JPH0832163A - Variable-wavelength semiconductor light emitting device - Google Patents

Variable-wavelength semiconductor light emitting device

Info

Publication number
JPH0832163A
JPH0832163A JP16930594A JP16930594A JPH0832163A JP H0832163 A JPH0832163 A JP H0832163A JP 16930594 A JP16930594 A JP 16930594A JP 16930594 A JP16930594 A JP 16930594A JP H0832163 A JPH0832163 A JP H0832163A
Authority
JP
Japan
Prior art keywords
light emitting
optical amplifier
emitting device
semiconductor optical
aom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16930594A
Other languages
Japanese (ja)
Inventor
Masayuki Naya
昌之 納谷
Hiroshi Sunakawa
寛 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP16930594A priority Critical patent/JPH0832163A/en
Publication of JPH0832163A publication Critical patent/JPH0832163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To obtain a highly reliable variable-wavelength semiconductor light emitting device the emission wavelength of which can be swept at a high speed without driving the device mechanically. CONSTITUTION:A light beam 11 emitted from the end face 10b of a semiconductor optical amplifier 10 is diffracted by a prescribed angle of diffraction through an AOM 13 and the diffracted beam 11 is reflected by a mirror 14 so as to return the beam 11 to the amplifier 10. In addition, a variable-frequency high-frequency signal RF is impressed upon the AOM 13 from an AOM modulation driver 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光装置に関し、
特に詳細には発光源として半導体光増幅器を有し、この
半導体光増幅器から出射した光をある範囲内で波長選択
して該半導体光増幅器に戻すことにより、発光波長を変
えられるようにした波長可変半導体発光装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device,
Particularly in detail, a semiconductor optical amplifier is used as a light emitting source, and the wavelength of light emitted from the semiconductor optical amplifier is selected within a certain range and returned to the semiconductor optical amplifier so that the emission wavelength can be changed. The present invention relates to a semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来より、半導体を利用して波長可変の
光ビームを得る試みが種々なされている。ELECTRONICS
LETTERS (エレクトロニクス・レターズ) Vol.29 ,N
o.14,(1993) pp.1254 〜1255には、そのような波長可
変半導体発光装置の一つが示されている。
2. Description of the Related Art Conventionally, various attempts have been made to obtain a wavelength tunable light beam using a semiconductor. ELECTRONICS
LETTERS (Electronics Letters) Vol.29, N
One of such wavelength tunable semiconductor light emitting devices is shown in O.14, (1993) pp.1254-1255.

【0003】この半導体発光装置は、図2に示すように
発光源として半導体光増幅器1を有し、この半導体光増
幅器1の後方端面1aから出射した光をレンズ2によっ
て平行光化した後、反射型回折格子3で反射させて半導
体光増幅器1に戻すようにしたものである。この構成に
おいては、回折格子3によって波長選択された光4が半
導体光増幅器1に戻されることにより、その前方端面1
bから出射する光4Fの波長が単一波長にロックされ、
そして回折格子3における光入射角が変化するようにそ
の設置角度が変えられると、発光波長が変化する。
As shown in FIG. 2, this semiconductor light emitting device has a semiconductor optical amplifier 1 as a light emitting source. The light emitted from a rear end face 1a of the semiconductor optical amplifier 1 is collimated by a lens 2 and then reflected. The light is reflected by the type diffraction grating 3 and returned to the semiconductor optical amplifier 1. In this configuration, the light 4 whose wavelength is selected by the diffraction grating 3 is returned to the semiconductor optical amplifier 1 so that its front end face 1
The wavelength of the light 4F emitted from b is locked to a single wavelength,
When the installation angle is changed so that the light incident angle on the diffraction grating 3 is changed, the emission wavelength is changed.

【0004】[0004]

【発明が解決しようとする課題】ところで上述のような
波長可変半導体発光装置は、例えば光ヘテロダイン計測
の光源等、発光波長を掃引する必要がある用途に用いら
れることもある。その場合は、回折格子3をその設置角
度が変化するように機械駆動することになるが、このよ
うな機械駆動は高速で行なうことが難しく、そのため、
発光波長を高速で掃引することは困難となっている。
By the way, the wavelength tunable semiconductor light emitting device as described above may be used in applications where it is necessary to sweep the emission wavelength, such as a light source for optical heterodyne measurement. In that case, the diffraction grating 3 is mechanically driven so that its installation angle changes, but it is difficult to perform such mechanical driving at high speed, and therefore,
It is difficult to sweep the emission wavelength at high speed.

