JPH08320215A - Apparatus for measurement of steel sheet shape - Google Patents

Apparatus for measurement of steel sheet shape

Info

Publication number
JPH08320215A
JPH08320215A JP7128393A JP12839395A JPH08320215A JP H08320215 A JPH08320215 A JP H08320215A JP 7128393 A JP7128393 A JP 7128393A JP 12839395 A JP12839395 A JP 12839395A JP H08320215 A JPH08320215 A JP H08320215A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
steel plate
groups
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7128393A
Other languages
Japanese (ja)
Inventor
Kiyomi Horikoshi
清美 堀越
Katsuya Ueki
勝也 植木
Masayuki Sugiyama
昌之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP7128393A priority Critical patent/JPH08320215A/en
Publication of JPH08320215A publication Critical patent/JPH08320215A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To lessen the binary processing error owing to difference of the steel sheet temperature by obtaining a constant photoelectric element output signal even if the temperature of a steel sheet alters by measuring the temperature of the steel sheet by a radiation temperature gauge and controlling charge accumulating time for the photoelectric element, and then carrying out partial binary processing based on a peak holding treatment based on two-dimensional spatial differentiation. CONSTITUTION: A plurality of optical systems employing lens and groups of photoelectric elements 3 arranged in a line are installed in an upper part of a red heated steel sheet 1 and scanning is carried out by the groups of photoelectric elements 3 by receiving the driving signals P to move the steel sheet 1 forward in a prescribed distance by a scanning circuit 4. The groups of the photoelectric elements 3 generate an output proportional to the temperature of the steel sheet on a measurement line 3a. The temperature of the steel sheet at that time is measured by a radiation temperature gauge 14 and corresponding to the temperature of the steel sheet, the charge accumulating time for the groups of photoelectric elements 3 is controlled by an AGC circuit 15. For example, even though the output signal of the groups of photoelectric elements 3 increases proportionally to the temperature of the steel sheet in the case the temperature of the steel sheet changes from 700 deg.C to 900 deg.C, almost constant output signal can be obtained by controlling the charge accumulating time for the groups of the elements 3 corresponding to the temperature of the steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼板の鋼板の先端および
尾端部のクロップカットシャー設備の入側にてクロップ
形状、板曲がり量、キャンバー量を自動的に且つ高精度
な計測が可能な鋼板形状測定装置を提供する事を目的と
する。
INDUSTRIAL APPLICABILITY The present invention enables automatic and highly accurate measurement of crop shape, plate bending amount, and camber amount at the entrance side of a crop cutting shear facility at the tip and tail end of a steel plate. An object is to provide a steel plate shape measuring device.

【0002】[0002]

【従来の技術】熱間圧延時に生じる鋼板先端および尾端
部の変形、板曲がり、キャンバー等は次段以降の圧延に
おいて、ロールに不均等な荷重をかけ、圧延中の鋼板姿
勢に大きな影響を与え、不良鋼材の発生の原因となって
いた。これを防止するために、従来は作業者が目視にて
鋼板形状を観測し、圧延機の前面にて鋼板先端・尾端部
を適当な位置で操作し切断を行うとともに、アプローチ
ガイドやサイドガイドの開閉操作および圧延機の圧延荷
重のバランス操作など行う必要があった。
2. Description of the Related Art Deformation, plate bending, camber, etc., of the front and tail ends of a steel plate that occurs during hot rolling exerts an uneven load on the rolls in the subsequent rolling steps, which greatly affects the posture of the steel plate during rolling. And caused the generation of defective steel. In order to prevent this, conventionally, an operator visually observes the shape of the steel sheet and operates the front and rear ends of the steel sheet at appropriate positions on the front surface of the rolling mill to perform cutting, and also to approach guides and side guides. It was necessary to perform opening and closing operations and balance operation of the rolling load of the rolling mill.

【0003】このため、鋼板の先端および尾端部の変形
や曲がり量、キャンバー量を自動的に計測し、変形部分
の必要最小限の切断を行って、次段以降の圧延において
ロールに不均等な荷重がかかることを防ぐとともに、鋼
板の曲がりおよびキャンバー量やその発生長さより、ア
プローチガイドやサイドガイドの自動開閉制御および圧
延機の左右圧下バランス制御が必要とされている。
For this reason, the amount of deformation, bending, and camber of the tip and tail of the steel sheet is automatically measured, and the deformed portion is cut to the required minimum, so that the roll is uneven in the subsequent rolling. It is necessary to prevent the excessive load from being applied, and to automatically control the opening and closing of the approach guides and side guides and the left-right reduction balance control of the rolling mill based on the amount of bending and camber of the steel plate and the length of the generated camber.

