JPH08321603A - Field-effect semiconductor device and manufacturing method thereof - Google Patents

Field-effect semiconductor device and manufacturing method thereof

Info

Publication number
JPH08321603A
JPH08321603A JP7125091A JP12509195A JPH08321603A JP H08321603 A JPH08321603 A JP H08321603A JP 7125091 A JP7125091 A JP 7125091A JP 12509195 A JP12509195 A JP 12509195A JP H08321603 A JPH08321603 A JP H08321603A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
impurity concentration
gate electrode
body region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7125091A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kushida
知義 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7125091A priority Critical patent/JPH08321603A/en
Publication of JPH08321603A publication Critical patent/JPH08321603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66696Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Abstract

PURPOSE: To enable the threshold value voltage of a field effect semiconductor device to be stabilized in relation to the method of manufacturing the field effect semiconductor device. CONSTITUTION: Within the title field effect semiconductor device 10, the highest impurity concentration part 28 in the channel region opposite to a gate electrode 16 in a body region 30B is to be located in a position distant from the part where the body region 30B comes into contact with a source region 26. In such a constitution, since the highest impurity concentration part 28 is located in a position distant from the part where the channel region 30C opposite to the gate electrode 16 in the body region 30B comes into contact with the source region 26, even if the extension of the source region 26 is fluctuated, the highest impurity concentration part 28 is not affected at all. Accordingly, the part in the highest impurity concentration is located in an intermediate portion of the flow path of the electrons migrating in the channel region 30C, thereby stabilizing the threshold value voltage depending upon the highest impurity concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界効果型半導体装置お
よびその製造方法に関し、その電界効果型半導体装置の
しきい値電圧を安定化させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect semiconductor device and a method of manufacturing the same, and more particularly to a technique for stabilizing the threshold voltage of the field effect semiconductor device.

【0002】[0002]

【従来の技術】従来の電界効果型半導体装置の例とし
て、特開昭56−73472号公報に開示されているよ
うな縦型の電界効果型半導体装置があり、この断面の模
式図を図18に示す。図18において、電界効果型半導
体装置100は、n+ 型のドレイン領域112、n型の
ドリフト領域110、p型のボディ領域120およびn
+ 型のソース領域116を中心に構成されている。
2. Description of the Related Art As an example of a conventional field effect semiconductor device, there is a vertical field effect semiconductor device as disclosed in Japanese Patent Laid-Open No. 56-73472, and a schematic view of this cross section is shown in FIG. Shown in. 18, a field effect semiconductor device 100 includes an n + type drain region 112, an n type drift region 110, a p type body region 120 and an n type drift region 110.
The source region 116 of + type is mainly configured.

【0003】ドレイン領域112の下側の面にはドレイ
ン電極114が接して設けられており、上側の面にはド
リフト領域110が形成されている。このドリフト領域
110の表面に接する内部にはボディ領域120が形成
されており、さらにボディ領域120の表面に接する内
部にはソース領域116が形成されている。一方、ドリ
フト領域110の表面、ボディ領域120の表面および
ソース領域116の表面は絶縁膜108で覆われてお
り、この絶縁膜108の表面側にはゲート電極106が
接して設けられている。また、ゲート電極106は絶縁
膜104で覆われており、この絶縁膜104の開口部を
通じてソース領域116と接するソース電極102が設
けられている。
A drain electrode 114 is provided in contact with the lower surface of the drain region 112, and a drift region 110 is formed on the upper surface thereof. A body region 120 is formed inside the drift region 110, and a source region 116 is formed inside the body region 120. On the other hand, the surface of the drift region 110, the surface of the body region 120, and the surface of the source region 116 are covered with an insulating film 108, and the gate electrode 106 is provided in contact with the surface side of the insulating film 108. Further, the gate electrode 106 is covered with an insulating film 104, and the source electrode 102 which is in contact with the source region 116 through the opening portion of the insulating film 104 is provided.

【0004】ここで、ボディ領域120には、所定のし
きい値電圧を確保するために、イオン注入と熱処理によ
って不純物を導入している。まず、イオン注入では低加
速エネルギー(40KeV)程度でイオンを加速させ、ゲ
ート電極106が形成された絶縁膜108の面に対して
ほぼ垂直方向から不純物としてのホウ素(化学記号:
B)をボディ領域120内に打ち込んでいる。このイオ
ン注入によって発生した格子欠陥を回復させて活性化さ
せ、注入した不純物を拡散させるために熱処理(例え
ば、1100℃,30分)を行う。 こうしてボディ領域12
0に導入された不純物の濃度は、図19に示すような曲
線(ガウス分布)になる。すなわち、図19では、横軸
にボディ領域120と絶縁膜108との境界から深さ方
向(図18の図面下方向)の距離を示し、縦軸に不純物
濃度を示す。ここで、最高の不純物濃度D100となる
のは表面から距離L100の深さに位置し、これを図1
8では部位118で示す。
Impurities are introduced into the body region 120 by ion implantation and heat treatment in order to secure a predetermined threshold voltage. First, in ion implantation, ions are accelerated with low acceleration energy (40 KeV), and boron as an impurity (chemical symbol: chemical symbol: from a direction substantially perpendicular to the surface of the insulating film 108 on which the gate electrode 106 is formed).
B) is driven into the body region 120. Heat treatment (for example, 1100 ° C., 30 minutes) is performed to recover and activate the lattice defects generated by the ion implantation and diffuse the implanted impurities. Thus, the body region 12
The concentration of the impurities introduced into 0 has a curve (Gaussian distribution) as shown in FIG. That is, in FIG. 19, the horizontal axis represents the distance in the depth direction (downward in FIG. 18) from the boundary between the body region 120 and the insulating film 108, and the vertical axis represents the impurity concentration. Here, the highest impurity concentration D100 is located at a depth of a distance L100 from the surface.
In FIG. 8, a portion 118 is shown.

【0005】そして、上記のような構造をなす電界効果
型半導体装置100を作動させる場合には、ソース電極
102を接地し、ドレイン電極114とゲート電極10
6とに正の電圧を印加する。ここで、ゲート電極106
にしきい値電圧以上の電圧を印加すると、絶縁膜108
を隔ててゲート電極106と対向しているボディ領域1
20の表面付近には反転層(以下、「チャネル領域」と
呼ぶ。)が誘起される。このチャネル領域は、絶縁膜1
08とボディ領域120との境界に近づくほど誘起され
やすく、この境界から離れるに従って誘起されにくくな
る。このため、ソース領域116からドリフト領域11
0に流れる電子は、図18の矢印Eに示すように絶縁膜
108に近いボディ領域120の表面に沿って多く流
れ、ドレイン領域112を経てドレイン電極114に達
する。以下、チャネル領域をゲート電極と平行して流れ
る電流の方向を「チャネル電流方向」と呼ぶ。
When operating the field effect semiconductor device 100 having the above structure, the source electrode 102 is grounded and the drain electrode 114 and the gate electrode 10 are grounded.
A positive voltage is applied to 6 and. Here, the gate electrode 106
When a voltage higher than the threshold voltage is applied to the insulating film 108,
Body region 1 facing the gate electrode 106 across the
An inversion layer (hereinafter referred to as “channel region”) is induced near the surface of 20. This channel region is the insulating film 1
08 is more likely to be induced as it approaches the boundary between the body region 120 and 08, and is less likely to be induced as the distance from the boundary is increased. Therefore, from the source region 116 to the drift region 11
Many electrons flowing to 0 flow along the surface of the body region 120 near the insulating film 108 as shown by the arrow E in FIG. 18, and reach the drain electrode 114 via the drain region 112. Hereinafter, the direction of current flowing in the channel region in parallel with the gate electrode is referred to as "channel current direction".

