JPH08319523A - Semisolid forming process for metallic material - Google Patents

Semisolid forming process for metallic material

Info

Publication number
JPH08319523A
JPH08319523A JP6279948A JP27994894A JPH08319523A JP H08319523 A JPH08319523 A JP H08319523A JP 6279948 A JP6279948 A JP 6279948A JP 27994894 A JP27994894 A JP 27994894A JP H08319523 A JPH08319523 A JP H08319523A
Authority
JP
Japan
Prior art keywords
solid
alloy
mold
eutectic
hypereutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279948A
Other languages
Japanese (ja)
Inventor
Mitsuru Moritaka
満 森高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6279948A priority Critical patent/JPH08319523A/en
Publication of JPH08319523A publication Critical patent/JPH08319523A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To apply semisolid processing to a hyper-eutectic Al-Si alloy material and to provide a defect-free product having uniform and superior quality by subjecting a hyper-eutectic Al-Si alloy material to induction heating to a specific solid-phase rate in the slid-liquid coexisting region and then to forming. CONSTITUTION: A hyper-eutectic Al-Si alloy is prepared by regulating Si content to about 11%, a value not lower than the eutectic composition equivalent, in an Al-Si binary alloy. This hyper-eutectic Al-Si alloy material is subjected to induction heating to a solid-liquid coexisting region and then to forming. At this time, heating for the material is stopped at the point of time when the solid-shape rate in the central part reaches 0.65-0.80, and then forming is done. It is preferable to perform this forming by filling the material after the completion of heating into the metal mold of a molding machine in a reduced- pressure state of <=500Torr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属素材を固液共存域
で鍛造,ダイカスト等の加工をする方法に関し、殊に過
共晶Al−Si合金を素材として、加工開始時の固相率
を適切にすることにより、また素材を金型内へ充填する
際の空気の巻き込みを抑制することにより、良品質の加
工部品を製造できるようにした半溶融加工法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forging a metal material in a solid-liquid coexistence region, working such as die casting, and in particular, using a hypereutectic Al-Si alloy as a material, the solid fraction at the start of processing. The present invention relates to a semi-melt processing method capable of producing a processed component of good quality by appropriately controlling the above and suppressing the entrainment of air when filling a material into a mold.

【0002】[0002]

【従来の技術】金属素材の成形加工には種々の方法があ
るが、一般に構造部品の成形加工には強度や信頼性の点
からプレス鍛造等の方法が汎用され、素材は固相線以下
の温度域で成形加工されている。一方、複雑な形状の部
品等の成形加工には、形状の付与を最大の目的とするた
め成形品の特性は多少劣っても重力鋳造,高圧鋳造等の
方法が用いられ、素材は液相線以上の温度域で鋳型に注
入される。
2. Description of the Related Art There are various methods for forming metal materials. Generally, from the viewpoint of strength and reliability, methods such as press forging are generally used for forming parts of structural parts, and the materials are solid phase or below. Molded in the temperature range. On the other hand, for the molding of parts with complicated shapes, methods such as gravity casting and high pressure casting are used even if the characteristics of the molded product are somewhat inferior because the purpose is to give the shape, and the material is liquidus. It is injected into the mold in the above temperature range.

【0003】一方、金属素材としての過共晶Al−Si
合金は、耐摩耗性に優れると共に良好な高温強度を呈
し、また低い熱膨張係数を有することから、一般に耐
熱,耐摩耗用部品として各種産業機械に利用されてい
る。この過共晶Al−Si合金素材の成形加工には、鋳
造法の一つであるダイカスト法が汎用されている。
On the other hand, hypereutectic Al-Si as a metal material
Since the alloy has excellent wear resistance, exhibits good high-temperature strength, and has a low coefficient of thermal expansion, it is generally used as a heat resistant and wear resistant component in various industrial machines. A die-casting method, which is one of the casting methods, is generally used for forming the hypereutectic Al-Si alloy material.