【0004】そこで、鋼板先端・尾端部の変形や板曲が
り量およびキャンバー量を自動的に検出し、変形部分の
必要最小限の切断を行って当該鋼板を次段圧延機へ送り
込むとともに、板曲がり量に応じてアプローチガイドや
サイドガイドの開度を制御、キャンバー量に応じて次段
圧延機の左右圧下制御を行い、鋼板通板性の向上を図り
不良鋼板発生の防止を期待して、以下のような形状検出
器が提案されている。
Therefore, the deformation of the front and tail ends of the steel plate, the amount of bending of the plate and the amount of camber are automatically detected, and the necessary minimum cutting of the deformed portion is performed to feed the steel plate to the next-stage rolling mill, and Opening of the approach guides and side guides is controlled according to the amount of bending, and left-right reduction control of the next-stage rolling mill is performed according to the amount of camber, with the expectation of preventing the occurrence of defective steel plates by improving the steel plate threadability. The following shape detectors have been proposed.

【0005】図9に従来の装置のブロック図を示す。図
のように熱間圧延工程を流れる赤熱鋼板1の板幅をレン
ズ2を使った光学系とライン状に並べた複数個の光電素
子3を使って測定ライン3a上の鋼板の有無を検知す
る。光電素子3は鋼板の温度に比例した出力を発生し、
4は鋼板1が検出領域で一定距離進行する毎に発生する
駆動信号Pを受けて光電素子群3aを走査し出力を送出
させる走査回路である。
FIG. 9 shows a block diagram of a conventional device. As shown in the figure, the presence or absence of a steel plate on the measurement line 3a is detected using a plurality of photoelectric elements 3 in which the plate width of the red hot steel plate 1 that flows through the hot rolling process is lined up with the optical system using the lens 2. . The photoelectric element 3 generates an output proportional to the temperature of the steel plate,
A scanning circuit 4 receives the drive signal P generated every time the steel plate 1 advances in the detection area for a certain distance, scans the photoelectric element group 3a, and sends an output.

【0006】光電素子の出力は増幅器5で増幅される。
6はアナログで得られた鋼板像信号を多値で量子化する
量子化回路、7は量子化された鋼板像信号を2次元的に
記憶するメモリ、8はメモリ7に記憶された鋼板像信号
を読み出し、2次元的に微分する微分回路、9は微分回
路8によってつくられた温度急峻度信号を、ほぼ等しい
レベル毎に局所分割し、各局所毎に所定の値になるよう
平準化を行う急峻度平準化回路、10は平準化された温
度急峻度信号を特定の方向に向かって走査するピークホ
ールド回路、11は鋼板像信号を事前に求められた固定
の閾値で2値化する2値化回路、12は2値化された鋼
板像画像より先端・尾端部の形状を測定する先端・尾端
形状測定回路、13は同様に2値化された鋼板像画像よ
り板の曲がりおよびキャンバー量を測定する板曲がり・
キャンバー測定回路で構成されている。
The output of the photoelectric element is amplified by the amplifier 5.
6 is a quantizing circuit for quantizing a steel plate image signal obtained in analog with multiple values, 7 is a memory for two-dimensionally storing the quantized steel plate image signal, and 8 is a steel plate image signal stored in the memory 7. , A two-dimensional differentiating circuit, and 9 locally divides the temperature steepness signal generated by the differentiating circuit 8 into almost equal levels, and performs leveling so that each locality has a predetermined value. A steepness leveling circuit, 10 is a peak hold circuit that scans a leveled temperature steepness signal in a specific direction, and 11 is a binary value that binarizes a steel plate image signal with a fixed threshold value obtained in advance. A digitizing circuit, 12 is a tip / tail edge shape measuring circuit that measures the shape of the tip / tail edge from the binarized steel plate image image, and 13 is a plate bend and camber from the similarly binarized steel plate image image. Plate bending to measure the amount
It consists of a camber measurement circuit.