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の電界
効果型半導体装置100におけるボディ領域120の幅
方向について、図18に示す区間C1−C2におけるボ
ディ領域120に導入された不純物の濃度は、図20に
示す曲線のようにソース領域116から離れてドリフト
領域110に近づくほど低くなる。このことはソース領
域116を形成する際に行われる拡散の度合い(以下、
「広がりの程度」と呼ぶ。)によって、最高不純物濃度
に影響を及ぼすことになる。例えば、図21に示すよう
に、ソース領域116とボディ領域120との境界が、
部位L10b を中心して部位L8bから部位L12b までの幅
の間で変化すると、最高不純物濃度もまた濃度D10c を
中心に濃度D8cから濃度D12c までの幅の間で変化する
ことになる。したがって、ソース領域116の広がりの
程度によって最高不純物濃度が変動し、しきい値電圧も
変化することになる。
In the width direction of the body region 120 in the conventional field effect semiconductor device 100, the concentration of impurities introduced into the body region 120 in the section C1-C2 shown in FIG. As the curve 20 indicates, the distance decreases from the source region 116 toward the drift region 110. This means that the degree of diffusion performed when forming the source region 116 (hereinafter,
It is called the “degree of spread”. ) Will affect the maximum impurity concentration. For example, as shown in FIG. 21, the boundary between the source region 116 and the body region 120 is
When the width changes from the portion L8b to the portion L12b centering on the portion L10b, the maximum impurity concentration also changes from the concentration D10c to the concentration D8c to the width D12c. Therefore, the maximum impurity concentration changes depending on the extent of the spread of the source region 116, and the threshold voltage also changes.

【0007】したがって、従来の電界効果型半導体装置
では、しきい値電圧の安定化が図れなかった。こうした
しきい値電圧の変化は、異なるウェーハのみならず、同
一のウェーハ上においても発生する。本発明はこのよう
な点に鑑みてなされたものであり、その課題は、ソース
領域とボディ領域との境界から離れた位置のチャネル領
域に最高不純物濃度を示す部位を設けることによって、
ソース領域の広がりの程度による最高不純物濃度が影響
を受けないようにし、もってしきい値電圧を安定化させ
ることである。
Therefore, in the conventional field effect semiconductor device, the threshold voltage cannot be stabilized. Such a change in the threshold voltage occurs not only on different wafers but also on the same wafer. The present invention has been made in view of such a point, and its problem is to provide a portion showing the maximum impurity concentration in the channel region at a position away from the boundary between the source region and the body region,
This is to prevent the maximum impurity concentration depending on the extent of the spread of the source region from being affected and thus stabilize the threshold voltage.

【0008】[0008]

【課題を解決するための第1の手段】請求項1に記載さ
れた発明は、第1導電型のソース領域とドレイン領域と
の間に介装されており前記第1導電型とは反対の導電型
である第2導電型のボディ領域と、そのボディ領域に絶
縁層を隔てて対向しているゲート電極とを有する電界効
果型半導体装置において、前記ボディ領域中で前記ゲー
ト電極と対向するチャネル領域内における最高不純物濃
度部位が、前記ボディ領域が前記ソース領域に接する部
位から離れた位置に存在している構成とする。
According to a first aspect of the present invention, there is provided a first conductivity type source region and a drain region interposed between the first conductivity type source region and the drain region. A field-effect semiconductor device having a second conductivity type body region of conductivity type and a gate electrode facing the body region with an insulating layer in between, and a channel facing the gate electrode in the body region. The highest impurity concentration region in the region is located away from the region where the body region is in contact with the source region.

【0009】[0009]

【第1の手段による作用】請求項1の発明によれば、ボ
ディ領域中でゲート電極と対向するチャネル領域内に
は、ソース領域がボディ領域に接する部位から離れた位
置に最高不純物濃度部位が存在することになる。このた
め、ソース領域の広がりの程度にばらつきが生じても最
高不純物濃度は影響を受けないため、しきい値電圧を安
定化させることが可能になる。
According to the first aspect of the invention, in the channel region of the body region facing the gate electrode, the maximum impurity concentration region is located at a position distant from the region where the source region is in contact with the body region. Will exist. Therefore, even if the degree of spread of the source region varies, the maximum impurity concentration is not affected, and the threshold voltage can be stabilized.

【0010】[0010]

【課題を解決するための第2の手段】請求項2に記載さ
れた発明の電界効果型半導体装置の製造方法は、第1導
電型の半導体基板の表面に、絶縁層を隔ててゲート電極
を形成するゲート電極形成工程と、前記ゲート電極形成
工程で前記半導体基板の浅い部位に不純物を導入して前
記第1導電型のソース領域を形成するソース領域形成工
程と、前記ゲート電極形成工程でゲート電極が形成され
た半導体基板の表面に対して斜め方向から、前記半導体
基板の深い部位に不純物を導入して活性化させて前記第
1導電型とは反対の導電型である第2導電型のボディ領
域を形成するボディ領域形成工程とを有する。
According to a second aspect of the present invention, there is provided a field effect semiconductor device manufacturing method, wherein a gate electrode is provided on a surface of a first conductivity type semiconductor substrate with an insulating layer interposed therebetween. A gate electrode forming step, a source region forming step of forming impurities of a shallow region of the semiconductor substrate to form the first conductive type source area in the gate electrode forming step, and a gate in the gate electrode forming step An impurity is introduced into a deep portion of the semiconductor substrate from an oblique direction with respect to the surface of the semiconductor substrate on which the electrodes are formed to activate the semiconductor substrate, and a second conductivity type of a conductivity type opposite to the first conductivity type is introduced. A body region forming step of forming a body region.

【0011】なお、上記のソース領域形成工程とボディ
領域形成工程は、順不同に実行可能な工程である。ま
た、「半導体基板の深い部位に不純物を導入」という場
合には、半導体基板における表面上の凹凸から所定の距
離だけ深い部位に不純物を導入することを意味する。し
たがって、その深い部位に導入された不純物は、半導体
基板における表面上の凹凸形状とほぼ同様の凹凸形状に
沿う部位に多く存在することになる。
The source region forming process and the body region forming process can be performed in any order. Further, “introducing an impurity into a deep portion of a semiconductor substrate” means introducing an impurity into a portion that is deeper by a predetermined distance from the unevenness on the surface of the semiconductor substrate. Therefore, a large amount of impurities introduced into the deep portion exist in the portion along the uneven shape substantially similar to the uneven shape on the surface of the semiconductor substrate.