【0005】さらに、上記のような機械駆動を行なう波
長可変半導体発光装置は、信頼性の点でも難がある。
Further, the wavelength tunable semiconductor light emitting device which is mechanically driven as described above is also difficult in terms of reliability.

【0006】本発明は上記の事情に鑑みてなされたもの
であり、機械駆動を行なわずに、高速で発光波長を掃引
することができる、信頼性の高い波長可変半導体発光装
置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a highly reliable wavelength tunable semiconductor light emitting device capable of sweeping the emission wavelength at high speed without mechanical driving. It is intended.

【0007】[0007]

【課題を解決するための手段】本発明による波長可変半
導体発光装置は、半導体光増幅器と、この半導体光増幅
器の一端面から出射した光を回折させる音響光学素子
と、この音響光学素子により所定の回折角で回折した光
を元の光路を戻るように反射させるミラーと、上記音響
光学素子に周波数可変の高周波信号を印加するドライバ
とから構成されたことを特徴とするものである。
A wavelength tunable semiconductor light emitting device according to the present invention includes a semiconductor optical amplifier, an acousto-optical element for diffracting light emitted from one end surface of the semiconductor optical amplifier, and a predetermined optical acousto-optical element. It is characterized by comprising a mirror for reflecting the light diffracted at the diffraction angle so as to return to the original optical path and a driver for applying a frequency-variable high frequency signal to the acoustooptic device.

【0008】[0008]

【作用および発明の効果】上記の構成において、音響光
学素子中に生じている回折格子の格子間隔をd、音響光
学素子における所定の回折角を90°−θ(θはブラッグ
角)、音響光学素子の超音波媒体の屈折率をn、発光波
長をλとすると、周知の通り、 2d sinθ=nλ であり、したがって λ=(2d sinθ)/n となる。
In the above structure, the grating spacing of the diffraction grating formed in the acousto-optic element is d, the predetermined diffraction angle in the acousto-optic element is 90 ° -θ (θ is the Bragg angle), and the acousto-optic Assuming that the refractive index of the ultrasonic medium of the device is n and the emission wavelength is λ, 2d sin θ = nλ, and therefore λ = (2d sin θ) / n.

【0009】そして、ミラーが上述のように配置されて
いるため、所定の回折角で回折した光のみが半導体光増
幅器の一端面に戻り得て、発光波長をロックすることに
なる。つまり、半導体光増幅器に戻ってその発光波長を
ロックする光に関しては、回折角は固定であることにな
る。また屈折率nも固定であるから、音響光学素子に印
加する高周波信号の周波数(搬送周波数)を変化させて
格子間隔dを変えれば、そのdの値に応じて一義的に発
光波長λが変化することになる。
Since the mirror is arranged as described above, only the light diffracted at the predetermined diffraction angle can return to the one end face of the semiconductor optical amplifier, and the emission wavelength is locked. In other words, the diffraction angle is fixed for the light that returns to the semiconductor optical amplifier and locks its emission wavelength. Further, since the refractive index n is also fixed, if the frequency (carrier frequency) of the high frequency signal applied to the acousto-optic element is changed to change the lattice spacing d, the emission wavelength λ is uniquely changed according to the value of d. Will be done.

【0010】そこで、上記高周波信号の周波数を掃引さ
せれば、発光波長λが掃引される。この周波数の掃引
は、機械的な駆動と異なって十分高速でなし得るから、
発光波長λを十分高速で掃引可能となる。
Therefore, when the frequency of the high frequency signal is swept, the emission wavelength λ is swept. This frequency sweep can be done fast enough, unlike mechanical drive,
The emission wavelength λ can be swept sufficiently fast.

【0011】また、上述の通り本発明の波長可変半導体
発光装置は、電気的な操作によって発光波長を掃引でき
るものであり、機械的な駆動は何ら必要ないものである
から、信頼性が高いものとなり得る。
Further, as described above, the wavelength tunable semiconductor light emitting device of the present invention has a high reliability because it can sweep the emission wavelength by electric operation and does not require any mechanical driving. Can be.

