JP2004235182A - Semiconductor optical element and optical transmitter/receiver using it - Google Patents

Semiconductor optical element and optical transmitter/receiver using it Download PDF

Info

Publication number
JP2004235182A
JP2004235182A JP2003018257A JP2003018257A JP2004235182A JP 2004235182 A JP2004235182 A JP 2004235182A JP 2003018257 A JP2003018257 A JP 2003018257A JP 2003018257 A JP2003018257 A JP 2003018257A JP 2004235182 A JP2004235182 A JP 2004235182A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
optical
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003018257A
Other languages
Japanese (ja)
Other versions
JP4634010B2 (en
Inventor
Takeshi Kikawa
健 紀川
Masahiro Aoki
雅博 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003018257A priority Critical patent/JP4634010B2/en
Publication of JP2004235182A publication Critical patent/JP2004235182A/en
Application granted granted Critical
Publication of JP4634010B2 publication Critical patent/JP4634010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor optical element by which an optical guide can be formed in a length proper to a high-speed optical transmission and which can be integrated in a monolithic manner, and to provide an optical transmitter/receiver using it. <P>SOLUTION: The semiconductor optical element has a reflector 7 composed of at least two kinds of semiconductor layers having different refractive indices formed on a semiconductor substrate 1, the optical guide 2 held by a lower clad layer 3 and an upper clad layer 4 formed on the reflector 7, a reflecting mirror 5 arranged on at least one end face of the optical guide 2 at an angle of 45° to the surface of the substrate 1 and an antireflection film 6 formed on the rear of the substrate 1 at a position opposed to the reflecting mirror 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザやフォトダイオードに代表される半導体光素子、特に高速光伝送に適した半導体光素子及びそれを用いた光送受信装置に関する。
【0002】
【従来の技術】
最近のインターネットや通信網、或いはコンピュータ間の情報伝送の高速化及び大容量化に光伝送技術の果たす役割は大きい。その中で中心をなす半導体光素子が、光源となる半導体レーザ、及び受光素子となるフォトダイオード即ち半導体受光素子であり、それぞれ高信頼化、高性能化の面で大きく発展してきた。
【0003】
半導体レーザは、代表的には、端面発光型と面発光型に二分される。端面発光型は、基板に平行に比較的長い光導波路が形成されるので、大出力が得やすい。一方、面発光型は、基板に垂直に光導波路が形成されるので、基板の裏面からレーザが発射され、集積化しやすい特徴がある。いずれも、光導波路は、光を発生する活性層を成す。光導波路の両端を反射鏡で挟んで、レーザ発光に必要な共振器が形成される。
【0004】
一般に、端面発光型の半導体チップは、エピタキャル成長後の基板を適当な厚みにラッピング(研磨)した後に、両面劈開によってチップの切り出しと共振器端面の形成とを同時に行なうことによって得られる。両面劈開は、メスや剃刀、或いは劈開器を用いて行なわれる。しかしながら、両面劈開を行なうことから、端面発光型半導体レーザを光(電子)集積回路の一部として用いることや、レーザの出射端面側に外部反射鏡などを併設することが困難であり、端面発光型は、一般に単体部品としての使用に限定される。また、劈開端面を有する半導体レーザでは素子分離をしないと性能試験ができないなどの理由からも、端面発光型をモノリシックに集積化することが極めて難しい。また、劈開を行なうため、共振器長に下限を設けざるを得ず、200μm以上のものしか製造されないのが現状である。
【0005】
これに対し、基板面に垂直の方向に共振器を形成し、垂直方向にレーザ光を出射する垂直共振器型構成の面発光レーザでは、共振器が垂直方向に構成されるため、逆に、利得領域となる共振器の長さを長くすることが困難であり、従って充分な利得を得ることができず、高い光出力が得られないのが現状である。そのため、面発光レーザは実用化には至っていない。
【0006】
以上の構造の半導体レーザに対して、図9に示す、反射膜からなる傾斜面80で半導体積層81の端面を形成し、光ビームを基板71の裏面に導き、基板71裏面に反射鏡84を設けた構造の半導体レーザが特許文献1に開示されている。
【0007】
次に、半導体受光素子にも、基板に平行に比較的長い光導波路を形成し、劈開端面より光を入射する導波路型と、基板に垂直に光導波路を形成し、光を基板面に対し垂直に入射する面入射型とがある。半導体受光素子では、面入射型が一般的である。光導波路は、光を吸収する吸収層を成す。
【0008】
半導体レーザの場合と同様に、導波路型では、劈開を行なうために導波路の長さに下限があり、一方、面入射型では逆に、導波路を長くすることが困難である。
【0009】
【特許文献1】
特開平8−97514号公報
【0010】
【発明が解決しようとする課題】
端面発光型の半導体レーザでは、共振器の長さに比例して電気容量が増大する。従って、高速光伝送に対応するためには、共振器長を短くして電気的容量を小さくすることが必要になる。例えば、幹線系の伝送速度40Gbpsに対応し得る直接変調の半導体レーザでは、所要の高周波特性を得るために、その共振器長は数10μm程度になると見積もられる。このような短い共振器長を劈開で形成することは困難である。
【0011】
また、端面発光型の一種である分布帰還型半導体レーザ(DFBレーザ)では、単一波長で動作させるために活性層に沿って回折格子が形成される。劈開された回折格子の位置によって端面での回折格子の位相が決まり、これにより発振波長が決まる。回折格子の周期は、通常200nm乃至400nmである。従って、周期の制御は、例えば200μmの長さに対して200nmの精度で行なうことになり、劈開端面を用いる限り、回折格子の位相を制御すること即ち波長の制御は実際上困難である。
【0012】
また、上述したように、劈開端面を共振器反射鏡として用いる半導体レーザではモノリシック集積が困難であるため、光源と受信機を搭載する送受信モジュールでは半導体レーザと半導体受光素子をそれぞれ別個に実装せざるを得ない。そのため、モジュールの小型化が困難であると共に、配線による浮遊容量が高速伝送の妨げとなる。
【0013】
一方、面発光レーザでは、同じく上述したように、共振器長は高々数μm程度にしかならないため十分に大きな利得を得ることができず、大光出力化が困難である。また、共振器を基板面に垂直に形成するため、共振器部分に回折格子を形成することは実際上不可能であり、面発光レーザのDFBレーザは実現されていない。更には、共振器上に光変調器を集積することも困難である。
【0014】
また、45°傾斜反射膜を有し、基板裏面に反射鏡を設けた半導体レーザでは、基板の厚さの2倍の長さが光路に加わる。基板厚さは通常は100μmを超えるので、高速伝送のための短い光導波路を得ることができないばかりでなく、光ビームが基板裏面に近づくにつれて広がりを持つようになるため反射して戻る光ビーム量が減り、レーザ発振に必要な共振が得られなくなることも起こり得る。
【0015】
次に、受光素子においても、現在広く用いられている面入射型では、上述したように、受光層が基板に対し垂直に形成されているため光の吸収される領域が薄く、高速光伝送システムでは感度不足となる傾向がある。また、導波路型では、電気的容量が増大するため、高速光伝送用には採用されない。
【0016】
更に、送信器と受信器を一つのモジュールに組込む光送受信装置では、送信器となる半導体レーザは端面より光を出射し、受信器となる半導体受光素子は基板面より光を入射することになるため、送信器と受信器をモノリシックに作製することが困難である。
【0017】
本発明の目的は、光導波路を高速光伝送に適した長さにすることが可能で、かつモノリシックに集積することができる半導体光素子及びそれを用いた光送受信装置を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するための本発明の半導体光素子は、例えば、図1に示すように、半導体基板1上に形成した少なくとも2種類の屈折率の異なる半導体層からなる反射器7と、反射器7の上に形成した下部クラッド層3及び上部クラッド層4に挟持された光導波路2と、光導波路2の少なくとも一方の端面に基板1面に対して45°の角度をもって配置された反射鏡5と、反射鏡5に対向した位置の基板1の裏面に形成した反射防止膜6とを備えていることを特徴とする。