【0012】[0012]

【第2の手段による作用】請求項2の発明によれば、ボ
ディ領域形成工程において斜め方向から半導体基板の深
い部位に不純物を導入している。この導入により、不純
物は水平方向にずれた位置に、半導体基板における表面
上の凹凸形状とほぼ同様の凹凸形状に沿う部位に多く存
在することになる。このため、ボディ領域中でゲート電
極と対向するチャネル領域内には、そのゲート電極の垂
直壁から水平方向にずれた部位に不純物が多く存在する
ことになり、これが最高不純物濃度部位となる。したが
って、ソース領域の広がりの程度が変化しても最高不純
物濃度は影響を受けないため、しきい値電圧を安定化さ
せることが可能になる。
According to the second aspect of the invention, in the body region forming step, the impurities are introduced into a deep portion of the semiconductor substrate from an oblique direction. By this introduction, a large amount of impurities are present at positions displaced in the horizontal direction and along the uneven shape substantially similar to the uneven shape on the surface of the semiconductor substrate. Therefore, in the channel region of the body region facing the gate electrode, a large amount of impurities are present at a portion horizontally displaced from the vertical wall of the gate electrode, and this is the highest impurity concentration portion. Therefore, the maximum impurity concentration is not affected even if the degree of spread of the source region is changed, so that the threshold voltage can be stabilized.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。なお、半導体のプロセス技術に関し、酸化膜を
形成する熱酸化法,化学反応により薄膜を形成するCV
D(Chemical Vapor Deposition )法,マスク上の微細
パターンをウェーハ上に転写してレジストパターンを形
成するフォトリソグラフィ法,基板上に形成された薄膜
等を除去するRIE(Reactive Ion Etching)法,所望
の半導体領域に対して不純物を注入するイオン注入法,
基板や薄膜に不純物を導入する熱拡散法,物理的に薄膜
を形成するPVD(Physical Vapor Deposition )法の
一つであって合金薄膜を形成するスパッタ法等のように
各方法については、いずれも公知な技術であるので詳細
な説明は省略する。また、この実施例では説明を簡単に
するため、第1導電型をn型とし、第2導電型をp型と
する場合の電界効果型半導体装置について説明する。
An embodiment of the present invention will be described below with reference to the drawings. Regarding semiconductor process technology, a thermal oxidation method for forming an oxide film, a CV for forming a thin film by a chemical reaction
D (Chemical Vapor Deposition) method, photolithography method of transferring a fine pattern on a mask onto a wafer to form a resist pattern, RIE (Reactive Ion Etching) method of removing a thin film formed on a substrate, and a desired method An ion implantation method for implanting impurities into a semiconductor region,
The thermal diffusion method of introducing impurities into the substrate and the thin film, the PVD (Physical Vapor Deposition) method of physically forming a thin film, and the sputtering method of forming an alloy thin film are all related to each method. Since this is a known technique, detailed description thereof will be omitted. Further, in this embodiment, for simplification of description, a field effect semiconductor device in which the first conductivity type is n-type and the second conductivity type is p-type will be described.

【0014】電界効果型半導体装置10の一つである二
重拡散MOS(DMOS;Double-diffused Metal Oxide
Semiconductor)−FET(Field Effect Transistor
)の断面構造を図1に示す。この電界効果型半導体装
置10は、上記電界効果型半導体装置100と同様に、
+ 型のドレイン領域22、n型のドリフト領域20、
p型のボディ領域30Bおよびn+ 型のソース領域26
を中心に構成されている。なお、具体的な構成は電界効
果型半導体装置100との対比において、ドレイン領域
22はドレイン領域112に、ドレイン電極24はドレ
イン電極114に、ドリフト領域20はドリフト領域1
10に、ボディ領域30Bはボディ領域120に、ソー
ス領域26はソース領域116に、絶縁膜18は絶縁膜
108に、ゲート電極16はゲート電極106に、絶縁
膜14は絶縁膜104に、ソース電極12はソース電極
102にそれぞれ対応する。
A double-diffused metal oxide (DMOS), which is one of the field effect semiconductor devices 10.
Semiconductor) -FET (Field Effect Transistor)
) Is shown in FIG. This field effect semiconductor device 10 is similar to the field effect semiconductor device 100 described above.
an n + type drain region 22, an n type drift region 20,
p type body region 30B and n + type source region 26
It is mainly composed of. In comparison with the field effect semiconductor device 100, the specific configuration is such that the drain region 22 is the drain region 112, the drain electrode 24 is the drain electrode 114, and the drift region 20 is the drift region 1.
10, the body region 30B is the body region 120, the source region 26 is the source region 116, the insulating film 18 is the insulating film 108, the gate electrode 16 is the gate electrode 106, the insulating film 14 is the insulating film 104, and the source electrode. Reference numerals 12 correspond to the source electrodes 102, respectively.

【0015】ここで、ボディ領域30Bにおける最高不
純物濃度部位28は、絶縁膜18の表面に沿う水平部分
と、ゲート電極16の表面(垂直壁)に沿う垂直部分と
がある。この最高不純物濃度部位28のうち垂直部分
は、絶縁膜18とボディ領域30Bの境界部位に達す
る。ところで、ソース電極12を接地し、ドレイン電極
24に正の電圧を印加するとともに、ゲート電極16に
しきい値電圧以上の電圧を印加すると、絶縁膜18を隔
ててゲート電極16と対向しているボディ領域30Bの
表面付近にはチャネル領域30Cが誘起される。
Here, the highest impurity concentration portion 28 in the body region 30B has a horizontal portion along the surface of the insulating film 18 and a vertical portion along the surface (vertical wall) of the gate electrode 16. The vertical portion of the highest impurity concentration portion 28 reaches the boundary portion between the insulating film 18 and the body region 30B. By the way, when the source electrode 12 is grounded, a positive voltage is applied to the drain electrode 24, and a voltage equal to or higher than a threshold voltage is applied to the gate electrode 16, the body facing the gate electrode 16 with the insulating film 18 interposed therebetween is provided. A channel region 30C is induced near the surface of the region 30B.

【0016】このことから、チャネル領域30C内に
は、必ず最高不純物濃度部位28が存在することにな
る。すなわち、図1に示すチャネル電流方向の区間A1
−A2の不純物濃度は、図2に示すように、ソース領域
26とボディ領域30Bとの境界である部位L10と、ボ
ディ領域30Bとドレイン領域22との境界である部位
L30とにおける不純物濃度は、最高不純物濃度部位28
の不純物濃度D20より低い。なお、この例では、n+
のソース領域26における不純物濃度は濃度D30であ
り、n+ 型のドレイン領域22における不純物濃度は濃
度D10である。
From this fact, the highest impurity concentration region 28 always exists in the channel region 30C. That is, the section A1 in the channel current direction shown in FIG.
As for the impurity concentration of −A2, as shown in FIG. 2, the impurity concentration at the portion L10 that is the boundary between the source region 26 and the body region 30B and at the portion L30 that is the boundary between the body region 30B and the drain region 22 is: Highest impurity concentration part 28
The impurity concentration is less than D20. In this example, the impurity concentration in the n + type source region 26 is the concentration D30, and the impurity concentration in the n + type drain region 22 is the concentration D10.