【0012】[0012]

【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図1は、本発明の一実施例による波長
可変半導体発光装置を示すものである。図示されるよう
にこの波長可変半導体発光装置は、テーパストライプ10
aを有する半導体光増幅器10と、この半導体光増幅器10
の後方端面10bから出射した光ビーム11を平行光化する
コリメータレンズ12と、平行光となった上記光ビーム11
を回折させるAOM(音響光学光変調器)13と、このA
OM13において所定の回折角で回折した光ビーム11を元
の光路を戻るように反射させるミラー14と、上記AOM
13のトランスデューサ13aに周波数可変の高周波信号R
Fを印加するAOM変調ドライバ15とから構成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. FIG. 1 shows a wavelength tunable semiconductor light emitting device according to an embodiment of the present invention. As shown, this wavelength tunable semiconductor light emitting device has a taper stripe 10
a semiconductor optical amplifier 10 having a, and this semiconductor optical amplifier 10
Collimator lens 12 for collimating the light beam 11 emitted from the rear end face 10b of the
AOM (acousto-optic light modulator) 13 that diffracts
A mirror 14 for reflecting the light beam 11 diffracted at a predetermined diffraction angle in the OM 13 back to the original optical path;
High frequency signal R with variable frequency to the transducer 13a of 13
It is composed of an AOM modulation driver 15 for applying F.

【0013】上記の半導体光増幅器10としては、例えば
n−GaAs基板(Si=2×1018cm-3ドープ)上にn
−GaAsバッファ層(Si=1×1018cm-3ドープ、
層厚0.5 μm)、n−Al0.5 Ga0.5 Asクラッド層
(Si=1×1018cm-3ドープ、層厚2.5 μm)、n−
Al0.25Ga0.75As光ガイド層(アンドープ、層厚0.
05μm)、n−Al0.05Ga0.95As量子井戸層(アン
ドープ、層厚8nm)、n−Al0.25Ga0.75As光ガ
イド層(アンドープ、層厚0.05μm)、p−Al0.5
0.5 Asクラッド層(Zn=1×1018cm-3ドープ、
層厚2μm)、p−GaAsキャップ層(Zn=5×10
18cm-3ドープ、層厚0.3 μm)を減圧MOCVD法に
より作製してなるものを用いることができる。
The semiconductor optical amplifier 10 is, for example, an n-GaAs substrate (Si = 2 × 10 18 cm −3 doped) with n.
-GaAs buffer layer (Si = 1 × 10 18 cm -3 doped,
Layer thickness 0.5 μm), n-Al 0.5 Ga 0.5 As clad layer (Si = 1 × 10 18 cm −3 doped, layer thickness 2.5 μm), n−
Al 0.25 Ga 0.75 As optical guide layer (undoped, layer thickness of 0.
05 μm), n-Al 0.05 Ga 0.95 As quantum well layer (undoped, layer thickness 8 nm), n-Al 0.25 Ga 0.75 As optical guide layer (undoped, layer thickness 0.05 μm), p-Al 0.5 G
a 0.5 As clad layer (Zn = 1 × 10 18 cm −3 doped,
Layer thickness 2 μm, p-GaAs cap layer (Zn = 5 × 10 5
An 18 cm −3 doped layer having a layer thickness of 0.3 μm) formed by a low pressure MOCVD method can be used.

【0014】またテーパストライプ10aとしては、例え
ば上記キャップ層の上にプラズマCVD法によりSiO
2 膜を形成し、ストライプとなるテーパ状領域において
フォトリソグラフィとエッチングにより上記SiO2
を除去し、p−側にはTi/Pt/Auにより、n−側
にはAuGe/Ni/Auによりそれぞれオーミック電
極を形成してなる構造を用いることができる。
Further, the taper stripe 10a is formed of, for example, SiO on the cap layer by a plasma CVD method.
2 films are formed, and the SiO 2 film is removed by photolithography and etching in the tapered region to be a stripe, and Ti / Pt / Au is used on the p-side and AuGe / Ni / Au is used on the n-side. A structure formed by forming an ohmic electrode can be used.

【0015】上記の構成において、AOM13のトランス
デューサ13aにドライバ15から高周波信号RFが印加さ
れると、AOM13の超音波媒体13b中に超音波が生じ、
それが位相形の回折格子となって光ビーム11を回折させ
る。そして、AOM13において所定の回折角で回折した
光ビーム11は、そこから出射した後ミラー14で反射し、
元の光路を戻ってAOM13において再度回折して、半導
体光増幅器10にその後方端面10bから戻される。半導体
光増幅器10の発光波長は、自己注入されるこの光ビーム
11の波長λにロックされる。この波長λの光11Fは、半
導体光増幅器10内を前方側(図1の右方)に進行する間
に増幅され、前方端面10cから出射する。
In the above structure, when a high frequency signal RF is applied from the driver 15 to the transducer 13a of the AOM 13, ultrasonic waves are generated in the ultrasonic medium 13b of the AOM 13,
It becomes a phase type diffraction grating to diffract the light beam 11. Then, the light beam 11 diffracted at the predetermined diffraction angle in the AOM 13 is emitted from the light beam 11 and then reflected by the mirror 14,
After returning to the original optical path, it is diffracted again at the AOM 13 and returned to the semiconductor optical amplifier 10 from its rear end face 10b. The emission wavelength of the semiconductor optical amplifier 10 depends on this self-injected light beam.
Locked to 11 wavelengths λ. The light 11F having the wavelength λ is amplified while traveling to the front side (right side in FIG. 1) in the semiconductor optical amplifier 10 and is emitted from the front end face 10c.