【0019】
このような本発明の半導体光素子においては、有効な光導波路長さは、反射器7より上の光導波路長さになり、基板1の厚さに影響されない。更に、反射器7及び下部クラッド層3の厚さによる長さが基板1の面に水平な光導波路2の長さに比べて著しく短くなるので、反射器7より上の光導波路長さは、ほぼ基板1面に水平な光導波路2の長さで表すことができる。光導波路2の長さはフォトリソグラフィによって決められるので、劈開による場合のような長さの下限はない。即ち、光導波路を高速光伝送に適した長さにすることが可能となる。
【0020】
本発明の半導体光素子において、光導波路2を活性層とし、反射器7による光ビームの反射を用いて共振器を形成することにより半導体レーザが形成される。ブラッグ反射器7が共振器ミラーとなるので、光を活性層領域に閉じ込めることができる。なお、図1では、45°傾斜反射鏡5が光導波路2の片端面にのみ配置され、他方の端面にはエッチング後に形成した反射膜67が配置されているが、後で詳述するように、両端面に45°傾斜反射鏡5を配置することが可能である。
【0021】
共振している光ビームの一部は、反射器7を経て基板1裏面に到達する。このとき、基板1裏面に反射防止膜6が形成されているため、基板1裏面に到達した光ビームは、半導体内部に戻ることなく外部へ出射する。
【0022】
共振器は、上述のようにフォトリソグラフィ技術を用いることにより、数10μmの長さに精度良く作製することができ、高速化への対応が容易となる。また、共振器長さが短い従来型の面発光レーザに比べ、利得領域を大幅に大きくすることができるので高出力化に対応することができる。
【0023】
活性層に沿って回折格子を配置することにより、分布帰還型レーザを形成することが可能である。そのようなレーザの製作において、回折格子をフォトリソグラフィにより形成した後で劈開等の加工を伴わないので、回折格子の位相が変化することはなく波長制御性が改善される。
【0024】
本発明の半導体光素子において、光導波路2を吸収層とし、反射器7の高い反射率を呈する波長を受信を阻止する波長に合わせることにより、波長選択が可能な半導体受光素子が形成される。反射防止膜6から入射した光ビームの内、受信阻止の波長の光ビームは、反射器7で反射されて吸収層に到達しない。即ち、反射器7は光学フイルタとなる。
【0025】
吸収層は、上述のようにフォトリソグラフィ技術を用いることにより、数10μmの長さに精度良く作製することができ、吸収層の長さが短い従来型の半導体受光素子に比べ、高速化高感度化への対応が容易となる。なお、反射器7は、後で詳述するが、省略することが可能である。
【0026】
上記のいずれの素子においても、光を基板裏面より取り出すため、劈開端面を形成する必要は必ずしもなく、素子間を電気的に絶縁していれば素子を物理的に分離せずに動作させることができるので、複数の素子をモノリシックに集積することが可能である。同様に、半絶縁性基板を用いることにより半導体レーザや受光素子とトランジスタなどの電子デバイスをモノリシックに集積することができ、光源とドライバ、受光素子と増幅器を集積することが可能となる。
【0027】
また、本発明による半導体レーザは面発光型となるので、面入射型受光素子と共にモノリシックに集積することも可能である。面入射型受光素子は、本発明による、光を基板に垂直に入射した後、45°傾斜反射鏡により水平光導波路に導く受光素子の他、従来型の受光素子でも良い。
【0028】
【発明の実施の形態】
以下、本発明に係る半導体光素子及びそれを用いた光送受信装置を幾つかの図面に示した実施例による発明の実施の形態を参照して更に詳細に説明する。
【0029】
【実施例】
<実施例1>
半導体光素子を1.3μm帯半導体レーザとして構成した第1の実施例を図2及び図3に示す。図2は半導体レーザの斜視構造を、図3は断面構造を示している。本実施例の構造を素子の作製方法を基にして述べる。
【0030】
n−InP基板8上に、n−InPバッファ層9、及びInPに格子整合する厚さ4分の1波長の光学長を有するブラッグ反射器10を結晶成長によって形成する。ブラッグ反射器10は、n−InGaAsとn−InAlAsの積層膜からなり、反射率が90%である。
【0031】
結晶成長炉より基板8を取出し、絶縁膜などでマスクした後、所望の部位のブラッグ反射器10をエッチングすることにより、反射率50%のブラッグ反射器11を形成する。
【0032】
エッチングマスクを除去した後、基板8を再度結晶成長炉に導入し、n−InPバッファ層12を結晶成長によって形成してからその上面を平坦化し、続いて、InPに格子整合したn−InGaAlAs下側SCH(Separate ConfinementHeterostructure)層13、InGaAlAs歪障壁層(バンドギャップ1.32eV、障壁層厚8nm)及びInGaAlAs歪量子井戸層(バンドギャップ0.87eV、井戸層厚6nm)によって構成される歪量子井戸活性層14、InPに格子整合したp−InGaAlAs上側SCH層15、p−InPクラッド層16、p−InGaAsキャップ層17、及びp−InGaAsコンタクト層18の各層をMOVPE(Metal Organic Chemical Vapor Deposition)法による結晶成長により順次形成する。結晶成長にはその他に、ガスソースMBE(Molecular Beam Epitaxy)法又はCBE(Chemical Beam Epitaxy)法を用いることができる。
【0033】
次に、絶縁膜などをマスクにし、ホトエッチング工程により図2に示すようなリッジを形成する。このときのエッチングは方法を問わないので,ホトエッチングの他に、湿式法、RIE(Reactive Ion Etching)、RIBE(Reactive IonBeam Etching)、イオンミリング等が可能である。エッチングは歪量子井戸活性層14に達しないようにp−InPクラッド層16の途中で止まるようにする。
【0034】
次に、絶縁膜をマスクに共振器を45°の角度で下側SCH層13までメサエッチングして反射面を形成してから、該反射面に非晶質硅素膜と二酸化硅素膜の周期膜からなる高反射率膜21を形成し、反射面を45°傾斜反射鏡とする。
【0035】
その後、コンタクト層18の上面にp側オーミック電極19を、基板8の裏面にn側オーミック電極20を形成する。反射鏡と対向する基板8の裏面の位置に予め酸化物によりマスクをし、リフトオフによりn側オーミック電極20を除去する。電極を除去した部位に酸窒化硅素膜からなる反射防止膜22を形成する。なお、この光の取出し面を球面に加工しておけば、ファイバとの結合効率を改善することができる。
【0036】
ダイシングにより素子分離を行ない、共振器長約80μmの半導体レーザ素子を得る。その後、素子を下にして、ヒートシンク上にボンディングする。
【0037】
本実施例の半導体レーザは、電極19,20間に電圧が印加されると、歪量子井戸活性層14で発光が起こる。発光ビームは、45°反射鏡で反射し、ブラッグ反射器10,11の間で共振して、レーザ光となる。ブラッグ反射器11の方が反射率が低いため、レーザ光の一部がブラッグ反射器11を抜けて基板8裏面に到達し、反射防止膜22を経て外部に出射する。基板8裏面に到達した光ビームが半導体内部に戻って妨害光とならないように、反射防止膜22の反射率は10%以下に設定される。
【0038】
試作した半導体レーザは、閾値電流約10mAで室温連続発振し、発振波長は約1.3μmであり、最大光出力30mWまで安定に横単一モードで発振した。また、光出力を増加させても端面劣化は起こらず、最大光出力30mWは熱飽和により制限された。更に、30個の半導体レーザについて環境温度80℃の条件下で15mW一定で光出力連続駆動させたところ、全ての素子で端面劣化することなく1万時間以上安定に動作した。
【0039】
作製した1.3μm帯半導体レーザは、加入者系光伝送システムの光源に適用して好適である。
【0040】
なお、本発明は光導波路の構造によらないので、例えば、上述した実施例の他に、光導波路構造としてBH(Buried Heterostructure)構造を用いても良い。また、発振波長として上述した1.3μm帯のほか、0.98μm帯、1.55μm帯の半導体レーザに適用可能であることは言うまでもない。
【0041】
反射防止膜22として酸窒化硅素膜からなる単層膜を用いたが、高屈折率膜と低屈折率膜の積層膜を用いても良い。高屈折率膜として窒化硅素膜、非晶質硅素膜、窒化アルミニウム膜、二酸化チタン膜、酸化タンタル膜、酸化ハフニウム膜等の屈折率1.9以上の材料を用いることが望ましい。低屈折率膜として、二酸化硅素膜、酸化アルミニウム膜、弗化マグネシウム膜等の屈折率1.7以下の材料を用いることが望ましい。同様に高反射率膜として非晶質硅素膜と二酸化硅素膜からなる周期膜を用いたが、上述した高屈折率膜と低屈折率膜の組み合わせでも良いことは言うまでもない。
【0042】
また、本実施例では共振器の両端面に45°の反射鏡を形成したが、共振器長をある程度長くすることによって劈開が可能になる場合には、一方の端面は劈開により形成し、端面反射膜を形成しても良い。又は、一方の端面は、エッチングしてから反射膜を形成する図1に示した構造とすることが可能である。
【0043】
更に、n側オーミック電極20を基板8裏面に形成したが、電極20は、素子の一部をバッファ層の途中までエッチングし、露出したバッファ層の表面に形成されるようにしても良い。この場合、反射防止膜22は、基板8裏面の全体に形成しても構わない。このようにして、電極20をp側オーミック電極19と同一の面に形成することができ、半絶縁性基板を用いて半導体レーザを形成することが可能となる。
【0044】
本実施例により、光導波路を高速光伝送に適した80μmの長さにすることが可能で、しかもレーザ光を基板に垂直方向に取り出すことが可能となった。また、ブラッグ反射器10,11を他の結晶層と同じ結晶成長炉を用いて形成することができるので、製作工程が簡単であり、実用性の高い半導体レーザを実現することができた。
<実施例2>
半導体光素子を波長可変レーザ素子として構成した第2の実施例を図4に示す。本素子は1.3μm帯半導体レーザと波長変換素子を集積してなり、図4はその断面構造を示している。
【0045】
SiO等の絶縁膜を用いてInP基板23上をマスクし、所望の部位にのみInPバッファ層24及び格子整合したInGaAs及びInAlAsからなる反射率95%のブラッグ反射器25を形成した後、活性層60を有する発振波長1.3μmの半導体レーザ部61を形成する。
【0046】