【0017】上記の構成をなす電界効果型半導体装置1
0では、ソース領域26を形成する際の広がりの程度に
よっても、チャネル領域30Cにおける最高不純物濃度
には影響を及ぼさない。すなわち、図3に示すように、
ソース領域26とボディ領域30Bとの境界が、部位L
10a を中心して部位L8aから部位L12a までの幅の間で
変化しても、最高不純物濃度は最高不純物濃度部位28
における不純物濃度D20である。このため、ソース領域
26の広がりの程度が変化しても、最高不純物濃度部位
28は影響を受けない。したがって、チャネル領域30
Cを流れる電子の流路の途中に最高不純物濃度を示す部
位が必ず存在することになり、その最高不純物濃度に依
存するしきい値電圧を安定化させることができる。
The field effect semiconductor device 1 having the above structure
At 0, the maximum impurity concentration in the channel region 30C is not affected even by the extent of spread when forming the source region 26. That is, as shown in FIG.
The boundary between the source region 26 and the body region 30B is the portion L
Even if the width varies from the portion L8a to the portion L12a centering on 10a, the maximum impurity concentration is the maximum impurity concentration portion 28.
Is the impurity concentration D20. Therefore, even if the degree of spread of the source region 26 changes, the highest impurity concentration region 28 is not affected. Therefore, the channel region 30
A portion having the highest impurity concentration always exists in the middle of the flow path of electrons flowing through C, and the threshold voltage depending on the highest impurity concentration can be stabilized.

【0018】次に、電界効果型半導体装置10の製造方
法について、図4乃至図11を参照しつつ説明する。 〔第1絶縁膜形成工程〕まず、図4に示すように、高濃
度n+ 型の半導体基板(ドレイン領域22)上に、低濃
度n型のドリフト領域20をエピタキシャル成長させ、
さらにそのドリフト領域20の表面に熱酸化法により絶
縁膜(酸化膜)18を形成する。 〔ゲート電極形成工程〕次に、図5に示すように、その
絶縁膜18の表面にCVD法によりゲート電極{リン
(化学記号:P)を多く含む多結晶シリコン膜}16を
推積する。
Next, a method of manufacturing the field effect semiconductor device 10 will be described with reference to FIGS. [First Insulating Film Forming Step] First, as shown in FIG. 4, a low concentration n type drift region 20 is epitaxially grown on a high concentration n + type semiconductor substrate (drain region 22).
Further, an insulating film (oxide film) 18 is formed on the surface of the drift region 20 by a thermal oxidation method. [Gate Electrode Forming Step] Next, as shown in FIG. 5, a gate electrode {polycrystalline silicon film containing a large amount of phosphorus (chemical symbol: P)} 16 is deposited on the surface of the insulating film 18 by a CVD method.

【0019】〔ソース領域形成工程〕そして、図6に示
すように、フォトリソグラフィ法とRIE法を用いて、
ゲート電極16を所定のパターンに形成する。なお、こ
のパターン形成後、ゲート電極16の厚さが十分に厚い
場合には、パターン形成の際に用いるレジスト膜40を
除去してもよい。その後、イオン注入法により、絶縁膜
18の表面に対してほぼ垂直方向から不純物としてのヒ
素(化学記号:As )を注入し、n+ 型のソース領域2
6を形成する。
[Source Region Forming Step] Then, as shown in FIG. 6, by using the photolithography method and the RIE method,
The gate electrode 16 is formed in a predetermined pattern. After the pattern formation, if the gate electrode 16 is sufficiently thick, the resist film 40 used in the pattern formation may be removed. After that, arsenic (chemical symbol: As) as an impurity is implanted from the direction substantially perpendicular to the surface of the insulating film 18 by an ion implantation method, and the n + type source region 2 is formed.
6 is formed.

【0020】〔ボディ領域形成工程〕さらに、図7に示
すように、斜めイオン注入法により、絶縁膜18の表面
に対して斜め方向から不純物としてのホウ素(化学記
号:B)を注入し、p型のボディ領域30Bを形成す
る。例えば、高加速エネルギーでイオンを加速させ、絶
縁膜18の表面に対して45度方向からホウ素を注入す
る。ここで、斜めイオン注入法を行う際、図8に示すよ
うに、半導体基板における表面上の凹凸から投影飛程L
だけ斜めに不純物を注入する。このとき、ゲート電極1
6の表面(垂直壁)から投影飛程Lだけ斜めに不純物を
注入した部位が、絶縁膜18とボディ領域30Bの境界
に達するような角度と加速エネルギーで行う必要があ
る。こうすることによって、絶縁膜18を隔ててゲート
電極16と対向しているボディ領域30Bの表面付近に
誘起されるチャネル領域30Cにおいて、最高不純物濃
度部位28を確保することができる。
[Body Region Forming Step] Further, as shown in FIG. 7, boron (chemical symbol: B) as an impurity is obliquely implanted into the surface of the insulating film 18 by an oblique ion implantation method, and p A mold body region 30B is formed. For example, ions are accelerated with high acceleration energy and boron is implanted into the surface of the insulating film 18 from the direction of 45 degrees. Here, when performing the oblique ion implantation method, as shown in FIG.
Impurity is injected only diagonally. At this time, the gate electrode 1
It is necessary to make the angle and the acceleration energy such that the portion where the impurities are obliquely injected from the surface (vertical wall) of 6 by the projection range L reaches the boundary between the insulating film 18 and the body region 30B. By doing so, the highest impurity concentration region 28 can be secured in the channel region 30C induced near the surface of the body region 30B facing the gate electrode 16 with the insulating film 18 interposed therebetween.

【0021】レジスト膜40を除去した後に、低温熱処
理(例えば、 900℃,30分)、あるいは短時間の高温熱
処理(例えば、1100℃,30秒)によって、ソース領域2
6とボディ領域30Bに注入した不純物をほとんど拡散
させないで、イオン注入によって発生した格子欠陥を回
復させて活性化(アニール)させる。
After removing the resist film 40, the source region 2 is subjected to a low temperature heat treatment (for example, 900 ° C., 30 minutes) or a short time high temperature heat treatment (for example, 1100 ° C., 30 seconds).
6 and the impurity implanted into the body region 30B are hardly diffused, and the lattice defects generated by the ion implantation are recovered and activated (annealed).