【0016】次に、発光波長λを変化させる点について
説明する。前述した通り、上記回折格子の格子間隔を
d、AOM13における所定の回折角を90°−θ、AOM
13の超音波媒体13bの屈折率をnとすると、 λ=(2d sinθ)/n である(θおよびnは固定)。そこで、高周波信号RF
の周波数fを変化させて格子間隔dを変えると、そのd
の値に応じて一義的に発光波長λが変化することにな
る。
Next, the point of changing the emission wavelength λ will be described. As described above, the grating spacing of the diffraction grating is d, the predetermined diffraction angle in the AOM 13 is 90 ° -θ, and the AOM is
Assuming that the refractive index of the ultrasonic medium 13b of 13 is n, then λ = (2d sin θ) / n (θ and n are fixed). Therefore, the high frequency signal RF
If the lattice spacing d is changed by changing the frequency f of
The emission wavelength λ changes uniquely according to the value of.

【0017】本例において、前述の構成を有する半導体
光増幅器10は本来30nm程度の波長範囲内で発光し得る
ものである。他方、高周波信号RFの周波数fは例えば
75MHz〜 125MHzの範囲で可変とされており、それ
に応じて格子間隔dは3.4 ×10-5〜5.68×10-5mの範囲
で変化する。そこでθ= 1.2°、n=2.26とすると、発
光波長λは 630〜1050nmの範囲で変化するようにな
る。なおこの発光波長範囲は、半導体光増幅器10の発光
波長範囲から制限される。
In the present example, the semiconductor optical amplifier 10 having the above-described structure is originally capable of emitting light within a wavelength range of about 30 nm. On the other hand, the frequency f of the high frequency signal RF is, for example,
It is variable in the range of 75 MHz to 125 MHz, and accordingly, the lattice spacing d changes in the range of 3.4 × 10 -5 to 5.68 × 10 -5 m. Therefore, when θ = 1.2 ° and n = 2.26, the emission wavelength λ changes in the range of 630 to 1050 nm. The emission wavelength range is limited by the emission wavelength range of the semiconductor optical amplifier 10.

【0018】高周波信号RFの周波数fの上記程度の掃
引は、機械的な駆動と異なって十分高速でなし得るか
ら、発光波長λを十分高速で掃引可能となる。
Unlike the mechanical driving, the frequency f of the high-frequency signal RF can be swept at a sufficiently high speed, so that the emission wavelength λ can be swept at a sufficiently high speed.

【0019】また、この波長可変半導体発光装置は、電
気的な操作によって発光波長λを掃引できるものであ
り、機械的な駆動は何ら必要ないものであるから、信頼
性も高いものとなる。
Further, this wavelength tunable semiconductor light emitting device is capable of sweeping the emission wavelength λ by electric operation and does not require any mechanical driving, and therefore has high reliability.

【0020】なお本発明では、以上説明したいわゆる利
得導波型の半導体光増幅器のみならず、ストライプ両側
面とその外側部分との間に屈折率段差を形成した屈折率
導波型の半導体光増幅器を用いることもできる。また半
導体光増幅器として、例えばELECTRONICS LETTERS (エ
レクトロニクス・レターズ)Vol.19,(1982)p.169 やAP
PLIED PHYSICS LETTER(アプライド・フィジィクス・レ
ター)Vol.60,(1992)p.668 等に示されている位相同期
アレイ型の半導体光増幅器を用いることも可能である。
In the present invention, not only the so-called gain waveguide type semiconductor optical amplifier described above, but also a refractive index waveguide type semiconductor optical amplifier in which a refractive index step is formed between both side surfaces of the stripe and its outer portion. Can also be used. Further, as a semiconductor optical amplifier, for example, ELECTRONICS LETTERS (Electronic Letters) Vol. 19, (1982) p.169 and AP
It is also possible to use the phase-locked array type semiconductor optical amplifier shown in PLIED PHYSICS LETTER (Applied Physics Letter) Vol.60, (1992) p.668.