【0007】[0007]

【発明が解決しようとする課題】従来の装置はこのよう
に構成されていたために、鋼板毎に温度が異なる場合、
例えば、図10に示すように鋼板温度が700℃から1
200℃まで変化するとき、光電素子の分光放射輝度は
波長1μmにおいて約160倍異なることから、鋼板像
を正しく2値化できない点や図11に示すように鋼板が
進行方向に対し、垂直方向(横振れ)に時々刻々と変化
する場合において、板の曲がりやキャンバー測定時に誤
差となる等の欠点をもっていた。
Since the conventional apparatus is configured in this way, when the temperature differs for each steel sheet,
For example, as shown in FIG.
When the temperature changes up to 200 ° C., the spectral radiance of the photoelectric element differs by about 160 times at a wavelength of 1 μm, so that the steel plate image cannot be binarized correctly and as shown in FIG. When there is a momentary change in lateral shake, there are drawbacks such as bending of the plate and an error when measuring the camber.

【0008】この発明は、上記のような従来のものの欠
点を除去するためになされたもので、鋼板の温度を放射
温度計にて測定を行い、鋼板温度に基づき光電素子の電
荷蓄積時間を制御することにより、鋼板温度が変化して
も、ほぼ一定の光電素子出力信号を得たのち、2次元的
な空間微分処理、鋼板傾き計算処理、鋼板傾きを基にピ
ークホールド処理、局所濃度ヒストグラム処理、濃度ヒ
ストグラムを基に局所2値化処理を行うことで、鋼板温
度差による2値化処理誤差を少なくすることが可能であ
り、複数台のライン状の光電素子群を鋼板の進行方向に
配置することで鋼板の垂直方向の振れ(横振れ)に対し
て影響を受けない精度の高い鋼板形状測定装置を提供す
ることを目的としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional ones. The temperature of the steel sheet is measured by a radiation thermometer, and the charge storage time of the photoelectric element is controlled based on the steel sheet temperature. By doing so, even if the steel plate temperature changes, an almost constant photoelectric element output signal is obtained, and then two-dimensional spatial differentiation processing, steel plate inclination calculation processing, peak hold processing based on steel sheet inclination, local concentration histogram processing By performing the local binarization process based on the density histogram, it is possible to reduce the binarization process error due to the steel plate temperature difference, and a plurality of linear photoelectric element groups are arranged in the traveling direction of the steel plate. By doing so, it is an object of the present invention to provide a highly accurate steel plate shape measuring device that is not affected by vertical vibration (lateral vibration) of the steel plate.

【0009】[0009]

【課題を解決するための手段】この発明の一実施例を図
1に基づいて説明する。図1において赤熱鋼板1の上部
にレンズを使った光学系と、ライン状に並べた光電素子
群3を鋼板の進行方向に対し複数台を配置し、走査回路
4で鋼板1が一定距離進行する毎に発生する駆動信号P
を受けて光電素子群3を走査する。光電素子群3は測定
ライン3a上の鋼板温度に比例した出力を発生する。こ
のとき鋼板の温度を放射温度計14にて測定し、鋼板温
度に応じてAGC回路15において光電素子群3の電荷
蓄積時間の制御を行う。図2に、その一例を示す。例え
ば鋼板温度が700℃から900℃まで変化した場合に
は、鋼板温度に比例して光電素子群3の出力信号も増加
するが、光電素子群3の電荷蓄積時間を鋼板温度に応じ
て制御することにより、鋼板温度が変化しても、ほぼ一
定の出力信号が得られる。
An embodiment of the present invention will be described with reference to FIG. In FIG. 1, an optical system using a lens and a plurality of photoelectric element groups 3 arranged in a line are arranged above the red-hot steel plate 1 in the traveling direction of the steel plate, and the scanning circuit 4 advances the steel plate 1 by a certain distance. Drive signal P generated for each
In response to this, the photoelectric element group 3 is scanned. The photoelectric element group 3 generates an output proportional to the steel plate temperature on the measurement line 3a. At this time, the temperature of the steel plate is measured by the radiation thermometer 14, and the charge storage time of the photoelectric element group 3 is controlled in the AGC circuit 15 according to the steel plate temperature. FIG. 2 shows an example thereof. For example, when the steel plate temperature changes from 700 ° C. to 900 ° C., the output signal of the photoelectric element group 3 also increases in proportion to the steel plate temperature, but the charge accumulation time of the photoelectric element group 3 is controlled according to the steel plate temperature. As a result, a substantially constant output signal can be obtained even if the steel plate temperature changes.