次に、半導体レーザ部61に隣接してInPバッファ層24、 格子整合したInGaAs及びInAlAsからなる反射率60%のブラッグ反射器26を形成し、その上に、可変波長変換素子62を選択成長により作製する。波長可変素子62として、多電極分布帰還型レーザを用いても良く、また、多電極分布反射器レーザを用いても良い。光源となるレーザと波長変換素子の活性層60が直接突き当たるように形成しても良く、中間に導波路構造を形成して光を変換素子62に導入しても良い。
【0047】
半導体レーザ61と波長変換素子62の端面を45°にエッチングして反射面を形成し、反射面に高反射率膜27を形成して反射鏡とする。基板裏面には反射防止膜28を形成する。その後、不要部分をエッチング又はリフトオフにより除去し、反射防止膜28部を除いてオーミック電極を形成する。
【0048】
本実施例により、共振器長50μmの半導体レーザ61を形成することができ、これと波長変換素子62を集積することが可能となり、最大40nmの波長範囲で波長掃引する半導体光素子を実現することができた。作製した1.3μm帯半導体レーザ61と波長変換素子62を集積してなる波長可変レーザ素子は、加入者系光伝送システムの光源に適用して好適である。
<実施例3>
半導体光素子を光変調器集積レーザ素子として構成した第3の実施例を図5に示す。本素子は1.55μm帯半導体レーザと光変調器を集積してなり、図5はその断面構造を示している。
【0049】
SiO等の絶縁膜を用いてInP基板23上をマスクし、所望の部位にのみInPバッファ層24及び格子整合したInGaAs及びInAlAsからなる反射率90%のブラッグ反射器29を形成した後、InPバッファ層24を積層して回折格子30を形成する。回折格子30の上に導波路層、活性層63などを積層して共振器を作製し、発振波長1.55μmの分布帰還型半導体レーザ部65を形成する。
【0050】
次に、半導体レーザ部65に隣接してInPバッファ層24、吸収層31などを積層して、光変調器66を選択成長により作製する。光変調器66として、電界吸収型光変調器を用いても良く、また、マッハツェンダ型光変調器を用いても良い。
【0051】
両端面を垂直にエッチングしてから、エッチング部分にInPを埋込んでInP埋込層64を形成し、続いて、InP埋込層64に45°のエッチングを行なって反射面を形成する。電極を形成した後、反射面に高反射率膜27を形成して反射鏡とし、反射鏡に対向する基板裏面に反射防止膜28を形成する。
【0052】
光変調器66の反射鏡部分は窓構造となり、且つ基板23の厚さが凡そ100μmであるので、反射防止膜28の反射率が1%である場合でも光変調器66の戻り光強度は出射光強度の0.01%以下となった。これによりビットレート40Gbpsの光伝送において100Kmの伝送が可能となった。本実施例により、幹線系光伝送システムの光源に適用して好適な、1.55μm帯半導体レーザ65と光変調器66を集積化してなる光変調器集積レーザ素子を実現することができた。
<実施例4>
半導体光素子をInGaAlAs系化合物半導体によるフォトダイオードとして構成した第4の実施例を図6に示す。図6はその断面構造を示している。
【0053】
p−InP基板32上に、p−InAlAs下部クラッド層33を0.5μm、p−InGaAlAs下部第2コア層34を1.5μm、アンドープInGaAlAs光吸収層35を1.5μm、n−InGaAlAs上部第2コア層36を1.5μm、n−InAlAs上部クラッド層37を1.0μm、n−InGaAsコンタクト層38を0.2μm、順次積層した。
【0054】
ここで、上部第2コア層36及び下部第2コア層34のバンドギャップ波長は1.1μmであり、光吸収層35のバンドギャップ波長は1.4μmである。この半導体多層構造を化学エッチングによりメサ構造に形成した。
【0055】
その後、吸収層35の端面に45°の反射面を形成し、そこに高反射率膜39を形成して反射鏡とした。受光部の導波路幅は30μm、長さは100μmである。次に、n側電極40及びp側電極41を形成した。リフトオフにより、反射鏡に対向する位置にある受光面の電極を除去し、反射防止膜42を形成した。
【0056】
作製したフォトダイオードをスポット半径Wfが約4μmのフラットエンド分散シフトファイバからの波長1.3μmの信号光と光結合させたところ、バイアス電圧2Vで受光感度0.98A/Wと高い値が得られた。また、上記信号光の位置ずれ許容値も0.5dB劣化時で垂直方向が±2.0μm、水平方向が±12.0μmとパッシブアライメント法を用いた表面実装時の位置ずれ量を充分にカバーできる値となった。バイアス電圧2Vにおける最大遮断周波数は10GHzであった。なお、上記の構造をInGaAsP系の半導体層で構成しても同様の効果が得られる。
【0057】
本実施例では、光吸収層35に波長1.55μmの信号光に受光感度が無く、波長1.3μmの信号光に対して受光感度を有する半導体層を用いたが、波長1.55μmの信号光に受光感度を有する半導体層を用いても同様の効果を得ることができる。
【0058】
本実施例により、光導波路を長くして受信感度を高め、かつ基板に垂直の方向から光ビームを入射する半導体受光素子を実現することができた。
<実施例5>
半導体光素子をInGaAlAs系化合物半導体によるブラッグ反射器付きフォトダイオードとして構成した第5の実施例を図7に示す。図7はその断面構造を示している。
【0059】
p−InP基板32上に、InGaAsとInAlAsからなるブラッグ反射器43を形成し、p−InAlAs下部クラッド層33、p−InGaAlAs下部第2コア層44、アンドープInGaAs光吸収層45、n−InGaAlAs上部第2コア層46、n−InAlAs上部クラッド層37、n−InGaAsコンタクト層38を順次積層した。
【0060】
ここで,ブラッグ反射器43の反射率は1.3μmの光に対し99.99%となるようにした。また、上部第2コア層46及び下部第2コア層44のバンドギャップ波長は1.3μmである。メサ構造を形成した後、45°反射面をエッチングにより形成し、反射面に高反射率膜47を形成して反射鏡とした。基板裏面に反射防止膜48を形成し、不要部分を除去して電極を形成する。
【0061】
本実施例による半導体受光素子を受信信号の波長が1.55μm、送信信号の波長が1.3μmの送受信モジュールに用いたところ、半導体受光素子の受信信号と送信信号に対する感度比は38dBとなった。このように反射器43が良好な光学フィルタとなるので、受光素子の前段に送信信号を阻止するための前置フィルタを設置する必要がなくなった。
<実施例6>
本発明による半導体レーザと半導体受光素子を用いて構成した光送受信装置(光送受信モジュール)を第6の実施例として図8に示す。
【0062】
半絶縁性基板49上に初めに上述の本発明による発振波長1.3μmの半導体レーザ50を形成する。半導体レーザ50は光変調器を集積していても良く、また、波長可変素子を集積していても良い。
【0063】
次に、半導体レーザ50に隣接して同一半絶縁性基板上にレーザ駆動回路IC(Integrated Circuit)51を形成する。更に、波長1.55μmの光に対して感度を有する半導体受光素子52を形成し、最後に半導体受光素子52に隣接して前置増幅回路IC53を作製する。
【0064】
上記の各素子及び各回路の半導体基板から始まる各層の形成は、半絶縁性基板49上への結晶成長及びフォトリソグラフィによりそれぞれ独立に行なわれる。また、半導体レーザ50及び半導体受光素子52の反射防止膜は両者で共通であり、半絶縁性基板49の裏面全体に形成される。また、半導体レーザ50及び半導体受光素子52共、それぞれ半導体基板又はその上に形成した層の途中までエッチングすることによって露出した表面に一方の電極が形成される。なお、半絶縁性基板49上に形成した各素子及び各回路は、半絶縁性基板49によって互いに電気的に絶縁される。
【0065】
各素子及び各回路間に所望の配線を行なうことにより、光送受信装置の主要部を単一基板上にモノリシックに形成することができた。配線距離が短くなり、配線によるインピーダンスは40Ω以下に低減することができ、ビットレート40Gbpsの光伝送において、10−8の誤り率となる最小受光感度は−38dBと良好であった。
【0066】
本実施形態の光送受信装置は、レーザ光の出射及び入射が半絶縁性基板49の裏面に対していずれも同一の垂直方向になるので、モノリシック集積が容易であり、高集積でコンパクトな装置(モジュール)を実現することができる。
【0067】
【発明の効果】
本発明によれば、半導体光素子において光を基板の垂直方向から取り出し、かつ光導波路を目的に合わせた長さにすることが可能となるので、高速大出力の面発光半導体レーザ或いは高速高感度の半導体光受信素子を容易に作製することができる。また、劈開端面を用いずに構成することが可能になるので、モノリシック集積が可能となる。
【図面の簡単な説明】
【図1】本発明に係る半導体光素子の基本構成を説明するための断面図。
【図2】本発明の第1の実施例を説明するための斜視図。
【図3】本発明の第1の実施例を説明するための断面図。
【図4】本発明の第2の実施例を説明するための断面図。
【図5】本発明の第3の実施例を説明するための断面図。
【図6】本発明の第4の実施例を説明するための断面図。
【図7】本発明の第5の実施例を説明するための断面図。
【図8】本発明の第6の実施例を説明するための断面図。
【図9】従来の半導体レーザの例を説明するための断面図。
【符号の説明】
1,8,23,32…半導体基板、2…光導波路、3,33…下部クラッド層、4,37…上部クラッド層、5…45°反射鏡、6,22,28,42,48…反射防止膜、7,10,11,25,26,29,43…ブラッグ反射器、9,12,24…バッファ層、13…下側SCH層、14…歪量子井戸活性層、15…上側SCH層、16…クラッド層、17…キャップ層、18,38…コンタクト層、19,41…p側電極、20,40…n側電極、21,27,39,47…高反射率膜、30…回折格子、31,35,45…吸収層、34,44…下部第2コア層、36,46…上部第2コア層、49…半絶縁性基板、50…半導体レーザ、51…レーザ駆動回路IC、52…半導体受光素子、53…前置増幅回路IC、67…反射膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor optical device typified by a semiconductor laser and a photodiode, and more particularly to a semiconductor optical device suitable for high-speed optical transmission and an optical transceiver using the same.
