべき高温空気層をフィン面上に排
出することができるので平板フィン以上に電子基板を効
率良く冷却できる。さらに、上述の貫通孔は、自然対流
の起こらないような極端に狭い空間では、貫通孔を介し
て空気の移動が可能となり、対流が起こるので、効率の
良い冷却ができる。また、電子基板をファンなどによる
強制対流冷却をする場合、本発明の放熱フィンは、電子
基板上の発熱体を効率良く冷却するための風の通路とな
り、貫通孔が無い場合には風が流れにくい、発熱体であ
る半導体素子根元付近まで送風されるためより高効率冷
却が可能となる。
Since the radiation fin of the present invention has a flat plate shape, electronic boards having a heating element such as a semiconductor substrate are closely stacked,
This is effective when the heat radiation space of the space is significantly limited. When the semiconductor element on the electronic substrate generates heat in a narrow space, a high temperature portion is generated on the electronic substrate around the semiconductor element as well as on the semiconductor element surface. The heat dissipation fin of the present invention provided on the semiconductor element surface has a through hole provided on the fin surface to reduce the heat dissipation area itself of the heating element that is in contact, but the high temperature air that should originally be hidden on the electronic substrate surface around the heating element. Since the layer can be discharged onto the fin surface, the electronic substrate can be cooled more efficiently than the flat plate fin. Furthermore, in the above-mentioned through hole, air can be moved through the through hole in an extremely narrow space where natural convection does not occur, and convection occurs, so efficient cooling can be performed. When the electronic board is subjected to forced convection cooling with a fan or the like, the radiating fins of the present invention serve as a wind passage for efficiently cooling the heating element on the electronic board, and when there is no through hole, the wind flows. Since it is difficult to blow air to the vicinity of the base of the semiconductor element, which is a heating element, more efficient cooling is possible.

【0007】[0007]

【実施例】図1に本発明の放熱フィンを用いた電子機器
の実施例を示す。電子機器は、複数の半導体素子を搭載
した基板30が、キーボード90と筐体70で囲まれた
狭い空間に配置されている。図は小型の筐体70内の基
板30上に不規則に実装された複数の半導体素子50〜
52があり、高発熱する発熱体である半導体素子50面
に伝導部材を介して接触させた放熱フィン20により、
半導体素子50で発生する熱を放熱する構造になってい
る。放熱フィン20には、複数の貫通孔10が設けられ
ており、半導体素子50付近の基板表面に停留する温か
い空気が外部に流動しやすいようになっている。フィン
面に設けられた貫通孔10により、フィンの放熱面積は
多少減少するが、内部空気の流動を促進するので、通常
の平板に比べて効率の良い放熱ができる。また、放熱フ
ィン30の下部に実装された半導体素子52、および基
板表面からの放熱を妨げないため、接触させた半導体素
子50のみでなく、フィン下面全域を効率よく冷却でき
る。このような貫通孔10付きの放熱フィン20は、大
きな金属平板に任意の形状、例えば、円形になるように
型抜きし、自由な大きさで切断することで容易に製作で
きる。
EXAMPLE FIG. 1 shows an example of an electronic device using the radiation fin of the present invention. In an electronic device, a substrate 30 on which a plurality of semiconductor elements are mounted is arranged in a narrow space surrounded by a keyboard 90 and a case 70. The figure shows a plurality of semiconductor elements 50 randomly mounted on a substrate 30 in a small housing 70.
There is 52, and by the radiation fin 20 that is in contact with the surface of the semiconductor element 50, which is a heating element that generates a large amount of heat, via a conductive member,
It has a structure for radiating heat generated in the semiconductor element 50. The radiating fin 20 is provided with a plurality of through holes 10 so that warm air staying on the substrate surface near the semiconductor element 50 can easily flow to the outside. Although the heat radiation area of the fin is somewhat reduced by the through hole 10 provided in the fin surface, since the flow of the internal air is promoted, the heat radiation can be performed more efficiently than the ordinary flat plate. Further, since the heat radiation from the semiconductor element 52 mounted under the heat radiation fin 30 and the surface of the substrate is not hindered, not only the semiconductor element 50 in contact therewith but also the entire fin lower surface can be efficiently cooled. Such a radiation fin 20 with the through hole 10 can be easily manufactured by punching a large metal flat plate into an arbitrary shape, for example, a circular shape, and cutting it into a free size.