【0010】この出力信号は、増幅器5により増幅さ
れ、6はアナログで得られた鋼板像信号を多値で量子化
する量子化回路、7は量子化されたライン状の鋼板像信
号を所定の長さになるまで、逐次突き合わせ処理を行
い、鋼板像信号を2次元画像信号として記憶するメモリ
である。赤熱鋼板の周囲には、輻射光の散乱や搬送ロー
ルおよび鋼板落ち込み防止用エプロンなどの反射光が存
在することから、8の空間微分フィルタにより鋼板と周
辺部との光量差を、強調する。図3には3×3画素の空
間微分フィルタを示しており、例えば中心点Eに対し、
E=|(A+nB+C)−(G+nH+I)|+|(A
+nD+G)−(C+nF+I)|のフィルタ処理を行
う。これにより縦および横方向にn倍の重みを掛け、エ
ッジ部の強調効果を上げている。
This output signal is amplified by an amplifier 5, 6 is a quantizing circuit for quantizing the analog steel plate image signal in multi-values, and 7 is a predetermined quantized linear steel plate image signal. It is a memory that sequentially performs the matching process until the length is reached and stores the steel plate image signal as a two-dimensional image signal. Since the scattered light of the radiant light and the reflected light such as the transport rolls and the apron for preventing the steel plate from falling exist around the red hot steel plate, the spatial light difference filter of 8 emphasizes the light amount difference between the steel plate and the peripheral portion. FIG. 3 shows a 3 × 3 pixel spatial differentiation filter. For example, with respect to the center point E,
E = | (A + nB + C)-(G + nH + I) | + | (A
+ ND + G)-(C + nF + I) | As a result, the weight is multiplied by n in the vertical and horizontal directions to enhance the edge portion enhancement effect.

【0011】また鋼板上には水乗りやスケール等により
輝度の異なる部分が存在するため、この影響を回避する
対策として、鋼板の傾きを求め平行にピークホールド処
理を行い、鋼板内部の輝度低下部を埋める。16は鋼板
の傾きθを計算する回路であり、図4に鋼板の傾きθを
計算する例を示す。鋼板の根元lについてハフ変換処理
し、座標Pより鋼板の傾きθを求める。P=X・cos
θ+Y・sinθを計算すると、Pは座標原点からの距
離であり、θは座標原点から直線Pに引いた垂線の傾き
となる。また10のピークホールド回路にて、図5に示
すように鋼板の傾きθに平行してピークホールド処理を
行う。
Further, since there are portions on the steel sheet having different brightness due to water riding, scales, etc., as a measure for avoiding this effect, the inclination of the steel sheet is obtained and peak hold processing is performed in parallel to reduce the brightness inside the steel sheet. Fill in. Reference numeral 16 is a circuit for calculating the inclination θ of the steel plate, and FIG. 4 shows an example of calculating the inclination θ of the steel plate. The root l of the steel sheet is subjected to Hough transform processing, and the inclination θ of the steel sheet is obtained from the coordinates P. P = X · cos
When θ + Y · sin θ is calculated, P is the distance from the coordinate origin, and θ is the inclination of the perpendicular line drawn from the coordinate origin to the straight line P. Further, as shown in FIG. 5, the peak hold circuit of 10 performs peak hold processing in parallel with the inclination θ of the steel plate.

【0012】前述したAGC回路、微分回路、鋼板傾き
計算回路、ピークホールド回路により安定した鋼板画像
が得られるが、鋼板の温度分布のムラによって固定の閾
値で2値化した場合には、鋼板の形状を正確に再現でき
ない。そこでメモリ7に記憶された鋼板画像エリアを図
6に示すように複数個分割し、9に示す急峻度平滑回路
にて各エリアa〜h毎に濃度ヒストグラム分布の演算を
行い、各エリア毎に所定の閾値を求め、11に示す局所
2値化回路により2値化する。そして12に示す鋼板先
端・尾端形状測定回路により形状を測定し、鋼板の先端
および尾端部の切断位置を決定する。
A stable steel plate image can be obtained by the above-mentioned AGC circuit, differentiating circuit, steel plate inclination calculating circuit, and peak hold circuit, but when binarization is carried out with a fixed threshold value due to uneven temperature distribution of the steel plate, The shape cannot be reproduced accurately. Therefore, the steel plate image area stored in the memory 7 is divided into a plurality of areas as shown in FIG. 6, and the steepness smoothing circuit shown in FIG. 9 calculates the density histogram distribution for each of the areas a to h. A predetermined threshold value is obtained and binarized by the local binarization circuit 11 shown. Then, the shape is measured by the steel plate tip / tail end shape measuring circuit shown in FIG. 12, and the cutting positions of the tip and tail end portions of the steel plate are determined.