[0002]
[Prior art]
Optical transmission technology plays a major role in increasing the speed and capacity of information transmission between the recent Internet, communication networks, and computers. Among them, the semiconductor optical elements at the center are a semiconductor laser as a light source and a photodiode as a light receiving element, that is, a semiconductor light receiving element, and have been greatly developed in terms of high reliability and high performance.
[0003]
A semiconductor laser is typically divided into an edge-emitting type and a surface-emitting type. In the edge-emitting type, a relatively long optical waveguide is formed in parallel with the substrate, so that a large output is easily obtained. On the other hand, the surface-emitting type has a feature that since an optical waveguide is formed perpendicular to the substrate, a laser is emitted from the back surface of the substrate and is easily integrated. In either case, the optical waveguide forms an active layer that generates light. A resonator necessary for laser light emission is formed by sandwiching both ends of the optical waveguide with reflecting mirrors.
[0004]
In general, an edge-emitting semiconductor chip is obtained by lapping (polishing) a substrate after epitaxial growth to an appropriate thickness and then simultaneously cutting out the chip and forming a resonator end face by double-side cleavage. Double-sided cleavage is performed using a scalpel, a razor, or a cleaver. However, since both sides are cleaved, it is difficult to use an edge-emitting semiconductor laser as a part of an optical (electronic) integrated circuit, or to provide an external reflecting mirror on the laser emission end face side. The mold is generally limited to use as a single part. In addition, it is extremely difficult to monolithically integrate the edge-emitting type because a semiconductor laser having a cleaved end face cannot perform a performance test without element isolation. In addition, in order to perform cleavage, a lower limit must be set for the resonator length, and only 200 μm or more is manufactured at present.
[0005]
On the other hand, in a surface emitting laser having a vertical resonator type configuration in which a resonator is formed in a direction perpendicular to the substrate surface and laser light is emitted in the vertical direction, the resonator is configured in the vertical direction. It is difficult to increase the length of the resonator serving as the gain region, and therefore, a sufficient gain cannot be obtained and a high light output cannot be obtained. Therefore, the surface emitting laser has not been put into practical use.
[0006]
For the semiconductor laser having the above structure, the end surface of the semiconductor stack 81 is formed by the inclined surface 80 made of a reflective film, as shown in FIG. 9, the light beam is guided to the back surface of the substrate 71, and the reflecting mirror 84 is provided on the back surface of the substrate 71. A semiconductor laser having the provided structure is disclosed in Patent Document 1.
[0007]
Next, a relatively long optical waveguide is also formed in the semiconductor light receiving element in parallel with the substrate, a waveguide type in which light is incident from the cleavage end surface, an optical waveguide is formed perpendicular to the substrate, and the light is directed to the substrate surface. There is a vertical incidence type. In the semiconductor light receiving element, a surface incidence type is common. The optical waveguide forms an absorption layer that absorbs light.
[0008]
As in the case of the semiconductor laser, the waveguide type has a lower limit for the length of the waveguide to perform cleavage, whereas the surface incident type has a difficulty in lengthening the waveguide.
[0009]
[Patent Document 1]
JP-A-8-97514
[0010]
[Problems to be solved by the invention]
In the edge emitting semiconductor laser, the electric capacity increases in proportion to the length of the resonator. Therefore, in order to cope with high-speed optical transmission, it is necessary to shorten the resonator length and reduce the electric capacity. For example, in a directly modulated semiconductor laser capable of supporting a transmission speed of 40 Gbps on the trunk line, the resonator length is estimated to be about several tens of μm in order to obtain a required high frequency characteristic. It is difficult to form such a short resonator length by cleavage.
[0011]
In a distributed feedback semiconductor laser (DFB laser), which is a kind of edge emitting type, a diffraction grating is formed along an active layer in order to operate at a single wavelength. The phase of the diffraction grating at the end face is determined by the position of the cleaved diffraction grating, and thereby the oscillation wavelength is determined. The period of the diffraction grating is usually 200 nm to 400 nm. Therefore, the period is controlled with an accuracy of 200 nm for a length of 200 μm, for example. As long as the cleaved end face is used, it is practically difficult to control the phase of the diffraction grating, that is, to control the wavelength.
[0012]
Further, as described above, since it is difficult to monolithically integrate a semiconductor laser using a cleavage end face as a resonator reflector, a semiconductor laser and a semiconductor light receiving element must be separately mounted in a transmission / reception module equipped with a light source and a receiver. I do not get. Therefore, it is difficult to reduce the size of the module, and stray capacitance due to wiring hinders high-speed transmission.
[0013]
On the other hand, in the surface emitting laser, as described above, since the resonator length is only about several μm at most, a sufficiently large gain cannot be obtained, and it is difficult to increase the light output. Further, since the resonator is formed perpendicular to the substrate surface, it is practically impossible to form a diffraction grating in the resonator portion, and a DFB laser as a surface emitting laser has not been realized. Furthermore, it is difficult to integrate an optical modulator on the resonator.
[0014]
Further, in a semiconductor laser having a 45 ° inclined reflecting film and having a reflecting mirror on the back surface of the substrate, a length twice as large as the thickness of the substrate is added to the optical path. Since the substrate thickness usually exceeds 100 μm, it is not only possible to obtain a short optical waveguide for high-speed transmission, but also the amount of light beam reflected and returned because the light beam becomes wider as it approaches the back surface of the substrate. May decrease, and resonance necessary for laser oscillation may not be obtained.
[0015]
Next, also in the light receiving element, in the surface incidence type currently widely used, as described above, since the light receiving layer is formed perpendicular to the substrate, the light absorbing region is thin, and the high speed optical transmission system. However, there is a tendency for sensitivity to be insufficient. The waveguide type is not employed for high-speed optical transmission because the electric capacity increases.
[0016]
Furthermore, in an optical transceiver that incorporates a transmitter and a receiver in one module, a semiconductor laser that is a transmitter emits light from an end surface, and a semiconductor light-receiving element that is a receiver enters light from a substrate surface. Therefore, it is difficult to manufacture the transmitter and the receiver monolithically.
[0017]
An object of the present invention is to provide a semiconductor optical device capable of making an optical waveguide a length suitable for high-speed optical transmission and monolithically integrated, and an optical transceiver using the same.
[0018]
[Means for Solving the Problems]
For example, as shown in FIG. 1, a semiconductor optical device of the present invention for achieving the above object includes a reflector 7 formed on a semiconductor substrate 1 and made of semiconductor layers having different refractive indexes, and a reflector. The optical waveguide 2 sandwiched between the lower clad layer 3 and the upper clad layer 4 formed on the optical disc 7, and the reflecting mirror 5 disposed on at least one end face of the optical waveguide 2 at an angle of 45 ° with respect to the surface of the substrate 1. And an antireflection film 6 formed on the back surface of the substrate 1 at a position facing the reflecting mirror 5.
[0019]
In such a semiconductor optical device of the present invention, the effective optical waveguide length is the optical waveguide length above the reflector 7 and is not affected by the thickness of the substrate 1. Furthermore, since the length due to the thickness of the reflector 7 and the lower cladding layer 3 is remarkably shorter than the length of the optical waveguide 2 horizontal to the surface of the substrate 1, the length of the optical waveguide above the reflector 7 is It can be represented by the length of the optical waveguide 2 that is substantially horizontal to the surface of the substrate 1. Since the length of the optical waveguide 2 is determined by photolithography, there is no lower limit of the length as in the case of cleavage. That is, it becomes possible to make the optical waveguide a length suitable for high-speed optical transmission.