【0008】図3に本発明の放熱フィンの実施例を示
す。図3(a)は、放熱フィン面上の貫通孔10を半導
体素子などの発熱体との接触面に設けない構造となって
いる。フィン面と発熱体面とに貫通孔を設けないことに
より、発熱体表面からフィン面への伝熱量が増大するの
で、前述のような基板や他の発熱部品の放熱を阻害する
ことなく、効率的に冷却できる。また、図3(b)は、
すべての放熱フィン端に貫通孔の縁面を形成させる構造
である。高い熱伝達率を有するフィン端部での縁長さが
増大し、全体の放熱能力も向上できる。
FIG. 3 shows an embodiment of the radiation fin of the present invention. FIG. 3A shows a structure in which the through hole 10 on the surface of the heat dissipation fin is not provided on the contact surface with a heating element such as a semiconductor element. By not providing through-holes on the fin surface and the heating element surface, the amount of heat transferred from the heating element surface to the fin surface increases, so that heat dissipation from the substrate and other heat-generating components as described above is not hindered and efficient. Can be cooled to. In addition, FIG.
This is a structure in which the edges of the through holes are formed at the ends of all the radiation fins. The edge length at the end of the fin having a high heat transfer coefficient is increased, and the overall heat dissipation capability can be improved.

【0009】図4に本発明の放熱フィンの他の実施例を
示す。図は、貫通孔10を設けた放熱面を(a)あるい
は(b)のように、半導体素子などの発熱体との接触面
に対して、上または下に傾斜を付けたものである。放熱
面端に傾斜を設けることにより、自然対流熱伝達が促進
されるので、冷却性能を向上させることができる。ま
た、フィン側面から送風して発熱体を冷却する構造で
は、空気が貫通孔を表から裏、あるいは裏から表へと流
れ、発熱体根元まで送風されるとともに、送風経路を任
意に調整できるので、多数の半導体素子が実装された基
板面を効率よく冷却できる。このような傾斜をもつフィ
ン23,24は、図3のような放熱フィンを、プレス加
工して製作できる。狭い空間内で用いるフィンであるこ
とから、傾斜はあまり取れないため、多数の凹凸を設け
ても良い。
FIG. 4 shows another embodiment of the radiation fin of the present invention. In the figure, the heat radiating surface provided with the through holes 10 is inclined upward or downward with respect to the contact surface with a heating element such as a semiconductor element as shown in (a) or (b). Since the natural convection heat transfer is promoted by providing the inclination at the end of the heat radiation surface, the cooling performance can be improved. Further, in the structure in which air is blown from the side surfaces of the fins to cool the heating element, air flows through the through holes from the front to the back or from the back to the front and is blown to the root of the heating element, and the air blowing path can be arbitrarily adjusted. The surface of the substrate on which a large number of semiconductor elements are mounted can be efficiently cooled. The fins 23 and 24 having such an inclination can be manufactured by pressing a heat radiation fin as shown in FIG. Since it is a fin used in a narrow space, it cannot be tilted so much, and therefore a large number of irregularities may be provided.

【0010】図5に本発明の放熱フィンの他の実施例を
示す。図は、貫通孔を設けた放熱面を(a)あるいは
(b)のように、貫通孔縁の両側または片側に更に小さ
い凸部15を垂直に形成させたものである。貫通孔縁の
凸部15により、放熱面積の拡大ができるので、発熱体
を効率よく冷却できる。また、フィン側面から送風して
発熱体を冷却する構造でも、(c)のような傾斜を有す
る凸部16を形成させることにより、送風経路を任意に
調整できるので、多数の半導体素子が実装された基板面
を効率よく冷却できる。凸部15,16は貫通孔11を
型抜きする場合に任意に形成できるように、型の大きさ
を調整する。
FIG. 5 shows another embodiment of the radiation fin of the present invention. In the drawing, the heat dissipation surface provided with the through holes is formed by vertically forming smaller convex portions 15 on both sides or one side of the through hole edge as shown in (a) or (b). Since the heat dissipation area can be expanded by the convex portion 15 at the edge of the through hole, the heating element can be efficiently cooled. Further, even in the structure in which air is blown from the side surfaces of the fins to cool the heating element, the air flow path can be arbitrarily adjusted by forming the convex portion 16 having an inclination as shown in (c), so that a large number of semiconductor elements are mounted. The substrate surface can be cooled efficiently. The size of the mold is adjusted so that the protrusions 15 and 16 can be formed arbitrarily when the through hole 11 is stamped out.