【0013】図7に鋼板先端および尾端部の切断位置の
決定方法を示す。(a)はフィッシュテイルと呼ばれる
鋼板形状の例であり、鋼板の谷部に相当するA点を求
め、予め定められた距離Δl離れたB点を切断位置とし
て決定する。また(b)はタングと呼ばれる鋼板形状の
例であり、鋼板の最長点A点よりΔlだけ離れた切断位
置B点を、鋼板の幅Wに対し係数kを掛けたW′を計算
し決定する。
FIG. 7 shows a method of determining the cutting positions of the front and tail ends of the steel plate. (A) is an example of a steel plate shape called a fishtail, in which a point A corresponding to a valley portion of the steel plate is obtained, and a point B separated by a predetermined distance Δl is determined as a cutting position. Further, (b) is an example of a steel plate shape called a tongue, and a cutting position B point which is separated from the longest point A point of the steel plate by Δl is determined by calculating W ′ obtained by multiplying the width W of the steel plate by a coefficient k. .

【0014】13は図8(a)に示す鋼板先端・尾端部
の曲がり量Mおよび曲がり発生長さNを、また図8
(b)に示すキャンバー量Xおよびキャンバー発生長さ
Yを測定する回路である。鋼板先端部および尾端部の曲
がり量やキャンバー量の測定を、1台のライン状の光電
素子群を用いて行えば、鋼板の進行方向に対し垂直方向
に振れる(横振れ)場合に測定精度に影響を与え誤差と
なる。したがって、図1に示すように鋼板の進行方向に
対しライン状の光電素子群を3台配置し、同時刻に鋼板
の幅方向エッジ位置ならびに板幅中心位置をデータをS
1n,S2n,S3n、各光電素子群間の距離をL1,
L2、各位置データを2回微分した値をΔ2Snとすれ
ば、Δ2 Sn={(S1n−S2n)÷L1−(S2n
−S3n)÷L2}/{(L1+L2)÷2}より求
め、Δ2 Snを積分した結果をΔSnとすると,ΔSn
=ΔSn-1+Δ2 Sn-1×χで求める。ここでχはデー
タのサンプリングピッチとする。また、さらにΔSnを
積分した結果をSnとすると、Sn=Sn-1+ΔSn-1
×χを求めることにより鋼板が進行方向に対し垂直方向
に振れた場合でも、安定に曲がり量およびキャンバー量
を測定することが可能である。
Reference numeral 13 denotes the bending amount M and the bending occurrence length N of the front and rear ends of the steel plate shown in FIG.
This is a circuit for measuring the camber amount X and the camber generation length Y shown in (b). If the bending amount and the camber amount at the tip and tail of the steel sheet are measured using one line-shaped photoelectric element group, the measurement accuracy is obtained when the steel sheet swings in the direction perpendicular to the traveling direction (lateral shake). Will affect and cause an error. Therefore, as shown in FIG. 1, three line-shaped photoelectric element groups are arranged in the traveling direction of the steel sheet, and at the same time, the width direction edge position of the steel sheet and the plate width center position are set to S data.
1n, S2n, S3n, the distance between each photoelectric element group is L1,
L2, if the differential value of each position data twice and Δ 2 Sn, Δ 2 Sn = {(S1n-S2n) ÷ L1- (S2n
-S3n) ÷ L2} / {(L1 + L2) ÷ 2}, and the result of integrating Δ 2 Sn is ΔSn, ΔSn
= ΔSn −1 + Δ 2 Sn −1 × χ Here, χ is the sampling pitch of the data. Further, if Sn is the result of integrating ΔSn, Sn = Sn −1 + ΔSn −1
Even if the steel sheet swings in the direction perpendicular to the traveling direction by determining xχ, it is possible to stably measure the bending amount and the camber amount.

【0015】なお、上記実施例では、微分回路、急峻度
平準化回路、ピークホールド回路、2値化回路等ハード
ウエアとして説明したが、同機能を実現できる計算機に
よりソフトウェアで実行させてもよい。さらに鋼板温度
の変化に対し、光電素子群の電荷蓄積時間を制御するA
GC回路で説明したが、シャッタ速度の制御や光学系の
絞り制御等により受光光量調節機能を付加するなどして
もよい。
In the above embodiment, the hardware such as the differentiating circuit, the steepness leveling circuit, the peak hold circuit, and the binarization circuit has been described, but it may be executed by software by a computer capable of realizing the same function. Furthermore, A for controlling the charge storage time of the photoelectric element group with respect to changes in the steel plate temperature
Although the GC circuit has been described, the function of adjusting the amount of received light may be added by controlling the shutter speed or controlling the aperture of the optical system.