[0020]
In the semiconductor optical device of the present invention, a semiconductor laser is formed by using the optical waveguide 2 as an active layer and forming a resonator using reflection of a light beam by the reflector 7. Since the Bragg reflector 7 becomes a resonator mirror, light can be confined in the active layer region. In FIG. 1, the 45 ° inclined reflecting mirror 5 is disposed only on one end face of the optical waveguide 2 and the reflecting film 67 formed after the etching is disposed on the other end face. It is possible to dispose 45 ° inclined reflecting mirrors 5 on both end faces.
[0021]
A part of the resonating light beam reaches the back surface of the substrate 1 via the reflector 7. At this time, since the antireflection film 6 is formed on the back surface of the substrate 1, the light beam that has reached the back surface of the substrate 1 is emitted outside without returning to the inside of the semiconductor.
[0022]
By using the photolithography technique as described above, the resonator can be accurately manufactured to a length of several tens of μm, and it is easy to cope with high speed. Further, compared with a conventional surface emitting laser having a short resonator length, the gain region can be greatly increased, so that it is possible to cope with higher output.
[0023]
By arranging a diffraction grating along the active layer, a distributed feedback laser can be formed. In the manufacture of such a laser, since the diffraction grating is formed by photolithography and is not accompanied by processing such as cleavage, the phase control of the diffraction grating is not changed and the wavelength controllability is improved.
[0024]
In the semiconductor optical device of the present invention, a semiconductor light-receiving device capable of wavelength selection is formed by using the optical waveguide 2 as an absorption layer and matching the wavelength exhibiting high reflectivity of the reflector 7 with the wavelength that prevents reception. Of the light beam incident from the antireflection film 6, the light beam having a reception blocking wavelength is reflected by the reflector 7 and does not reach the absorption layer. That is, the reflector 7 becomes an optical filter.
[0025]
The absorption layer can be accurately manufactured to a length of several tens of μm by using the photolithography technique as described above, and has a higher speed and higher sensitivity than a conventional semiconductor light receiving element having a short absorption layer length. It becomes easy to cope with the conversion. Although the reflector 7 will be described later in detail, it can be omitted.
[0026]
In any of the above elements, since the light is extracted from the back surface of the substrate, it is not always necessary to form a cleaved end face. If the elements are electrically insulated, the elements can be operated without being physically separated. As a result, a plurality of elements can be monolithically integrated. Similarly, by using a semi-insulating substrate, electronic devices such as a semiconductor laser, a light receiving element, and a transistor can be monolithically integrated, and a light source, a driver, a light receiving element, and an amplifier can be integrated.
[0027]
Further, since the semiconductor laser according to the present invention is a surface emitting type, it can be monolithically integrated with the surface incident type light receiving element. The surface incident type light receiving element may be a conventional type light receiving element in addition to the light receiving element according to the present invention, in which light is vertically incident on a substrate and then guided to a horizontal optical waveguide by a 45 ° inclined reflecting mirror.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor optical device and an optical transmission / reception apparatus using the same according to the present invention will be described in more detail with reference to embodiments of the invention shown in some drawings.
[0029]
【Example】
<Example 1>
A first embodiment in which the semiconductor optical device is configured as a 1.3 μm band semiconductor laser is shown in FIGS. 2 shows a perspective structure of the semiconductor laser, and FIG. 3 shows a cross-sectional structure. The structure of this example will be described based on a method for manufacturing an element.
[0030]
On the n-InP substrate 8, an n-InP buffer layer 9 and a Bragg reflector 10 having a quarter-wavelength optical length lattice-matched to InP are formed by crystal growth. The Bragg reflector 10 is composed of a laminated film of n-InGaAs and n-InAlAs, and has a reflectance of 90%.
[0031]
After taking out the substrate 8 from the crystal growth furnace and masking it with an insulating film or the like, the Bragg reflector 10 at a desired portion is etched to form the Bragg reflector 11 having a reflectance of 50%.
[0032]
After removing the etching mask, the substrate 8 is again introduced into the crystal growth furnace, the n-InP buffer layer 12 is formed by crystal growth, and then the upper surface thereof is flattened, and then the n-InGaAlAs lattice-matched to InP is formed. Strained quantum well composed of side SCH (Separate Configuration Heterostructure) layer 13, InGaAlAs strained barrier layer (bandgap 1.32eV, barrier layer thickness 8nm) and InGaAlAs strained quantum well layer (bandgap 0.87eV, well layer thickness 6nm) The active layer 14, the p-InGaAlAs upper SCH layer 15 lattice-matched to InP, the p-InP cladding layer 16, the p-InGaAs cap layer 17, and the p-InGaAs contact layer 18 are formed by MOVPE (Metal Organic Che). Successively formed by crystal growth by ical Vapor Deposition) method. In addition, for the crystal growth, a gas source MBE (Molecular Beam Epitaxy) method or a CBE (Chemical Beam Epitaxy) method can be used.
[0033]
Next, using an insulating film or the like as a mask, a ridge as shown in FIG. 2 is formed by a photoetching process. Etching at this time does not matter, and in addition to photo-etching, wet method, RIE (Reactive Ion Etching), RIBE (Reactive Ion Beam Etching), ion milling, and the like are possible. Etching is stopped in the middle of the p-InP cladding layer 16 so as not to reach the strained quantum well active layer 14.
[0034]
Next, using the insulating film as a mask, the resonator is mesa-etched to the lower SCH layer 13 at an angle of 45 ° to form a reflective surface, and then a periodic film of an amorphous silicon film and a silicon dioxide film is formed on the reflective surface. A high reflectivity film 21 is formed, and the reflection surface is a 45 ° inclined reflecting mirror.
[0035]
Thereafter, a p-side ohmic electrode 19 is formed on the upper surface of the contact layer 18, and an n-side ohmic electrode 20 is formed on the back surface of the substrate 8. A mask is previously masked with an oxide on the back surface of the substrate 8 facing the reflecting mirror, and the n-side ohmic electrode 20 is removed by lift-off. An antireflection film 22 made of a silicon oxynitride film is formed at the site where the electrodes have been removed. If the light extraction surface is processed into a spherical surface, the coupling efficiency with the fiber can be improved.
[0036]
The elements are separated by dicing to obtain a semiconductor laser element having a resonator length of about 80 μm. Thereafter, bonding is performed on the heat sink with the element facing down.
[0037]
In the semiconductor laser of this example, when a voltage is applied between the electrodes 19 and 20, light emission occurs in the strained quantum well active layer 14. The emitted beam is reflected by a 45 ° reflector, resonates between the Bragg reflectors 10 and 11, and becomes laser light. Since the Bragg reflector 11 has a lower reflectance, a part of the laser light passes through the Bragg reflector 11 and reaches the back surface of the substrate 8 and is emitted to the outside through the antireflection film 22. The reflectance of the antireflection film 22 is set to 10% or less so that the light beam that reaches the back surface of the substrate 8 does not return to the inside of the semiconductor and become interference light.
[0038]
The prototype semiconductor laser oscillated continuously at room temperature with a threshold current of about 10 mA, the oscillation wavelength was about 1.3 μm, and stably oscillated in a transverse single mode up to a maximum optical output of 30 mW. Further, even when the light output was increased, the end face did not deteriorate, and the maximum light output of 30 mW was limited by thermal saturation. Further, when 30 semiconductor lasers were continuously driven with light output at a constant 15 mW under an ambient temperature of 80 ° C., all elements operated stably for 10,000 hours or more without deterioration of the end face.
[0039]
The produced 1.3 μm band semiconductor laser is suitable for application to a light source of a subscriber optical transmission system.
[0040]
Since the present invention does not depend on the structure of the optical waveguide, for example, a BH (Buried Heterostructure) structure may be used as the optical waveguide structure in addition to the above-described embodiments. Needless to say, the present invention is applicable to semiconductor lasers in the 0.98 μm band and 1.55 μm band in addition to the 1.3 μm band described above as the oscillation wavelength.
[0041]
Although a single layer film made of a silicon oxynitride film is used as the antireflection film 22, a laminated film of a high refractive index film and a low refractive index film may be used. It is desirable to use a material having a refractive index of 1.9 or higher, such as a silicon nitride film, an amorphous silicon film, an aluminum nitride film, a titanium dioxide film, a tantalum oxide film, or a hafnium oxide film, as the high refractive index film. As the low refractive index film, it is desirable to use a material having a refractive index of 1.7 or less, such as a silicon dioxide film, an aluminum oxide film, and a magnesium fluoride film. Similarly, a periodic film made of an amorphous silicon film and a silicon dioxide film is used as the high reflectance film, but it goes without saying that a combination of the above-described high refractive index film and low refractive index film may be used.