【0011】図6に本発明の放熱フィンの他の実施例を
示す。図は平板に形成させる貫通孔及び凸部17,18
を同時に成形させた放熱フィンの構造である。(a)あ
るいは、(b)のように、凸部となる面を加工時に予め
残すことにより、簡単に凸部付貫通孔が成形できる。
FIG. 6 shows another embodiment of the radiation fin of the present invention. The figure shows through holes and protrusions 17 and 18 formed on a flat plate.
It is the structure of the heat radiation fin which was molded simultaneously. As in (a) or (b), by leaving the surface to be the convex portion in advance during processing, the through hole with the convex portion can be easily formed.

【0012】図7に本発明の放熱フィンを用いた他の実
施例を示す。図1に示した筐体と類似した内部構造で、
筐体71内に複数積層された基板が鉛直に近い傾斜をも
って複数積層されている。このような傾斜をもつ基板面
に実装された半導体素子50〜52に伝導部材を介して
接触させた、例えば、図3に示す放熱フィン21を取り
付けたものである。内部の空気は基板31あるいは放熱
フィン21と熱交換しながら、上方に流動し、筐体71
上面のスリット孔66から排気される。鉛直に近い角度
をもって積層された基板31に用いられた放熱フィン2
1は、貫通孔10が無い場合にパッケージ下面で停留す
る高温空気が、貫通孔を通って上方に流動しやすくな
り、発熱体面の冷却を促進できる。
FIG. 7 shows another embodiment using the heat radiation fin of the present invention. With an internal structure similar to the case shown in FIG.
A plurality of substrates stacked in the housing 71 are stacked with an inclination close to vertical. For example, the radiation fins 21 shown in FIG. 3 are attached to the semiconductor elements 50 to 52 mounted on the substrate surface having such an inclination, which are brought into contact with each other through a conductive member. The internal air flows upward while exchanging heat with the substrate 31 or the radiating fins 21, and the casing 71
The air is exhausted from the slit hole 66 on the upper surface. Radiating fins 2 used for substrates 31 stacked at an angle close to vertical
In No. 1, high temperature air staying on the lower surface of the package when there is no through hole 10 easily flows upward through the through hole, and cooling of the heating element surface can be promoted.

【0013】図8に本発明の放熱フィンを用いた他の実
施例を示す。図1に示した筐体と類似した内部構造で、
筐体70とキーボード90で囲まれた狭い空間内に積層
された基板30に複数の半導体素子50〜52が実装さ
れている。また、筐体70側面には基板間を送風するフ
ァン60が搭載され、反対の筐体端に排気用のスリット
孔65が設けられている。また、上述と同様に筐体内に
積層された基板上の半導体素子50に伝導部材を介し
て、図2から図4に示した本発明の放熱フィンが接触し
ている。筐体70側面に設置されたファン60により基
板間に送風すると、放熱フィン面の貫通孔10の影響に
より、前面側(ファン側)の発熱体根元まで空気が入
り、後面側(排気孔側)にも空気が流入するようにな
り、暖められた空気は反対の筐体70側面の設けたスリ
ット孔65により排気される。それぞれの半導体素子5
0側面に空気が流入するため、フィン面を含めた全体で
空気に伝熱できるので効率よく発熱体の冷却ができる。
FIG. 8 shows another embodiment using the radiation fin of the present invention. With an internal structure similar to the case shown in FIG.
A plurality of semiconductor elements 50 to 52 are mounted on a substrate 30 stacked in a narrow space surrounded by the housing 70 and the keyboard 90. A fan 60 that blows air between the substrates is mounted on the side surface of the housing 70, and a slit hole 65 for exhaust is provided at the opposite housing end. Further, the radiation fin of the present invention shown in FIG. 2 to FIG. 4 is in contact with the semiconductor element 50 on the substrate laminated in the housing through the conductive member in the same manner as described above. When air is blown between the substrates by the fan 60 installed on the side surface of the housing 70, due to the effect of the through holes 10 on the radiating fin surface, air enters to the roots of the heating elements on the front side (fan side) and the rear side (exhaust hole side). The air also comes in, and the warmed air is exhausted through the slit hole 65 provided on the side surface of the opposite casing 70. Each semiconductor element 5
Since the air flows into the 0 side surface, heat can be transferred to the entire air including the fin surface, so that the heating element can be efficiently cooled.