【0016】[0016]

【発明の効果】以上のように、この発明によれば赤熱鋼
板温度の測定を行い、鋼板温度に応じて光電素子群の電
荷蓄積時間を制御し、2次元的に記憶された鋼板画像に
対し空間微分フィルタ処理し鋼板エッジ部の強調を行
い、鋼板の傾きを求め、傾きに平行してピークホールド
処理し、鋼板画像を複数個エリア分割し各エリア毎に濃
度ヒストグラムの計算を行い、各エリア毎に所定の閾値
で局所2値化処理を実行するとともに、鋼板の進行方向
に複数個のライン状の光電素子群を配置し、同時刻に鋼
板幅方向エッジ位置および中心位置の計算を実行するこ
とによって、鋼板温度の変化や鋼板温度分布のムラ、水
乗り、スケールおよび鋼板の振れによる誤差信号を除去
し、2値化および鋼板先端・尾端部の形状、曲がり量や
キャンバー量を求められるもので、熱間圧延ラインでは
不可避である鋼板温度の変化、鋼板温度分布のムラ、散
乱光、反射光、水乗り、スケール、鋼板の振れ等の外乱
に対し影響されない鋼板形状測定装置が得られ実用上の
効果は大きい。
As described above, according to the present invention, the temperature of the red-hot steel sheet is measured, the charge accumulation time of the photoelectric element group is controlled according to the steel sheet temperature, and the steel sheet image stored two-dimensionally Spatial differential filtering is performed to emphasize the edge of the steel sheet, the inclination of the steel sheet is obtained, peak hold processing is performed in parallel with the inclination, the steel sheet image is divided into multiple areas, and the density histogram is calculated for each area. The local binarization process is executed for each predetermined threshold value, a plurality of linear photoelectric element groups are arranged in the traveling direction of the steel sheet, and the steel sheet width direction edge position and the center position are calculated at the same time. By doing so, error signals due to changes in the steel plate temperature, uneven steel plate temperature distribution, water riding, scale and steel plate runout are removed, and binarization and the steel plate tip / tail end shape, bending amount and camber amount are obtained. A steel plate shape measuring device that is not affected by disturbances such as changes in steel plate temperature, uneven steel plate temperature distribution, scattered light, reflected light, water riding, scale, and steel plate runout that are unavoidable in hot rolling lines is obtained. The practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a device of the present invention.

【図2】鋼板温度の変化に対し電荷蓄積時間を制御した
場合としない場合の光電素子群出力の比較を示すグラ
フ。
FIG. 2 is a graph showing a comparison of photoelectric device group outputs with and without controlling the charge storage time with respect to changes in steel plate temperature.

【図3】3×3の空間微分フィルタを示す図。FIG. 3 is a diagram showing a 3 × 3 spatial differentiation filter.

【図4】鋼板の傾きを示す図。FIG. 4 is a diagram showing a tilt of a steel plate.

【図5】鋼板の傾きに平行にピークホールド処理を行う
ことを示す図。
FIG. 5 is a diagram showing that the peak hold process is performed in parallel with the inclination of the steel plate.

【図6】鋼板画像に対し複数にエリア分割することを示
す図。
FIG. 6 is a diagram showing that the steel plate image is divided into a plurality of areas.

【図7】(a)はフィシュテイル形状、(b)はタング
形状の鋼板先・尾端部の切断位置を求めることを示す
図。
FIG. 7A is a diagram showing how to obtain cutting positions of a steel plate tip / tail end portion of a fishtail shape and FIG. 7B is a tongue shape.

【図8】鋼板の(a)は曲がり量・曲がり発生量を、
(b)はキャンバー量・キャンバー発生位置を示す図。
[FIG. 8] (a) of the steel plate shows the amount of bending and the amount of bending,
FIG. 6B is a diagram showing a camber amount and a camber occurrence position.

【図9】従来装置の構成を示すブロック図。FIG. 9 is a block diagram showing a configuration of a conventional device.

【図10】鋼板温度の変化に対する波長と分光放射輝度
の変化を示すグラフ。
FIG. 10 is a graph showing changes in wavelength and spectral radiance with respect to changes in steel plate temperature.