[0042]
Further, in this embodiment, the 45 ° reflectors are formed on both end faces of the resonator. However, when cleaving is possible by increasing the resonator length to some extent, one end face is formed by cleaving. A reflective film may be formed. Alternatively, the structure shown in FIG. 1 can be used in which one end face is etched and then a reflective film is formed.
[0043]
Furthermore, although the n-side ohmic electrode 20 is formed on the back surface of the substrate 8, the electrode 20 may be formed on the exposed surface of the buffer layer by etching a part of the element partway through the buffer layer. In this case, the antireflection film 22 may be formed on the entire back surface of the substrate 8. In this manner, the electrode 20 can be formed on the same surface as the p-side ohmic electrode 19, and a semiconductor laser can be formed using a semi-insulating substrate.
[0044]
According to this embodiment, the optical waveguide can be made 80 μm in length suitable for high-speed optical transmission, and the laser beam can be extracted in the direction perpendicular to the substrate. Further, since the Bragg reflectors 10 and 11 can be formed using the same crystal growth furnace as the other crystal layers, the manufacturing process is simple and a highly practical semiconductor laser can be realized.
<Example 2>
FIG. 4 shows a second embodiment in which the semiconductor optical element is configured as a wavelength tunable laser element. This element is formed by integrating a 1.3 μm band semiconductor laser and a wavelength conversion element, and FIG. 4 shows its cross-sectional structure.
[0045]
SiO 2 The InP substrate 23 is masked by using an insulating film such as an InP buffer layer 24 and a Bragg reflector 25 having a reflectivity of 95% made of lattice-matched InGaAs and InAlAs only at a desired portion, and then the active layer 60 A semiconductor laser portion 61 having an oscillation wavelength of 1.3 μm and having a wavelength of 1 is formed.
[0046]
Next, an InP buffer layer 24 adjacent to the semiconductor laser unit 61, a Bragg reflector 26 having a reflectance of 60% and made of lattice-matched InGaAs and InAlAs is formed, and a variable wavelength conversion element 62 is formed thereon by selective growth. Make it. As the wavelength variable element 62, a multi-electrode distributed feedback laser may be used, or a multi-electrode distributed reflector laser may be used. The laser serving as the light source and the active layer 60 of the wavelength conversion element may be formed to directly contact each other, or a waveguide structure may be formed in the middle to introduce light into the conversion element 62.
[0047]
The end surfaces of the semiconductor laser 61 and the wavelength conversion element 62 are etched to 45 ° to form a reflection surface, and the high reflectivity film 27 is formed on the reflection surface to form a reflection mirror. An antireflection film 28 is formed on the back surface of the substrate. Thereafter, unnecessary portions are removed by etching or lift-off, and ohmic electrodes are formed except for the antireflection film 28.
[0048]
According to the present embodiment, a semiconductor laser 61 having a resonator length of 50 μm can be formed, and this can be integrated with the wavelength conversion element 62, and a semiconductor optical device that performs wavelength sweeping in a maximum wavelength range of 40 nm is realized. I was able to. The tunable laser element obtained by integrating the manufactured 1.3 μm band semiconductor laser 61 and the wavelength conversion element 62 is suitable for application to a light source of a subscriber optical transmission system.
<Example 3>
FIG. 5 shows a third embodiment in which the semiconductor optical device is configured as an optical modulator integrated laser device. This element is formed by integrating a 1.55 μm band semiconductor laser and an optical modulator, and FIG. 5 shows a sectional structure thereof.
[0049]
SiO 2 The InP substrate 23 is masked by using an insulating film such as an InP buffer layer 24 and a Bragg reflector 29 having a reflectivity of 90% made of lattice-matched InGaAs and InAlAs only at a desired portion, and then the InP buffer layer 24 is laminated to form a diffraction grating 30. A resonator is manufactured by laminating a waveguide layer, an active layer 63, and the like on the diffraction grating 30 to form a distributed feedback semiconductor laser portion 65 having an oscillation wavelength of 1.55 μm.
[0050]
Next, the InP buffer layer 24, the absorption layer 31, and the like are stacked adjacent to the semiconductor laser portion 65, and the optical modulator 66 is fabricated by selective growth. As the optical modulator 66, an electroabsorption optical modulator or a Mach-Zehnder optical modulator may be used.
[0051]
After etching both end surfaces vertically, InP is buried in the etched portion to form an InP buried layer 64, and then the InP buried layer 64 is etched by 45 ° to form a reflective surface. After the electrodes are formed, a high reflectivity film 27 is formed on the reflecting surface to form a reflecting mirror, and an antireflection film 28 is formed on the back surface of the substrate facing the reflecting mirror.
[0052]
Since the reflecting mirror portion of the light modulator 66 has a window structure and the thickness of the substrate 23 is about 100 μm, even when the reflectance of the antireflection film 28 is 1%, the return light intensity of the light modulator 66 is not output. It became 0.01% or less of the light intensity. As a result, transmission at 100 km is possible in optical transmission at a bit rate of 40 Gbps. According to this embodiment, it is possible to realize an optical modulator integrated laser element in which a 1.55 μm band semiconductor laser 65 and an optical modulator 66 are integrated, which is suitable for use as a light source of a trunk optical transmission system.
<Example 4>
FIG. 6 shows a fourth embodiment in which the semiconductor optical device is configured as a photodiode made of an InGaAlAs compound semiconductor. FIG. 6 shows the cross-sectional structure.
[0053]
On the p-InP substrate 32, the p-InAlAs lower cladding layer 33 is 0.5 μm, the p-InGaAlAs lower second core layer 34 is 1.5 μm, the undoped InGaAlAs light absorbing layer 35 is 1.5 μm, and the n-InGaAlAs upper first layer. The 2-core layer 36 was laminated in order of 1.5 μm, the n-InAlAs upper cladding layer 37 was 1.0 μm, and the n-InGaAs contact layer 38 was 0.2 μm.
[0054]
Here, the band gap wavelength of the upper second core layer 36 and the lower second core layer 34 is 1.1 μm, and the band gap wavelength of the light absorption layer 35 is 1.4 μm. This semiconductor multilayer structure was formed into a mesa structure by chemical etching.
[0055]
Thereafter, a reflection surface of 45 ° was formed on the end face of the absorption layer 35, and a high reflectivity film 39 was formed thereon to form a reflecting mirror. The light receiving portion has a waveguide width of 30 μm and a length of 100 μm. Next, an n-side electrode 40 and a p-side electrode 41 were formed. By the lift-off, the electrode on the light receiving surface at the position facing the reflecting mirror was removed, and the antireflection film 42 was formed.
[0056]
When the fabricated photodiode is optically coupled with signal light having a wavelength of 1.3 μm from a flat-end dispersion-shifted fiber having a spot radius Wf of about 4 μm, a light receiving sensitivity of 0.98 A / W is obtained at a bias voltage of 2 V. It was. In addition, the above-mentioned signal light misalignment tolerance is ± 2.0 μm in the vertical direction and ± 12.0 μm in the horizontal direction when the degradation is 0.5 dB, sufficiently covering the amount of misalignment during surface mounting using the passive alignment method. It became possible value. The maximum cutoff frequency at a bias voltage of 2 V was 10 GHz. It should be noted that the same effect can be obtained even if the above structure is constituted by an InGaAsP-based semiconductor layer.
[0057]
In this embodiment, the light absorption layer 35 is a semiconductor layer having no light receiving sensitivity for signal light having a wavelength of 1.55 μm and having light receiving sensitivity for signal light having a wavelength of 1.3 μm. The same effect can be obtained even when a semiconductor layer having light receiving sensitivity is used for light.
[0058]
According to this example, it was possible to realize a semiconductor light receiving element in which the optical waveguide was lengthened to improve the reception sensitivity and the light beam was incident from a direction perpendicular to the substrate.
<Example 5>
FIG. 7 shows a fifth embodiment in which the semiconductor optical device is configured as a photodiode with a Bragg reflector made of an InGaAlAs compound semiconductor. FIG. 7 shows the cross-sectional structure.
[0059]
A Bragg reflector 43 made of InGaAs and InAlAs is formed on the p-InP substrate 32, and a p-InAlAs lower cladding layer 33, a p-InGaAlAs lower second core layer 44, an undoped InGaAs light absorption layer 45, and an n-InGaAlAs upper portion. A second core layer 46, an n-InAlAs upper cladding layer 37, and an n-InGaAs contact layer 38 were sequentially stacked.
[0060]
Here, the reflectance of the Bragg reflector 43 was set to 99.99% for 1.3 μm light. The band gap wavelength of the upper second core layer 46 and the lower second core layer 44 is 1.3 μm. After forming the mesa structure, a 45 ° reflective surface was formed by etching, and a high reflectivity film 47 was formed on the reflective surface to obtain a reflecting mirror. An antireflection film 48 is formed on the back surface of the substrate, and unnecessary portions are removed to form electrodes.