【0014】図9に本発明の放熱フィンを用いた他の実
施例を示す。図9(a)は筐体71内にある基板30上
に高発熱する半導体素子50が搭載され、伝導部材55
を介して半導体素子50と本発明の、例えば、図1に示
した放熱フィンを接触させる。このような薄い半導体素
子に放熱フィンを直に接触させた場合、フィンと基板間
は非常に狭くなるので、空気の流れが起こりにくい。図
で示すように、厚い伝導部材55で基板30と放熱フィ
ン20の間隔を広げることにより、伝導部材によるフィ
ン面への伝熱抵抗以上に、フィン自体の放熱性能が向上
するので、効率良く冷却できる。図9(b)のように、
予め片面を切り欠いた放熱フィンを用いることにより、
伝導抵抗を低減できる。また、図9(c)では、下部を
貫通孔を設けた金属筐体面75とし、筐体75と基板3
0上の半導体素子50を伝導部材55、例えば、高熱伝
導性のシリコンゴムで接触させる。金属製の筐体75自
体が本発明の放熱フィンと同様な役割を兼ね備えるの
で、内部でフィン配置をするより簡単な構造であるとと
もに、放熱面積が大きく、外気が筐体内部に導入される
ため、高い放熱性能が得られる。
FIG. 9 shows another embodiment using the radiation fin of the present invention. In FIG. 9A, the semiconductor element 50 that generates a large amount of heat is mounted on the substrate 30 in the housing 71, and the conductive member 55 is provided.
The semiconductor element 50 and the radiation fin of the present invention, for example, shown in FIG. When the heat radiation fin is brought into direct contact with such a thin semiconductor element, the space between the fin and the substrate becomes very narrow, and thus air flow is unlikely to occur. As shown in the figure, by widening the distance between the substrate 30 and the radiation fin 20 with the thick conductive member 55, the heat radiation performance of the fin itself is improved more than the heat transfer resistance to the fin surface by the conductive member, so that the cooling is efficiently performed. it can. As shown in FIG. 9 (b),
By using a radiation fin with one side cut out in advance,
Conduction resistance can be reduced. Further, in FIG. 9C, the lower portion is a metal casing surface 75 provided with a through hole, and the casing 75 and the substrate 3 are
The semiconductor element 50 on the surface 0 is brought into contact with the conductive member 55, for example, silicon rubber having high thermal conductivity. Since the metal casing 75 itself also has the same role as that of the heat radiation fins of the present invention, the structure is simpler than the fin arrangement inside, and the heat radiation area is large and the outside air is introduced into the housing. , High heat dissipation performance can be obtained.

【0015】さらに、図9の筐体面71,75及び基板
面30に高熱放射性の塗料、例えば、黒体塗料を塗布す
ることにより、効率よく冷却できる。
Further, by coating the housing surfaces 71, 75 and the substrate surface 30 of FIG. 9 with a highly heat-radiative paint, for example, a black body paint, it is possible to cool efficiently.

【0016】図10に本発明の放熱フィンを用いた電子
機器の実施例を示す。図はディスクサイド型の電子機器
で、筐体73内に電源81,ハードディスク85,複数
の積層された基板30が配置されている。基板30はフ
ァン60によりダクト61を介して送風され、基板上の
半導体素子を冷却する構造になっている。例えば、図3
に示した本発明の放熱フィン21を、基板30上の高発
熱半導体素子に貼り付ける。フィンがこの積層された基
板30の狭い空間に設置されても冷却風の流動を妨げる
ことなく、効率良い冷却ができる。
FIG. 10 shows an embodiment of an electronic device using the radiation fin of the present invention. The figure shows a disk-side electronic device in which a power source 81, a hard disk 85, and a plurality of stacked substrates 30 are arranged in a housing 73. The substrate 30 is blown by the fan 60 through the duct 61 to cool the semiconductor elements on the substrate. For example, in FIG.
The heat radiation fin 21 of the present invention shown in FIG. Even if the fins are installed in the narrow space of the stacked substrates 30, efficient cooling can be performed without disturbing the flow of cooling air.