【図11】鋼板の進行方向に対し垂直方向の振れを示す
図。
FIG. 11 is a diagram showing deflection in a direction perpendicular to the traveling direction of the steel sheet.

【符号の説明】[Explanation of symbols]

1:赤熱鋼板 2:光学系レンズ 3:ライン状の光学素子群 4:走査回路 5:増幅器 6:量子化回路 7:メモリ回路 8:微分回路 9:急峻度平準化回路 10:ピークホールド回路 11:2値化回路 12:鋼板先端・尾端部形状測定回路 13:鋼板曲がり量・キャンバー量測定回路 14:放射温度計 15:AGC回路 16:鋼板傾き計算回路 1: Red-hot steel plate 2: Optical system lens 3: Line-shaped optical element group 4: Scanning circuit 5: Amplifier 6: Quantization circuit 7: Memory circuit 8: Differentiation circuit 9: Steepness leveling circuit 10: Peak hold circuit 11 : Binarization circuit 12: Steel plate tip / tail end shape measuring circuit 13: Steel plate bending amount / camber amount measuring circuit 14: Radiation thermometer 15: AGC circuit 16: Steel plate inclination calculating circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 昌之 兵庫県神戸市兵庫区和田崎町1−1−2 三菱電機株式会社制御製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Sugiyama 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Electric Corporation Control Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延において赤熱の自発光をもつ鋼
板に対し、ライン上に配置された複数個の光電子群上に
被測定体像を結像し、被測定体の温度に対応した電気信
号を発生する検出手段と、上記検出手段の電荷蓄積時間
を上記被測定体の温度に応じて制御する手段と、上記検
出手段で得られた検出信号を多値化する量子化手段と、
上記量子化手段で得られた多値化信号を記憶するメモリ
手段と、上記メモリを画像処理することにより2次元的
に認識する手段と、上記2次元的に処理された量子化信
号を2次元的に微分する微分手段と、上記微分信号レベ
ルに基づいて信号をピークホールドするピークホールド
手段と、複数の局所単位で濃度ヒストグラムを作成し、
上記濃度ヒストグラムより局所毎の閾値を求め、上記局
所毎の閾値で2値化する局所2値化手段と、上記2値化
信号から鋼板先端部および尾端部の形状、板曲がり量、
キャンバー量を計測する手段を備えたことを特徴とする
鋼板形状測定装置。
1. An image of an object to be measured is formed on a plurality of photoelectron groups arranged on a line for a steel sheet having red-hot self-luminous light during hot rolling, and an electrical property corresponding to the temperature of the object to be measured is formed. Detecting means for generating a signal, means for controlling the charge storage time of the detecting means according to the temperature of the object to be measured, and quantizing means for converting the detection signal obtained by the detecting means into a multi-valued signal,
Memory means for storing the multi-valued signal obtained by the quantizing means, means for two-dimensionally recognizing the memory by image processing, and two-dimensionally for the quantized signal processed two-dimensionally. Differentiating means for differentially differentiated, peak hold means for peak-holding the signal based on the differential signal level, and a density histogram is created in a plurality of local units,
A local binarization unit that obtains a threshold value for each local from the density histogram and binarizes the threshold value for each local, and the shape of the steel plate front end portion and tail end portion, the plate bending amount from the binarized signal,
A steel sheet shape measuring device comprising means for measuring the amount of camber.
JP7128393A 1995-05-26 1995-05-26 Apparatus for measurement of steel sheet shape Withdrawn JPH08320215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7128393A JPH08320215A (en) 1995-05-26 1995-05-26 Apparatus for measurement of steel sheet shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7128393A JPH08320215A (en) 1995-05-26 1995-05-26 Apparatus for measurement of steel sheet shape

Publications (1)

Publication Number Publication Date
JPH08320215A true JPH08320215A (en) 1996-12-03

Family

ID=14983706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7128393A Withdrawn JPH08320215A (en) 1995-05-26 1995-05-26 Apparatus for measurement of steel sheet shape

Country Status (1)