【0021】さらに、上記実施例では音響光学素子とし
てバルク結晶型のAOM13が用いられているが、本発明
においてはそれに限らず、光導波路型の音響光学素子を
用いることもできる。
Further, although the bulk crystal type AOM 13 is used as the acousto-optic element in the above embodiment, the present invention is not limited to this, and an optical waveguide type acousto-optic element may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による波長可変半導体発光装
置の概略平面図
FIG. 1 is a schematic plan view of a wavelength tunable semiconductor light emitting device according to an embodiment of the present invention.

【図2】外部光学系を備えた従来の波長可変半導体発光
装置の一例を示す概略平面図
FIG. 2 is a schematic plan view showing an example of a conventional wavelength tunable semiconductor light emitting device having an external optical system.

【符号の説明】[Explanation of symbols]

10 半導体光増幅器 11 光ビーム 12 コリメータレンズ 13 AOM 14 ミラー 15 AOM変調ドライバ 10 Semiconductor Optical Amplifier 11 Optical Beam 12 Collimator Lens 13 AOM 14 Mirror 15 AOM Modulation Driver

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体光増幅器と、この半導体光増幅器
の一端面から出射した光を回折させる音響光学素子と、
この音響光学素子により所定の回折角で回折した光を元
の光路を戻るように反射させるミラーと、前記音響光学
素子に周波数可変の高周波信号を印加するドライバとか
らなる波長可変半導体発光装置。
1. A semiconductor optical amplifier, and an acoustooptic device for diffracting light emitted from one end face of the semiconductor optical amplifier,
A wavelength tunable semiconductor light emitting device comprising a mirror for reflecting light diffracted at a predetermined diffraction angle by the acousto-optic element so as to return to the original optical path, and a driver for applying a frequency-variable high frequency signal to the acousto-optic element.
JP16930594A 1994-07-21 1994-07-21 Variable-wavelength semiconductor light emitting device Pending JPH0832163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16930594A JPH0832163A (en) 1994-07-21 1994-07-21 Variable-wavelength semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16930594A JPH0832163A (en) 1994-07-21 1994-07-21 Variable-wavelength semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0832163A true JPH0832163A (en) 1996-02-02

Family

ID=15884071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16930594A Pending JPH0832163A (en) 1994-07-21 1994-07-21 Variable-wavelength semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0832163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623330A (en) * 2022-10-12 2024-04-17 Gooch & Housego Torquay Ltd Optical beam intensity modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623330A (en) * 2022-10-12 2024-04-17 Gooch & Housego Torquay Ltd Optical beam intensity modulator

Similar Documents

Publication Publication Date Title
US4104598A (en) Laser internal coupling modulation arrangement with wire grid polarizer serving as a reflector and coupler
JP2624279B2 (en) Slab waveguide light emitting semiconductor laser
JPH02129616A (en) Light modulation apparatus and method
US20070014319A1 (en) Continuously Tunable External Cavity Diode Laser Sources With High Tuning And Switching Rates And Extended Tuning Ranges
WO2002025781A2 (en) Micro-laser
US5949804A (en) Semiconductor light emission device
JPH0449793B2 (en)
WO2007040108A1 (en) Semiconductor photo-element and external resonance laser having the semiconductor photo-element
JP2572050B2 (en) Waveguide type optical head
JPS6290618A (en) Light modulator
JP2004235182A (en) Semiconductor optical element and optical transmitter/receiver using it
US5373173A (en) Apparatus for semiconductor laser
US6493089B2 (en) Gyro and method of operating the same with a modulated frequency signal
US4297651A (en) Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power
JPH02137287A (en) Semiconductor laser device
JP3146505B2 (en) Integrated semiconductor laser device
JPH0832163A (en) Variable-wavelength semiconductor light emitting device
JPH0856049A (en) Surface emitting laser
KR100754956B1 (en) Semiconductor laser device and laser system
US6647029B1 (en) Variable-wavelength semiconductor laser device controlled by strength of electric field applied to wavelength selection element
JP3313254B2 (en) Semiconductor light emitting device
JPH05160519A (en) Very short light pulse generating device
JPH1075004A (en) Semiconductor light-emitting device
JPH0666514B2 (en) Integrated semiconductor laser
JP3163566B2 (en) Second harmonic generation device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020312