【0017】[0017]

【発明の効果】本発明によれば、狭い空間内に設置され
た電子基板上の発熱体に対して、発熱体を放熱し、送風
手段の利用の有無に係わらず、どちらの場合も内部で発
生する熱を効率良く周囲に伝熱し、外部に排熱すること
ができる放熱フィン及びそれを用いた冷却構造を提供で
きる。
According to the present invention, the heating element radiates heat to the heating element on the electronic substrate installed in the narrow space, and in both cases, the internal heating is performed regardless of whether or not the blowing means is used. It is possible to provide a radiating fin that can efficiently transfer the generated heat to the surroundings and exhaust it to the outside, and a cooling structure using the radiating fin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】従来の放熱フィンの斜視図。FIG. 2 is a perspective view of a conventional radiation fin.

【図3】本発明の第二の実施例の斜視図。FIG. 3 is a perspective view of a second embodiment of the present invention.

【図4】本発明の第三の実施例の斜視図。FIG. 4 is a perspective view of a third embodiment of the present invention.

【図5】本発明の第四の実施例の説明図。FIG. 5 is an explanatory diagram of a fourth embodiment of the present invention.

【図6】本発明の第五の実施例の斜視図。FIG. 6 is a perspective view of a fifth embodiment of the present invention.

【図7】本発明の第六の実施例の断面図。FIG. 7 is a sectional view of a sixth embodiment of the present invention.

【図8】本発明の第七の実施例の断面図。FIG. 8 is a sectional view of a seventh embodiment of the present invention.

【図9】本発明の第八の実施例の断面図。FIG. 9 is a sectional view of an eighth embodiment of the present invention.

【図10】本発明の第九の実施例の斜視図。FIG. 10 is a perspective view of a ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…貫通孔、20…フィン、30…基板、50…半導
体素子、60…ファン、70…筐体、80…ディスプレ
イ、90…キーボード。
Reference numeral 10 ... Through hole, 20 ... Fin, 30 ... Substrate, 50 ... Semiconductor element, 60 ... Fan, 70 ... Housing, 80 ... Display, 90 ... Keyboard.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 忠克 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 大西 健治 神奈川県秦野市堀山下1番地 株式会社日 立製作所オフィスシステム事業部内 (72)発明者 津崎 寛 神奈川県秦野市堀山下1番地 株式会社日 立製作所オフィスシステム事業部内 (72)発明者 松島 均 神奈川県秦野市堀山下1番地 株式会社日 立製作所オフィスシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadakatsu Nakajima 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Mechanical Research Laboratory (72) Inventor Kenji Onishi 1-horiyamashita, Hadano-shi, Kanagawa Hiritsu Manufacturing Co., Ltd. Office System Division (72) Inventor Hiroshi Tsuzaki 1 Horiyamashita, Hadano City, Kanagawa Prefecture Hitate Manufacturing Co., Ltd. Office System Division (72) Inventor Hitoshi Matsushima, 1 Horiyamashita, Hadano City, Kanagawa Prefecture Hirtitsu Manufacturing Co., Ltd. Office Systems Within the business unit