[0061]
When the semiconductor light receiving element according to this example was used in a transmission / reception module having a received signal wavelength of 1.55 μm and a transmitted signal wavelength of 1.3 μm, the sensitivity ratio of the semiconductor light receiving element to the received signal and the transmitted signal was 38 dB. . Thus, since the reflector 43 is a good optical filter, there is no need to install a prefilter for blocking transmission signals in front of the light receiving element.
<Example 6>
An optical transmitter / receiver (optical transmitter / receiver module) constituted by using a semiconductor laser and a semiconductor light receiving element according to the present invention is shown in FIG. 8 as a sixth embodiment.
[0062]
First, the above-described semiconductor laser 50 having an oscillation wavelength of 1.3 μm according to the present invention is formed on the semi-insulating substrate 49. The semiconductor laser 50 may be integrated with an optical modulator, or may be integrated with a wavelength variable element.
[0063]
Next, a laser driving circuit IC (Integrated Circuit) 51 is formed on the same semi-insulating substrate adjacent to the semiconductor laser 50. Further, a semiconductor light receiving element 52 having sensitivity to light having a wavelength of 1.55 μm is formed, and finally a preamplifier circuit IC 53 is manufactured adjacent to the semiconductor light receiving element 52.
[0064]
Formation of each layer starting from the semiconductor substrate of each element and each circuit described above is performed independently by crystal growth on the semi-insulating substrate 49 and photolithography. The antireflection films of the semiconductor laser 50 and the semiconductor light receiving element 52 are common to both, and are formed on the entire back surface of the semi-insulating substrate 49. In addition, in each of the semiconductor laser 50 and the semiconductor light receiving element 52, one electrode is formed on the surface exposed by etching to the middle of the semiconductor substrate or a layer formed thereon. The elements and circuits formed on the semi-insulating substrate 49 are electrically insulated from each other by the semi-insulating substrate 49.
[0065]
By performing desired wiring between each element and each circuit, the main part of the optical transceiver can be formed monolithically on a single substrate. The wiring distance is shortened, and the impedance due to the wiring can be reduced to 40Ω or less. In optical transmission at a bit rate of 40 Gbps, 10 -8 The minimum light receiving sensitivity that gives an error rate of −38 dB was good.
[0066]
In the optical transmitter / receiver of this embodiment, the laser beam is emitted and incident in the same vertical direction with respect to the back surface of the semi-insulating substrate 49. Therefore, monolithic integration is easy and highly integrated and compact device ( Module).
[0067]
【The invention's effect】
According to the present invention, in a semiconductor optical device, light can be extracted from the vertical direction of the substrate and the length of the optical waveguide can be adjusted according to the purpose. The semiconductor optical receiving element can be easily manufactured. In addition, since it is possible to configure without using the cleavage end face, monolithic integration is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a basic configuration of a semiconductor optical device according to the present invention.
FIG. 2 is a perspective view for explaining a first embodiment of the present invention.
FIG. 3 is a sectional view for explaining a first embodiment of the present invention.
FIG. 4 is a sectional view for explaining a second embodiment of the present invention.
FIG. 5 is a sectional view for explaining a third embodiment of the present invention.
FIG. 6 is a cross-sectional view for explaining a fourth embodiment of the present invention.
FIG. 7 is a cross-sectional view for explaining a fifth embodiment of the present invention.
FIG. 8 is a sectional view for explaining a sixth embodiment of the present invention.
FIG. 9 is a cross-sectional view for explaining an example of a conventional semiconductor laser.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,8,23,32 ... Semiconductor substrate, 2 ... Optical waveguide, 3,33 ... Lower clad layer, 4, 37 ... Upper clad layer, 5 ... 45 degree reflector, 6, 22, 28, 42, 48 ... Reflection Prevention film, 7, 10, 11, 25, 26, 29, 43 ... Bragg reflector, 9, 12, 24 ... buffer layer, 13 ... lower SCH layer, 14 ... strained quantum well active layer, 15 ... upper SCH layer , 16 ... cladding layer, 17 ... cap layer, 18, 38 ... contact layer, 19, 41 ... p-side electrode, 20, 40 ... n-side electrode, 21, 27, 39, 47 ... high reflectivity film, 30 ... diffraction Lattice, 31, 35, 45 ... absorption layer, 34, 44 ... lower second core layer, 36, 46 ... upper second core layer, 49 ... semi-insulating substrate, 50 ... semiconductor laser, 51 ... laser drive circuit IC, 52 ... Semiconductor light receiving element, 53 ... Preamplifier circuit IC, 67 ... Reflection .

Claims (13)

半導体基板と、該基板の上に形成した少なくとも2種類の屈折率の異なる半導体層からなる反射器と、該反射器の上に形成した下部クラッド層と、該下部クラッド層の上に形成した光導波路と、該光導波路の上に形成した上部クラッド層と、該光導波路の少なくとも一方の端面に上記基板の面に対して45°の角度をもって配置した反射鏡と、該反射鏡に対向した位置の該基板の裏面に形成した反射防止膜とを有していることを特徴とする半導体光素子。A semiconductor substrate, a reflector made of at least two types of semiconductor layers having different refractive indexes formed on the substrate, a lower cladding layer formed on the reflector, and an optical light formed on the lower cladding layer A waveguide, an upper clad layer formed on the optical waveguide, a reflecting mirror disposed at an angle of 45 ° with respect to the surface of the substrate on at least one end surface of the optical waveguide, and a position facing the reflecting mirror And an antireflection film formed on the back surface of the substrate. 上記反射防止膜の反射率が10%以下であることを請求項1に記載の半導体光素子。2. The semiconductor optical device according to claim 1, wherein the reflectance of the antireflection film is 10% or less. 請求項1に記載の半導体光素子において、上記光導波路は光を発する活性層であり、共振器が該活性層と上記反射器とを含んで形成されていることを特徴とする半導体レーザ。2. The semiconductor optical device according to claim 1, wherein the optical waveguide is an active layer that emits light, and a resonator is formed including the active layer and the reflector. 上記共振器内部に上記活性層に沿って回折格子が配置された分布帰還型半導体レーザであることを特徴とする請求項3に記載の半導体レーザ。4. The semiconductor laser according to claim 3, wherein the semiconductor laser is a distributed feedback semiconductor laser in which a diffraction grating is disposed along the active layer inside the resonator. 上記共振器に隣接して波長変換素子が集積されていることを特徴とする請求項3に記載の半導体レーザ。4. The semiconductor laser according to claim 3, wherein a wavelength conversion element is integrated adjacent to the resonator. 上記共振器に隣接して光変調器が集積されていることを特徴とする請求項3に記載の半導体レーザ。4. The semiconductor laser according to claim 3, wherein an optical modulator is integrated adjacent to the resonator. 請求項1に記載の半導体光素子において、上記光導波路は光の吸収層であり、上記反射器は、特定の波長の受光を阻止するための光学フィルタであることを特徴とする半導体受光素子。2. The semiconductor optical device according to claim 1, wherein the optical waveguide is a light absorption layer, and the reflector is an optical filter for blocking light reception at a specific wavelength. 請求項1に記載の半導体光素子の複数が同一半導体基板上にモノリシックに集積されていることを特徴とする集積化半導体光素子。An integrated semiconductor optical device, wherein a plurality of the semiconductor optical devices according to claim 1 are monolithically integrated on the same semiconductor substrate. 半絶縁性基板と、
請求項1に記載の半導体受光素子において、上記光導波路は光を発する活性層であり、共振器が該活性層と上記反射器とを含んで形成され、上記反射防止膜が省略されている半導体レーザと、
請求項1に記載の別の半導体光素子において、上記光導波路は光の吸収層であり、上記反射器は、特定の波長の受光を阻止するための光学フィルタであり、上記反射防止膜が省略されている半導体受光素子とを含み、
上記半導体レーザ及び上記半導体受光素子が上記半絶縁性基板の上にモノリシックに集積され、該半絶縁性基板の裏面に反射防止膜が形成されていることを特徴とする光送受信装置。
A semi-insulating substrate;
2. The semiconductor light-receiving element according to claim 1, wherein the optical waveguide is an active layer that emits light, a resonator is formed including the active layer and the reflector, and the antireflection film is omitted. Laser,
2. The semiconductor optical device according to claim 1, wherein the optical waveguide is a light absorption layer, the reflector is an optical filter for blocking light reception at a specific wavelength, and the antireflection film is omitted. A semiconductor light-receiving element that is
An optical transmitter / receiver characterized in that the semiconductor laser and the semiconductor light receiving element are monolithically integrated on the semi-insulating substrate, and an antireflection film is formed on the back surface of the semi-insulating substrate.