【0022】〔第2絶縁膜形成工程〕それから、図9に
示すように、CVD法によりリンを多く含む絶縁膜(酸
化膜)14をゲート電極16の表面に推積する。その
後、図10に示すように、フォトリソグラフィ法とRI
E法を用いて、絶縁膜14を所定のパターンに形成す
る。
[Second Insulating Film Forming Step] Then, as shown in FIG. 9, an insulating film (oxide film) 14 containing a large amount of phosphorus is deposited on the surface of the gate electrode 16 by the CVD method. Then, as shown in FIG. 10, photolithography and RI are performed.
The insulating film 14 is formed into a predetermined pattern by using the E method.

【0023】〔ソース電極形成工程〕そして、図11に
示すように、絶縁膜14をマスクとし、RIE法を用い
てソース領域26をエッチングする。その後、スパッタ
法によりアルミニウム(化学記号:Al )等の金属を推
積し、ソース電極12を形成すると、図1に示す電界効
果型半導体装置10が完成する。なお、上記製造工程に
おいて、ゲート電極形成工程の後に実行されるソース領
域形成工程とボディ領域形成工程は順不同に実行可能で
ある。
[Source Electrode Forming Step] Then, as shown in FIG. 11, the source region 26 is etched by RIE using the insulating film 14 as a mask. Then, a metal such as aluminum (chemical symbol: Al) is deposited by a sputtering method to form the source electrode 12, and the field effect semiconductor device 10 shown in FIG. 1 is completed. In the manufacturing process, the source region forming process and the body region forming process that are performed after the gate electrode forming process can be performed in any order.

【0024】この製造方法では、ゲート電極16の表面
(垂直壁)から投影飛程Lだけ斜めに不純物を注入した
部位が、絶縁膜18とボディ領域30Bの境界に達する
ような角度で行うことによって、最高不純物濃度部位2
8をチャネル領域30C内に確保することができる。し
かも、この最高不純物濃度部位28は、ボディ領域30
Bがソース領域26に接する部位から離れた位置に存在
することになる。したがって、ソース領域26の広がり
の程度が変化しても最高不純物濃度部位28は影響を受
けず、その最高不純物濃度部位28の濃度に依存するし
きい値電圧を安定化させることができる。
In this manufacturing method, the angle is set such that the portion into which the impurity is obliquely injected from the surface (vertical wall) of the gate electrode 16 by the projection range L reaches the boundary between the insulating film 18 and the body region 30B. , Highest impurity concentration part 2
8 can be secured in the channel region 30C. Moreover, the highest impurity concentration portion 28 is formed in the body region 30.
B will be present at a position away from the portion in contact with the source region 26. Therefore, even if the degree of spread of the source region 26 changes, the highest impurity concentration portion 28 is not affected, and the threshold voltage depending on the concentration of the highest impurity concentration portion 28 can be stabilized.

【0025】ここで、本発明では、上述したしきい値電
圧を安定化させる効果とともに、パンチスルー電圧の値
を安定化させるという効果も付随的に奏する。この理由
について、以下に説明する。まず、図18に示す従来の
電界効果型半導体装置100を製造する際において、ド
リフト領域110をエピタキシャル成長させるとき、シ
ラン(Si H4 )ガスとホスフィン(PH3 )ガスとの
濃度比のずれや、それらのガスの温度変化によって不純
物濃度も変化する。すなわち、図13に示す様にドリフ
ト領域110の濃度は、濃度D10b を中心に濃度D8bか
ら濃度D12b までの幅の間で変化する。このとき、ボデ
ィ領域120とドリフト領域110との境界は部位L30
b を中心して部位L28b から部位L32b までの幅の間で
変化する。したがって、ボディ領域120における幅方
向の距離に依存するパンチスルー電圧の値も変化するこ
とになる。
Here, in the present invention, in addition to the effect of stabilizing the threshold voltage described above, the effect of stabilizing the value of the punch-through voltage is additionally provided. The reason for this will be described below. First, in manufacturing the conventional field-effect semiconductor device 100 shown in FIG. 18, when the drift region 110 is epitaxially grown, a shift in the concentration ratio between the silane (Si H 4 ) gas and the phosphine (PH 3 ) gas, The impurity concentration also changes according to the temperature change of those gases. That is, as shown in FIG. 13, the concentration of the drift region 110 changes in the range from the concentration D10b to the concentration D8b to the concentration D12b. At this time, the boundary between the body region 120 and the drift region 110 is the portion L30.
The width varies from the portion L28b to the portion L32b centering on b. Therefore, the value of the punch-through voltage depending on the widthwise distance in the body region 120 also changes.

【0026】図1に示す本発明の電界効果型半導体装置
10の場合であっても、やはりガスの濃度比率や温度変
化によって不純物濃度も変化する。しかし、ボディ領域
30Bにおける不純物濃度曲線は部位L20を最高不純物
濃度とする凸形の曲線であるので、ボディ領域30Bと
ドリフト領域20との境界ではその不純物濃度曲線の傾
きが急峻である。このため、従来の電界効果型半導体装
置100と同じドリフト領域110の不純物濃度の変化
で見ると、図12に示す様にボディ領域30Bとドリフ
ト領域20との境界は部位L30a を中心して部位L28a
から部位L32aまでの幅の間で変化するが、その変動幅
は小さい。したがって、ボディ領域30Bにおける幅方
向の距離の変動は小さくなるので、その幅方向の距離に
依存するパンチスルー電圧の値を安定化させることがで
きる。
Even in the case of the field effect semiconductor device 10 of the present invention shown in FIG. 1, the impurity concentration also changes depending on the gas concentration ratio and the temperature change. However, since the impurity concentration curve in the body region 30B is a convex curve having the highest impurity concentration in the region L20, the slope of the impurity concentration curve is steep at the boundary between the body region 30B and the drift region 20. Therefore, when viewed from the same change in impurity concentration in the drift region 110 as in the conventional field effect semiconductor device 100, as shown in FIG. 12, the boundary between the body region 30B and the drift region 20 is centered on the site L30a and is located on the site L28a.
To the part L32a, the fluctuation range is small. Therefore, the variation of the distance in the width direction in the body region 30B becomes small, so that the value of the punch-through voltage depending on the distance in the width direction can be stabilized.