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】筐体内に単数または複数積層した電子基板
において、前記電子基板上に搭載された半導体素子に接
触させる平板状の放熱フィンであって、フィン面に複数
の貫通孔が形成されていることを特徴とする電子機器冷
却用放熱フィン。
1. An electronic board having a single or a plurality of layers stacked in a housing, which is a flat plate-shaped heat radiation fin that comes into contact with a semiconductor element mounted on the electronic board and has a plurality of through holes formed in the fin surface. Radiating fins for cooling electronic devices.
【請求項2】請求項1において、前記平板状の放熱フィ
ンの前記フィン面に形成された貫通孔が、前記半導体素
子に接触させる面には無い電子機器冷却用放熱フィン。
2. The heat dissipation fin for cooling electronic equipment according to claim 1, wherein the through hole formed in the fin surface of the plate-like heat dissipation fin is not on a surface to be brought into contact with the semiconductor element.
【請求項3】請求項1において、前記平板状に貫通孔が
形成された放熱フィンの端面が貫通孔縁を有する電子機
器冷却用放熱フィン。
3. The radiating fin for cooling an electronic device according to claim 1, wherein an end surface of the radiating fin having the flat plate-shaped through hole has an edge of the through hole.
【請求項4】請求項1において、前記複数の貫通孔が形
成された前記フィン面の片側に切り欠いた電子機器冷却
用放熱フィン。
4. The radiating fin for cooling electronic equipment according to claim 1, wherein the fin surface is provided with the plurality of through holes and is cut out on one side of the fin surface.
【請求項5】請求項1,2,3または4の前記平板状に
貫通孔が形成された前記放熱フィン面が傾斜をもつ電子
機器冷却用放熱フィン。
5. A radiating fin for cooling electronic equipment, wherein said radiating fin surface having through-holes formed in said flat plate shape has an inclination as claimed in claim 1, 2, 3 or 4.
【請求項6】請求項1,2,3または4の前記平板状の
放熱フィン面に形成された貫通孔縁に凸部を片面あるい
は、両面に形成した電子機器冷却用放熱フィン。
6. A radiating fin for cooling electronic equipment, wherein a convex portion is formed on one side or both sides of the through hole edge formed on the flat radiating fin surface of claim 1, 2, 3 or 4.
【請求項7】請求項6において、前記平板状の放熱フィ
ン面の貫通孔縁の凸部が、貫通孔部材を折曲げて形成さ
れることにより、凸部と貫通孔が一体成形される電子機
器冷却用放熱フィン。
7. The electronic device according to claim 6, wherein the convex portion at the edge of the through hole of the flat plate-shaped heat dissipation fin surface is formed by bending a through hole member, and the convex portion and the through hole are integrally formed. Radiating fins for equipment cooling.
【請求項8】請求項6または7において、前記貫通孔縁
に形成する凸部が傾斜を有する電子機器冷却用放熱フィ
ン。
8. The radiating fin for cooling an electronic device according to claim 6, wherein the protrusion formed on the edge of the through hole has an inclination.
【請求項9】筐体内に単数または複数積層した電子基板
及びファンが搭載された電子機器において、前記電子基
板上の半導体素子に請求項1,2,3,4,5,6,7
または8の放熱フィンを用いた電子機器。
9. An electronic device in which a single or a plurality of stacked electronic boards and a fan are mounted in a housing, and the semiconductor elements on the electronic board are mounted on the semiconductor elements.
Alternatively, an electronic device using the heat radiation fin of 8.
【請求項10】請求項1,2,3,4,5,6,7また
は8の前記放熱フィンを前記電子基板上に用いた電子機
器で、前記放熱フィンと前記半導体素子間に伝導部材を
挟んで、前記半導体素子の搭載された前記電子基板と前
記放熱フィン間に前記半導体素子高さ以上の間隙を設け
た電子機器。
10. An electronic device using the radiation fin of claim 1, 2, 3, 4, 5, 6, 7 or 8 on the electronic substrate, wherein a conductive member is provided between the radiation fin and the semiconductor element. An electronic device in which a gap greater than or equal to the height of the semiconductor element is provided between the electronic board on which the semiconductor element is mounted and the heat radiation fin.
【請求項11】請求項1から10の前記放熱フィンを電
子基板上に用いた電子機器で、筐体内部にある単数ある
いは複数の前記電子基板面が垂直に積層された電子機
器。
11. An electronic device using the radiation fins according to claim 1 on an electronic substrate, wherein one or a plurality of the electronic substrate surfaces in a housing are vertically stacked.
【請求項12】請求項1から10の前記放熱フィンを前
記電子基板上に用いた電子機器で、筐体壁及び基板上に
放射率の高い塗料を塗布し、フィン面には放射率の低い
塗料を塗布した電子機器。
12. An electronic device using the radiation fin according to any one of claims 1 to 10 on the electronic substrate, wherein a paint having a high emissivity is applied to a housing wall and a substrate, and a fin surface has a low emissivity. Electronic equipment coated with paint.
【請求項13】請求項14の前記筐体壁及び前記基板上
に放射率の高い塗料を塗布した電子機器で、塗布した塗
料が黒体塗料である電子機器。
13. An electronic device in which a paint having a high emissivity is applied to the housing wall and the substrate of claim 14, wherein the applied paint is a black body paint.
【請求項14】筐体内に単数または複数積層した電子基
板において、基板上に搭載された半導体素子が伝導部材
を介して、複数の貫通孔が形成された筐体面に接触させ
たことを特徴とする電子機器。
14. An electronic board having a single or a plurality of layers stacked in a housing, wherein a semiconductor element mounted on the board is in contact with a housing surface having a plurality of through holes via a conductive member. Electronic equipment to do.
【請求項15】筐体内に単数または複数積層した電子基
板において、基板上に搭載された半導体素子に接触させ
る平板状の放熱フィンであって、フィン面に空気の流動
通路を設けたことを特徴とする電子機器冷却用放熱フィ
ン。
15. An electronic board having a single or a plurality of layers stacked in a housing, which is a flat plate-shaped heat radiation fin to be brought into contact with a semiconductor element mounted on the board, wherein an air flow passage is provided on the fin surface. Radiating fin for cooling electronic equipment.
JP12620995A 1995-05-25 1995-05-25 Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith Pending JPH08321696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12620995A JPH08321696A (en) 1995-05-25 1995-05-25 Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12620995A JPH08321696A (en) 1995-05-25 1995-05-25 Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith

Publications (1)

Publication Number Publication Date
JPH08321696A true JPH08321696A (en) 1996-12-03

Family

ID=14929427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12620995A Pending JPH08321696A (en) 1995-05-25 1995-05-25 Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith

Country Status (1)

Country Link
JP (1) JPH08321696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187578A (en) * 1997-07-09 1999-03-30 Kitagawa Ind Co Ltd Heat conduction spacer and heat sink
US11337333B2 (en) 2018-05-30 2022-05-17 Canon Kabushiki Kaisha Cooling unit that discharges heat from heat source and electronic apparatus equipped with the cooling unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187578A (en) * 1997-07-09 1999-03-30 Kitagawa Ind Co Ltd Heat conduction spacer and heat sink
US11337333B2 (en) 2018-05-30 2022-05-17 Canon Kabushiki Kaisha Cooling unit that discharges heat from heat source and electronic apparatus equipped with the cooling unit

Similar Documents

Publication Publication Date Title
US6942025B2 (en) Uniform heat dissipating and cooling heat sink
US7131487B2 (en) Use of adjusted evaporator section area of heat pipe that is sized to match the surface area of an integrated heat spreader used in CPU packages in mobile computers
US20020185269A1 (en) Heat sink, method of manufacturing the same, and cooling apparatus using the same
TWM244719U (en) Heat sink
JP3604310B2 (en) Forced air-cooled comb heat sink
JPWO2002054490A1 (en) Heat dissipation mechanism and electronic device having the heat dissipation mechanism
US20080266806A1 (en) Electronic assembly that includes a heat sink which cools multiple electronic components
JP2000164773A (en) Radiator
JPH08321696A (en) Heat dissipating fin for cooling electronic equipment and electronic equipment equipped therewith
JP2001345585A (en) Heat-radiating fin
JPH10270616A (en) Apparatus for radiating heat of electronic components
JPS6255000A (en) Heat sink apparatus
JPH04225790A (en) Heat pipe type radiator and manufacture thereof
JP2002064167A (en) Cooling device
JP3700881B2 (en) Cooling structure
KR20020013411A (en) A method and apparatus to increase convection heat transfer in an electrical system and a method of manufacturing the same
JP3454761B2 (en) Cooling apparatus and cooling method for electronic equipment
JPH08125366A (en) Device for cooling electronic part
JPH098484A (en) Cooling structure of electronic device
TWM311240U (en) Heat sink module
JPH06104583A (en) Natural air-cooled heat sink
JP2799688B2 (en) heatsink
JPH104164A (en) Air cooling heat sink
JPH07297583A (en) Heat sink equipped with fan
JPH1032288A (en) Heat sink of excellent heat dissipating performance