Country Link
JP (1) JPH08320215A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172624A (en) * 2008-01-23 2009-08-06 Nisshin Steel Co Ltd Method and apparatus for straightening bend in hot rolling stage
JP2012159431A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Trail end crop detection device and hot rolling equipment
JP2013099841A (en) * 2011-10-17 2013-05-23 Jfe Steel Corp Product measurement position correction method and crop part shearing method for rolled steel plate
JP2014036993A (en) * 2012-08-20 2014-02-27 Jfe Steel Corp Method and apparatus for estimating shape defect due to run-out cooling strain
JP2015087341A (en) * 2013-11-01 2015-05-07 株式会社浅野研究所 Sheet temperature distribution output device, sheet heating and conveying device, thermal molding device and sheet temperature distribution output method
JP2016518987A (en) * 2013-03-28 2016-06-30 ヒュンダイ スチール カンパニー Camber control apparatus and method
JP2016117098A (en) * 2014-12-01 2016-06-30 ポスコ Camber measuring apparatus and method in hot rolling process
JP2016194489A (en) * 2015-04-01 2016-11-17 東芝三菱電機産業システム株式会社 Planar shape measurement device
KR101685836B1 (en) * 2015-08-18 2016-12-12 현대제철 주식회사 Apparatus for cutting crop of plate and control method thereof
WO2017111003A1 (en) * 2015-12-22 2017-06-29 三菱電機株式会社 Wobble detection device
TWI664033B (en) * 2016-05-13 2019-07-01 日商新日鐵住金股份有限公司 Method for edging and device for edging

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172624A (en) * 2008-01-23 2009-08-06 Nisshin Steel Co Ltd Method and apparatus for straightening bend in hot rolling stage
JP2012159431A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Trail end crop detection device and hot rolling equipment
JP2013099841A (en) * 2011-10-17 2013-05-23 Jfe Steel Corp Product measurement position correction method and crop part shearing method for rolled steel plate
JP2014036993A (en) * 2012-08-20 2014-02-27 Jfe Steel Corp Method and apparatus for estimating shape defect due to run-out cooling strain
US10071407B2 (en) 2013-03-28 2018-09-11 Hyundai Steel Company Apparatus for controlling camber and method for same
JP2016518987A (en) * 2013-03-28 2016-06-30 ヒュンダイ スチール カンパニー Camber control apparatus and method
JP2015087341A (en) * 2013-11-01 2015-05-07 株式会社浅野研究所 Sheet temperature distribution output device, sheet heating and conveying device, thermal molding device and sheet temperature distribution output method
JP2016117098A (en) * 2014-12-01 2016-06-30 ポスコ Camber measuring apparatus and method in hot rolling process
JP2016194489A (en) * 2015-04-01 2016-11-17 東芝三菱電機産業システム株式会社 Planar shape measurement device
KR101685836B1 (en) * 2015-08-18 2016-12-12 현대제철 주식회사 Apparatus for cutting crop of plate and control method thereof
WO2017111003A1 (en) * 2015-12-22 2017-06-29 三菱電機株式会社 Wobble detection device
JPWO2017111003A1 (en) * 2015-12-22 2018-04-12 三菱電機株式会社 Shake detection device
TWI664033B (en) * 2016-05-13 2019-07-01 日商新日鐵住金股份有限公司 Method for edging and device for edging

Similar Documents

Publication Publication Date Title
EP0389968A2 (en) Apparatus and method for extracting edges and lines
CN110648345B (en) Method and system for detecting flow of tobacco shred materials on conveying belt based on light field imaging
JPH08320215A (en) Apparatus for measurement of steel sheet shape
RU2562413C2 (en) Method and system identifying and determining geometrical, spatial and position characteristics of products transported by continuously acting conveyor, in particular unmachined, coarse profiled, coarse machined or partially machined steel products
JPS633450B2 (en)
JP5194529B2 (en) Surface defect inspection system, method and program
JP4014535B2 (en) Optical movement amount detection device, electronic apparatus, and conveyance processing system
US7054013B2 (en) Process and device for measuring distances on strips of bright metal strip
US6163374A (en) Bending angle detection system
US4481534A (en) Configuration detecting device
JPH11173997A (en) Discrimination apparatus for foreign body on paper sheets
EP0094522A2 (en) Edge detection
JPH08285550A (en) Instrument for measuring-steel plate displacement
JPH01320419A (en) Method for measuring bent shape in lengthwise direction of hot-rolled material
JPH08159728A (en) Shape measuring instrument
JPH0130183B2 (en)
JPH1063914A (en) Device for inspecting paper sheet
JPH0121881B2 (en)
JPH11223675A (en) Snowfall measuring method and device
JP3145296B2 (en) Defect detection method
JP3444575B2 (en) Rangefinder
JPH07234116A (en) Warpage rate measuring method for plate material
JP2690431B2 (en) Shape measuring device
CN117716204A (en) Device and method for measuring unevenness of sheet
JPS6258443B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806