【0027】本発明を適用する第2の構成をなす電界効
果型半導体装置50について、図14を参照しつつ説明
する。図14には、その例である横形二重拡散MOS
(LDMOS;Lateral Double-diffused MOS)−FET
の断面構造を示す。なお、図1に示す電界効果型半導体
装置10(二重拡散MOS−FET)と同一の要素につ
いては同一の番号を付し、それらの要素についての説明
を省略する。ここで、図14に示す電界効果型半導体装
置50が図1に示す電界効果型半導体装置10と異なる
のは、ドレイン領域22がドリフト領域20を隔ててチ
ャネル電流方向にボディ領域30Bと対向して形成され
ている点である。すなわち、ドレイン領域22はソース
領域26と同様にボディ領域30Bの表面に接する内部
に形成されており、そのドレイン領域22の表面は絶縁
膜18で覆われている。なお、ドレイン電極24は絶縁
膜18の開口部を通じて接している。このような構成を
なす電界効果型半導体装置50において、図14に示す
幅方向の区間A3−A4の不純物濃度の変化は図15に
示すようになる。
A field effect semiconductor device 50 having a second structure to which the present invention is applied will be described with reference to FIG. FIG. 14 shows an example of a lateral double-diffused MOS.
(LDMOS; Lateral Double-diffused MOS) -FET
The cross-sectional structure of is shown. The same elements as those of the field-effect semiconductor device 10 (double diffusion MOS-FET) shown in FIG. 1 are designated by the same reference numerals, and the description of those elements will be omitted. Here, the field effect semiconductor device 50 shown in FIG. 14 is different from the field effect semiconductor device 10 shown in FIG. 1 in that the drain region 22 is opposed to the body region 30B in the channel current direction with the drift region 20 interposed therebetween. It is the point that is formed. That is, the drain region 22 is formed inside the body region 30 </ b> B in contact with the source region 26, and the surface of the drain region 22 is covered with the insulating film 18. The drain electrode 24 is in contact with the insulating film 18 through the opening. In the field effect semiconductor device 50 having such a configuration, the change in the impurity concentration in the widthwise section A3-A4 shown in FIG. 14 is as shown in FIG.

【0028】本発明を適用する第3の構成をなす電界効
果型半導体装置60について、図16を参照しつつ説明
する。図16には、その例である縦形U溝MOS(VU
MOS;Vertical U-groovedMOS)−FETの断面構造
を示す。なお、図1に示す電界効果型半導体装置10
(二重拡散MOS−FET)と同一の要素については同
一の番号を付し、その要素についての説明を省略する。
ここで、図16に示す電界効果型半導体装置60が図1
に示す電界効果型半導体装置10と異なるのは、ボディ
領域30Bとドリフト領域20に渡って、ゲート電極1
6が絶縁膜18を隔てて柱状に形成されている点であ
る。このような構成をなす電界効果型半導体装置60に
おいて、図16に示すチャネル電流方向の区間A5−A
6の不純物濃度の変化は図17に示すようになる。
A field effect semiconductor device 60 having a third structure to which the present invention is applied will be described with reference to FIG. FIG. 16 shows an example of the vertical U-groove MOS (VU
MOS; Vertical U-grooved MOS) -FET sectional structure. The field effect semiconductor device 10 shown in FIG.
The same elements as those of the (double diffused MOS-FET) are designated by the same reference numerals, and the description of the elements will be omitted.
Here, the field effect semiconductor device 60 shown in FIG.
The difference from the field effect semiconductor device 10 shown in FIG. 2 is that the gate electrode 1 extends over the body region 30B and the drift region 20.
6 is formed in a columnar shape with the insulating film 18 interposed therebetween. In the field effect semiconductor device 60 having such a configuration, the section A5-A in the channel current direction shown in FIG.
The change in the impurity concentration of No. 6 is as shown in FIG.

【0029】ここで、図15と図17に示す不純物濃度
の変化からも明らかなように、絶縁膜18を隔ててゲー
ト電極16と対向しているp型のボディ領域30Bの表
面付近に誘起されるチャネル領域30Cには、最高不純
物濃度部位28が確実に存在しており、ソース領域26
の広がりの程度の変化による影響を受けない。したがっ
て、電界効果型半導体装置50,60の構成であって
も、電界効果型半導体装置10と同様にしきい値電圧を
安定化させることができる。また、付随的に、パンチス
ルー電圧の値を安定化させることができる。
Here, as is clear from the change in impurity concentration shown in FIGS. 15 and 17, the impurities are induced near the surface of the p-type body region 30B facing the gate electrode 16 with the insulating film 18 in between. The highest impurity concentration portion 28 surely exists in the channel region 30C, and the source region 26
Unaffected by varying degrees of spread. Therefore, even with the configuration of the field effect semiconductor devices 50 and 60, the threshold voltage can be stabilized similarly to the field effect semiconductor device 10. In addition, the value of the punch-through voltage can be stabilized additionally.

【0030】以上では電界効果型半導体装置およびその
製造方法の一実施例について説明したが、この電界効果
型半導体装置およびその製造方法におけるその他の部分
の構造、形状、大きさ、材質、個数、配置、動作条件、
製造手順等についても、本実施例に限定されるものでな
い。例えば、本発明は二重拡散MOS−FET,横形二
重拡散MOS−FET,縦形U溝MOS−FETに適用
したが、これらの電界効果型半導体装置に限ることな
く、薄膜トランジスタ(TFT;Thin Film Transistor
),SOI(SiliconOn Insulator),縦形MOS(Ve
rtical MOS)−FET,縦形二重拡散MOS(VDMO
S;Vertical Double-diffused MOS )−FET,縦形V
溝MOS(VVMOS;Vertical V-grooved MOS)−F
ET,ヒ化ガリウムFET(Ga As −FET),ヘテ
ロ接合FET(HEMT),In P−FET等のよう
に、おおよそ絶縁膜を隔ててゲート電極と対向している
ボディ領域の表面付近にチャネル領域が誘起される全て
の電界効果型半導体装置に適用できる。これらの電界効
果型半導体装置に本発明を適用した場合でも、上記実施
例と同様の効果を得ることができる。
Although one embodiment of the field effect semiconductor device and the manufacturing method thereof has been described above, the structure, shape, size, material, number and arrangement of the other parts in this field effect semiconductor device and the manufacturing method thereof are described. , Operating conditions,
The manufacturing procedure and the like are not limited to those in this embodiment. For example, although the present invention is applied to the double diffusion MOS-FET, the horizontal double diffusion MOS-FET, and the vertical U-groove MOS-FET, the invention is not limited to these field effect semiconductor devices, and thin film transistors (TFTs) are also applicable.
), SOI (Silicon On Insulator), vertical MOS (Ve
vertical MOS) -FET, vertical double diffusion MOS (VDMO)
S; Vertical Double-diffused MOS) -FET, vertical V
Groove MOS (VVMOS; Vertical V-grooved MOS) -F
A channel region near the surface of the body region facing the gate electrode with an insulating film interposed therebetween, such as ET, gallium arsenide FET (GaAs-FET), heterojunction FET (HEMT), and InP-FET. The present invention can be applied to all field effect semiconductor devices in which electric field is induced. Even when the present invention is applied to these field effect semiconductor devices, it is possible to obtain the same effects as those of the above-described embodiments.

【0031】また、本発明は第1導電型をn型とし、第
2導電型をp型とする場合の電界効果型半導体装置につ
いて適用したが、逆の態様である第1導電型をp型と
し、第2導電型をn型とする場合の電界効果型半導体装
置についても同様に本発明を適用することができる。こ
の場合であっても、ソース領域の広がりの程度による影
響を受けない最高不純物濃度部位が確実に存在すること
となり、上記実施例と同様の効果を得ることができる。
Further, although the present invention is applied to the field effect semiconductor device in which the first conductivity type is n type and the second conductivity type is p type, the opposite mode of the first conductivity type is p type. The present invention can be similarly applied to a field effect semiconductor device in which the second conductivity type is n-type. Even in this case, the maximum impurity concentration region that is not affected by the extent of the spread of the source region is surely present, and the same effect as that of the above embodiment can be obtained.