上記半絶縁性基板の裏面に形成した反射防止膜の反射率が10%以下であることを請求項9に記載の半導体光素子。10. The semiconductor optical device according to claim 9, wherein the reflectance of the antireflection film formed on the back surface of the semi-insulating substrate is 10% or less. 半導体基板と、該基板の上に形成した下部クラッド層と、該下部クラッド層の上に形成した光の吸収層と、該吸収層の上に形成した上部クラッド層と、該吸収層の少なくとも一方の端面に上記基板の面に対して45°の角度をもって配置した反射鏡と、該反射鏡に対向した位置の該基板の裏面に形成した反射防止膜とを有していることを特徴とする半導体受光素子。At least one of a semiconductor substrate, a lower cladding layer formed on the substrate, an optical absorption layer formed on the lower cladding layer, an upper cladding layer formed on the absorption layer, and the absorption layer And a reflection mirror disposed at an angle of 45 ° with respect to the surface of the substrate, and an antireflection film formed on the back surface of the substrate at a position facing the reflection mirror. Semiconductor light receiving element. 半絶縁性基板と、
請求項3に記載の半導体レーザであって、上記反射防止膜が省略されている半導体レーザと、
該半導体レーザの基板とは別の半導体基板の上に形成した第2の下部クラッド層と、該第2の下部クラッド層の上に形成した光の吸収層と、該吸収層の上に形成した第2の上部クラッド層と、該吸収層の少なくとも一方の端面に上記基板の面に対して45°の角度をもって配置した第2の反射鏡とを有している半導体受光素子とを含み、
上記半導体レーザ及び上記半導体受光素子が上記半絶縁性基板の上にモノリシックに集積され、該半絶縁性基板の裏面に反射防止膜が形成されていることを特徴とする光送受信装置。
A semi-insulating substrate;
The semiconductor laser according to claim 3, wherein the antireflection film is omitted;
A second lower cladding layer formed on a semiconductor substrate different from the semiconductor laser substrate; an optical absorption layer formed on the second lower cladding layer; and an optical absorption layer formed on the absorption layer. A semiconductor light receiving element having a second upper cladding layer and a second reflecting mirror disposed at an angle of 45 ° with respect to the surface of the substrate on at least one end face of the absorption layer;
An optical transmitter / receiver characterized in that the semiconductor laser and the semiconductor light receiving element are monolithically integrated on the semi-insulating substrate, and an antireflection film is formed on the back surface of the semi-insulating substrate.
上記半絶縁性基板の裏面に形成した反射防止膜の反射率が10%以下であることを請求項12記載の半導体光素子。13. The semiconductor optical device according to claim 12, wherein the reflectance of the antireflection film formed on the back surface of the semi-insulating substrate is 10% or less.
JP2003018257A 2003-01-28 2003-01-28 Semiconductor optical device Expired - Lifetime JP4634010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018257A JP4634010B2 (en) 2003-01-28 2003-01-28 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018257A JP4634010B2 (en) 2003-01-28 2003-01-28 Semiconductor optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009060604A Division JP5374196B2 (en) 2009-03-13 2009-03-13 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JP2004235182A true JP2004235182A (en) 2004-08-19
JP4634010B2 JP4634010B2 (en) 2011-02-16

Family

ID=32948438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018257A Expired - Lifetime JP4634010B2 (en) 2003-01-28 2003-01-28 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP4634010B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153297A (en) * 2006-12-14 2008-07-03 Opnext Japan Inc Semiconductor laser element and optical module using it
EP1986294A2 (en) 2007-04-26 2008-10-29 OpNext Japan, Inc. Semiconductor laser and optical module
JP2009522805A (en) * 2006-01-05 2009-06-11 ビノプティクス・コーポレイション Monitor photodetector for integrated photonic devices
JP2009267037A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Semiconductor laser device
US7636378B2 (en) 2007-11-21 2009-12-22 Opnext Japan, Inc. Semiconductor laser diode
JP2010141240A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Optical module
JP2010141241A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Method for manufacturing light-emitting device and the light-emitting device
US7760782B2 (en) 2005-06-24 2010-07-20 Opnext Japan, Inc. Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
US7864635B2 (en) 2006-08-30 2011-01-04 Hitachi, Ltd. Recording head
JP2012209286A (en) * 2011-03-29 2012-10-25 Hitachi Ltd Optical module
JP2012208137A (en) * 2011-03-29 2012-10-25 Hitachi Ltd Optical interconnect module and photo-electric hybrid consolidated board
JP2013251394A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Semiconductor laser device
US20150214695A1 (en) * 2014-01-29 2015-07-30 Oclaro Japan, Inc. Horizontal cavity surface emitting laser device
JP2018181927A (en) * 2017-04-05 2018-11-15 日本オクラロ株式会社 Optical module
US11754687B1 (en) * 2022-12-30 2023-09-12 Aurora Operations, Inc. Light detection and ranging (LIDAR) system including a modular assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591364B1 (en) * 2015-09-23 2023-10-19 삼성디스플레이 주식회사 Photo sensor and display device including the same
CN110661172A (en) * 2019-09-29 2020-01-07 南京邮电大学 Surface-emitting DFB semiconductor laser array and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760782B2 (en) 2005-06-24 2010-07-20 Opnext Japan, Inc. Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
JP2009522805A (en) * 2006-01-05 2009-06-11 ビノプティクス・コーポレイション Monitor photodetector for integrated photonic devices
US7864635B2 (en) 2006-08-30 2011-01-04 Hitachi, Ltd. Recording head
JP2008153297A (en) * 2006-12-14 2008-07-03 Opnext Japan Inc Semiconductor laser element and optical module using it
US7933304B2 (en) 2006-12-14 2011-04-26 Opnext Japan, Inc. Semiconductor laser diode and optical module employing the same
EP1986294A2 (en) 2007-04-26 2008-10-29 OpNext Japan, Inc. Semiconductor laser and optical module
JP2008277445A (en) * 2007-04-26 2008-11-13 Opnext Japan Inc Semiconductor laser and optical module
US7502403B2 (en) 2007-04-26 2009-03-10 Opnext Japan, Inc. Semiconductor laser and optical module
US7636378B2 (en) 2007-11-21 2009-12-22 Opnext Japan, Inc. Semiconductor laser diode
JP2009267037A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Semiconductor laser device
JP2010141241A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Method for manufacturing light-emitting device and the light-emitting device
JP2010141240A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Optical module
JP2012209286A (en) * 2011-03-29 2012-10-25 Hitachi Ltd Optical module
JP2012208137A (en) * 2011-03-29 2012-10-25 Hitachi Ltd Optical interconnect module and photo-electric hybrid consolidated board
US8902947B2 (en) 2011-03-29 2014-12-02 Hitachi, Ltd. Optical module
US9379276B2 (en) 2011-03-29 2016-06-28 Hitachi, Ltd. Optical interconnection module and optical-electrical hybrid board
JP2013251394A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Semiconductor laser device
US20150214695A1 (en) * 2014-01-29 2015-07-30 Oclaro Japan, Inc. Horizontal cavity surface emitting laser device
JP2015142055A (en) * 2014-01-29 2015-08-03 日本オクラロ株式会社 Horizontal resonator surface emission laser element
US9601903B2 (en) * 2014-01-29 2017-03-21 Oclaro Japan, Inc. Horizontal cavity surface emitting laser device
JP2018181927A (en) * 2017-04-05 2018-11-15 日本オクラロ株式会社 Optical module
US11754687B1 (en) * 2022-12-30 2023-09-12 Aurora Operations, Inc. Light detection and ranging (LIDAR) system including a modular assembly

Also Published As

Publication number Publication date
JP4634010B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4634010B2 (en) Semiconductor optical device
JP4090402B2 (en) Semiconductor optical amplifier and optical module using the same
US5995692A (en) Light emitting device module
US7158547B2 (en) Wavelength tunable laser of small size
US6611544B1 (en) Method and apparatus for narrow bandwidth distributed bragg reflector semiconductor lasers
JPH04254380A (en) Monolithic integrated photoamplifier and photodetector
WO2001033678A1 (en) Method and apparatus for integrated optically pumped vertical cavity surface emitting lasers
US9088132B2 (en) Semiconductor optical element, integrated semiconductor optical element, and semiconductor optical element module
US20060176544A1 (en) Folded cavity semiconductor optical amplifier (FCSOA)
US9601903B2 (en) Horizontal cavity surface emitting laser device
US20100142885A1 (en) Optical module
US9762025B2 (en) Temperature insensitive integrated electro-absorption modulator and laser
JP4117854B2 (en) Waveguide type optical integrated circuit device and manufacturing method thereof
JP2007158057A (en) Integrated laser device
JP6717733B2 (en) Semiconductor optical integrated circuit
CN106663916B (en) Semiconductor laser device
JP5022015B2 (en) Semiconductor laser device and optical module using the same
CA2165711C (en) Semiconductor light source having a spectrally broad, high power optical output
US20040136414A1 (en) Wavelength-tunable semiconductor optical device
JPH10125989A (en) Optical integrated device
JP2010003883A (en) Semiconductor laser device, optical module, and optical transceiver
JP5374196B2 (en) Semiconductor optical device
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
CN113300215A (en) Semiconductor laser with high single longitudinal mode stability
JP2013070105A (en) Semiconductor optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091006

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4634010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term