【0032】さらに、上記の電界効果型半導体装置にお
いて、n+ 型であるドレイン領域の導電型を変えたp+
型のドレイン領域を有する導電度変調型半導体装置につ
いても本発明を同様に適用することができる。例えば、
絶縁ゲートバイポーラトランジスタ(IGBT;Insulat
e Gate Bipolar-mode Transistor)について本発明を適
用する場合に最適である。この場合には、耐圧(パンチ
スルー電圧)をより高くしつつ、抵抗を減らすことがで
きる。
Further, in the above-mentioned field effect type semiconductor device, p + in which the conductivity type of the n + type drain region is changed.
The present invention can be similarly applied to a conductivity modulation type semiconductor device having a drain region of the same type. For example,
Insulated Gate Bipolar Transistor (IGBT)
eGate Bipolar-mode Transistor) is most suitable when the present invention is applied. In this case, the resistance can be reduced while increasing the withstand voltage (punch through voltage).

【0033】そして、実施例に示す電界効果型半導体装
置10等は、図1や図14等に示すような断面構造を構
成してあれば足り、電界効果型半導体装置10等の上方
からみる形状にはとらわれない。例えば、電界効果型半
導体装置10等の上方からみる形状は、格子状やストラ
イプ状、円形(楕円形)状、あるいは三角形以上の多角
形状であっても本発明を実施する際に影響はない。
The field-effect semiconductor device 10 and the like shown in the embodiment need only have a sectional structure as shown in FIGS. 1 and 14 and the like, and the shape of the field-effect semiconductor device 10 and the like viewed from above. I'm not stuck. For example, the shape of the field-effect semiconductor device 10 or the like seen from above may be a lattice shape, a stripe shape, a circular (elliptical) shape, or a polygonal shape such as a triangle or more, which does not affect the present invention.

【0034】[0034]

【発明の効果】以上説明したように、請求項1の発明
は、ボディ領域中でゲート電極と対向するチャネル領域
内には、ソース領域がボディ領域に接する部位から離れ
た位置に最高不純物濃度部位を存在させる構成としたの
で、ソース領域の広がりの程度が変化しても、最高不純
物濃度部位は影響を受けない。したがって、チャネル領
域を流れる電子の流路の途中に最高不純物濃度を示す部
位が必ず存在することになり、その最高不純物濃度に依
存するしきい値電圧を安定化させることができる。
As described above, according to the invention of claim 1, in the channel region facing the gate electrode in the body region, the maximum impurity concentration region is located at a position distant from the region where the source region is in contact with the body region. Since the structure is made to exist, even if the extent of the spread of the source region is changed, the maximum impurity concentration portion is not affected. Therefore, a portion having the highest impurity concentration always exists in the middle of the flow path of electrons flowing through the channel region, and the threshold voltage depending on the highest impurity concentration can be stabilized.

【0035】また、請求項2の発明は、斜め方向から半
導体基板の深い部位に不純物を導入するボディ領域形成
工程を設けたので、導入された不純物は水平方向にずれ
た位置に、半導体基板における表面上の凹凸形状とほぼ
同様の凹凸形状に沿う部位に多く存在することになる。
このため、ボディ領域中でゲート電極と対向するチャネ
ル領域内には、そのゲート電極の垂直壁から水平方向に
ずれた部位に不純物が多く存在することになり、これが
最高不純物濃度部位となる。したがって、ソース領域の
広がりの程度が変化しても最高不純物濃度部位は影響を
受けず、その最高不純物濃度部位の濃度に依存するしき
い値電圧を安定化させることができる。
Further, according to the second aspect of the present invention, since the body region forming step of introducing the impurity into the deep portion of the semiconductor substrate from the oblique direction is provided, the introduced impurity is horizontally shifted in the semiconductor substrate. Many are present in the portion along the uneven shape which is almost the same as the uneven shape on the surface.
Therefore, in the channel region of the body region facing the gate electrode, a large amount of impurities are present in a portion horizontally displaced from the vertical wall of the gate electrode, and this is the highest impurity concentration portion. Therefore, even if the extent of the spread of the source region changes, the highest impurity concentration region is not affected, and the threshold voltage depending on the concentration of the highest impurity concentration region can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電界効果型半導体装置の構造を示す断
面図である。
FIG. 1 is a cross-sectional view showing a structure of a field effect semiconductor device of the present invention.

【図2】チャネル電流方向の不純物濃度の変化を示す図
である。
FIG. 2 is a diagram showing a change in impurity concentration in a channel current direction.

【図3】チャネル電流方向の不純物濃度の変化を示す図
である。
FIG. 3 is a diagram showing a change in impurity concentration in a channel current direction.

【図4】第1の絶縁膜を形成する工程を示す図である。FIG. 4 is a diagram showing a step of forming a first insulating film.

【図5】ゲート電極を形成する工程を示す図である。FIG. 5 is a diagram showing a step of forming a gate electrode.

【図6】ソース領域を形成する工程を示す図である。FIG. 6 is a diagram showing a step of forming a source region.

【図7】ボディ領域を形成する工程を示す図である。FIG. 7 is a diagram showing a step of forming a body region.

【図8】不純物の導入方法を示す図である。FIG. 8 is a diagram showing a method of introducing impurities.

【図9】第2の絶縁膜を形成する工程を示す図である。FIG. 9 is a diagram showing a step of forming a second insulating film.

【図10】第1の絶縁膜と第2の絶縁膜を所定のパター
ンにエッチングする工程を示す図である。
FIG. 10 is a diagram showing a step of etching the first insulating film and the second insulating film into a predetermined pattern.

【図11】ソース領域をエッチングする工程を示す図で
ある。
FIG. 11 is a diagram showing a step of etching a source region.

【図12】従来の電界効果型半導体装置のチャネル電流
方向の不純物濃度の変化を示す図である。
FIG. 12 is a diagram showing a change in impurity concentration in a channel current direction of a conventional field effect semiconductor device.

【図13】チャネル電流方向の不純物濃度の変化を示す
図である。
FIG. 13 is a diagram showing a change in impurity concentration in the channel current direction.

【図14】第2の電界効果型半導体装置の構造を示す断
面図である。
FIG. 14 is a cross-sectional view showing the structure of a second field effect semiconductor device.

【図15】第2の電界効果型半導体装置のチャネル電流
方向の不純物濃度の変化を示す図である。
FIG. 15 is a diagram showing a change in impurity concentration in a channel current direction of a second field effect semiconductor device.

【図16】第3の電界効果型半導体装置の構造を示す断
面図である。
FIG. 16 is a cross-sectional view showing a structure of a third field effect semiconductor device.

【図17】第3の電界効果型半導体装置のチャネル電流
方向の不純物濃度の変化を示す図である。
FIG. 17 is a diagram showing a change in impurity concentration in a channel current direction of a third field effect semiconductor device.

【図18】従来の電界効果型半導体装置の構造を示す断
面図である。
FIG. 18 is a cross-sectional view showing the structure of a conventional field effect semiconductor device.

【図19】従来の電界効果型半導体装置のボディ領域に
おける深さ方向の不純物濃度の変化を示す図である。
FIG. 19 is a diagram showing changes in the impurity concentration in the depth direction in the body region of the conventional field effect semiconductor device.

【図20】従来の電界効果型半導体装置のチャネル電流
方向の不純物濃度の変化を示す図である。
FIG. 20 is a diagram showing a change in impurity concentration in the direction of channel current of a conventional field effect semiconductor device.

【図21】従来の電界効果型半導体装置のチャネル電流
方向の不純物濃度の変化を示す図である。
FIG. 21 is a diagram showing a change in impurity concentration in the direction of channel current of a conventional field effect semiconductor device.

【符号の説明】[Explanation of symbols]

10 電界効果型半導体装置 12 ソース電極 14 絶縁膜 16 ゲート電極 18 絶縁膜(絶縁層) 20 ドリフト領域 22 ドレイン領域 24 ドレイン電極 26 ソース領域 28 最高不純物濃度部位 30B ボディ領域 30C チャネル領域 10 field effect semiconductor device 12 source electrode 14 insulating film 16 gate electrode 18 insulating film (insulating layer) 20 drift region 22 drain region 24 drain electrode 26 source region 28 highest impurity concentration site 30B body region 30C channel region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のソース領域とドレイン領域
との間に介装されており前記第1導電型とは反対の導電
型である第2導電型のボディ領域と、そのボディ領域に
絶縁層を隔てて対向しているゲート電極とを有する電界
効果型半導体装置において、 前記ボディ領域中で前記ゲート電極と対向するチャネル
領域内における最高不純物濃度部位が、前記ボディ領域
が前記ソース領域に接する部位から離れた位置に存在し
ていることを特徴とする電界効果型半導体装置。
1. A body region of a second conductivity type, which is interposed between a source region and a drain region of the first conductivity type and has a conductivity type opposite to the first conductivity type, and a body region of the second conductivity type. In a field effect semiconductor device having a gate electrode facing each other with an insulating layer in between, the highest impurity concentration region in the channel region facing the gate electrode in the body region, the body region in the source region A field-effect-type semiconductor device, characterized in that the field-effect semiconductor device is present at a position away from a contacting portion.
【請求項2】 第1導電型の半導体基板の表面に、絶縁
層を隔ててゲート電極を形成するゲート電極形成工程
と、 前記ゲート電極形成工程で前記半導体基板の浅い部位に
不純物を導入して前記第1導電型のソース領域を形成す
るソース領域形成工程と、 前記ゲート電極形成工程でゲート電極が形成された半導
体基板の表面に対して斜め方向から、前記半導体基板の
深い部位に不純物を導入して活性化させて前記第1導電
型とは反対の導電型である第2導電型のボディ領域を形
成するボディ領域形成工程と、 を有する電界効果型半導体装置の製造方法。
2. A gate electrode forming step of forming a gate electrode on the surface of a semiconductor substrate of the first conductivity type with an insulating layer therebetween, and an impurity is introduced into a shallow portion of the semiconductor substrate in the gate electrode forming step. A source region forming step of forming the first conductive type source region, and an impurity is introduced into a deep portion of the semiconductor substrate from an oblique direction with respect to a surface of the semiconductor substrate on which the gate electrode is formed in the gate electrode forming step. A body region forming step of activating and then forming a body region of a second conductivity type which is a conductivity type opposite to the first conductivity type, and a method of manufacturing a field effect semiconductor device.
JP7125091A 1995-05-24 1995-05-24 Field-effect semiconductor device and manufacturing method thereof Pending JPH08321603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125091A JPH08321603A (en) 1995-05-24 1995-05-24 Field-effect semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125091A JPH08321603A (en) 1995-05-24 1995-05-24 Field-effect semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH08321603A true JPH08321603A (en) 1996-12-03

Family

ID=14901628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125091A Pending JPH08321603A (en) 1995-05-24 1995-05-24 Field-effect semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH08321603A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302557C (en) * 2002-11-01 2007-02-28 丰田自动车株式会社 Field-effect-type semiconductor device
EP1221720A3 (en) * 2000-12-28 2007-08-01 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and ink jet apparatus
JP2009277741A (en) * 2008-05-13 2009-11-26 Oki Semiconductor Co Ltd Semiconductor device and its method for manufacturing
JP2011100913A (en) * 2009-11-09 2011-05-19 New Japan Radio Co Ltd Method of manufacturing semiconductor device
JP2015041644A (en) * 2013-08-20 2015-03-02 富士電機株式会社 Method of manufacturing mos type semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221720A3 (en) * 2000-12-28 2007-08-01 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and ink jet apparatus
CN1302557C (en) * 2002-11-01 2007-02-28 丰田自动车株式会社 Field-effect-type semiconductor device
JP2009277741A (en) * 2008-05-13 2009-11-26 Oki Semiconductor Co Ltd Semiconductor device and its method for manufacturing
JP2011100913A (en) * 2009-11-09 2011-05-19 New Japan Radio Co Ltd Method of manufacturing semiconductor device
JP2015041644A (en) * 2013-08-20 2015-03-02 富士電機株式会社 Method of manufacturing mos type semiconductor device

Similar Documents

Publication Publication Date Title
US6297104B1 (en) Methods to produce asymmetric MOSFET devices
US5164325A (en) Method of making a vertical current flow field effect transistor
US4190850A (en) MIS field effect transistor having a short channel length
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
EP0345380A2 (en) Manufacture of a semiconductor device
JP3217690B2 (en) Method for manufacturing semiconductor device
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US4586240A (en) Vertical IGFET with internal gate and method for making same
JPS61259576A (en) Field effect transistor
US11031466B2 (en) Method of forming oxygen inserted Si-layers in power semiconductor devices
JPH09283535A (en) Manufacture of semiconductor device
US20020179950A1 (en) Manufacture of trench-gate semiconductor devices
US6921938B2 (en) Double diffused field effect transistor having reduced on-resistance
JP3279151B2 (en) Semiconductor device and manufacturing method thereof
US5780878A (en) Lateral gate, vertical drift region transistor
JP2002026323A (en) Method of manufacturing trench gate type mis device having thick polysilicon insulating layer at bottom of trench
US4261761A (en) Method of manufacturing sub-micron channel width MOS transistor
JPH08321603A (en) Field-effect semiconductor device and manufacturing method thereof
US5786251A (en) Method for producing a channel region layer in a voltage controlled semiconductor device
US5834810A (en) Asymmetrical vertical lightly doped drain transistor and method of forming the same
KR100291405B1 (en) Symmetrical vertical lightly doped drain transistor and method of forming the same
JP4048856B2 (en) Manufacturing method of semiconductor device
JPH0216022B2 (en)
JPH0519979B2 (en)