【0004】しかし、過共晶Al−Si合金は、一般的
なダイカスト汎用合金に比べて液相線の温度が高いとい
う特質がある。このため鋳込み温度が必然的に高くな
り、その結果、金型の熱負荷が過大となって金型が局部
的に溶損するといった事故を生じやすい状況にある。ま
たダイカスト法では高温の溶湯が金型内に高速噴射され
るため、初晶Siの偏拆,鋳巣等の鋳造欠陥を生じる場
合が多く、品質面からみても満足できる状況ではない。
However, the hypereutectic Al-Si alloy has a characteristic that the liquidus temperature is higher than that of a general die-cast general purpose alloy. For this reason, the casting temperature is inevitably high, and as a result, the heat load of the mold becomes excessive and the mold is likely to locally melt, resulting in an accident. Further, in the die casting method, since a high temperature molten metal is injected into the mold at a high speed, casting defects such as deviation of primary crystal Si and porosity often occur, which is not satisfactory from the viewpoint of quality.

【0005】ところで近年、金属素材を固相線と液相線
との間の温度域、即ち固液共存域で加工する方法が各分
野で注目され研究されている。それは固液共存域での加
工方法が、一般にその領域にある素材の流動性が従来の
鍛造法の場合に比べて良好ゆえに加工力がちいさくて済
み、難加工性素材や複雑形状部品の成形などに対して有
利と考えられているからである。また従来の鋳造法に比
べてみても、成形温度を液相線以下まで低くすることが
できる。このため金型の局部的溶損や鋳巣の発生等の弊
害を回避しやすく、成形品の特性の向上が期待されるか
らである。
By the way, in recent years, a method of processing a metal material in a temperature range between a solidus line and a liquidus line, that is, a solid-liquid coexistence region has been noticed and studied in each field. Since the processing method in the solid-liquid coexistence area is generally better than that of the conventional forging method because the material in that area has better fluidity, the processing force is smaller, and it is possible to form difficult-to-process materials and complex shaped parts. This is because it is considered to be advantageous to. Further, even when compared with the conventional casting method, the molding temperature can be lowered to the liquidus or lower. For this reason, it is easy to avoid the adverse effects such as local melting damage of the mold and the generation of porosity, and it is expected that the characteristics of the molded product will be improved.

【0006】そこでAl−Si合金素材についても、こ
の半溶融加工法を適用して従来法による弊害を解消しよ
うとする試みがなされている(特公昭58─5748号
公報,特公平2─51703号公報)。
Therefore, also for Al-Si alloy materials, attempts have been made to apply the semi-melt processing method to eliminate the adverse effects of the conventional method (Japanese Patent Publication No. 58-5748 and Japanese Patent Publication No. 2-51703). Gazette).

【0007】[0007]

【発明が解決しようとする課題】しかしこれらの公報記
載内容を考察すると、固液共存時の合金素材の形態とし
ては、ばらばらの状態の変性した樹枝状晶固体粒子が液
相中に分散浮遊した状態あるいは一次粒子を液相マトリ
ックスにより互いに分離した状態に維持することによっ
て、相互に連結された網状の樹枝状組織が形成されない
ようにした形態であることが明記されている。
DISCLOSURE OF THE INVENTION However, considering the contents described in these publications, as the morphology of the alloy material in the coexistence of solid and liquid, the modified dendritic solid particles in a dispersed state are dispersed and suspended in the liquid phase. It is specified that the state or the primary particles are kept separated from each other by the liquid phase matrix so that the interconnected dendritic structure is not formed.

【0008】従って、加工の対象としている素材は亜共
晶の合金である。過共晶の合金であれば、凝固過程で初
晶が樹枝状に形成されることはないからである。即ち過
共晶Al−Si合金であれば、初晶としてまず遊離Si
が析出し、その後AlとSiの共晶凝固に進み、明瞭な
樹枝状組織が形成されることはない。従って、過共晶A
l−Si合金素材の半溶融加工法としては未知の状況に
ある。
Therefore, the material to be processed is a hypoeutectic alloy. This is because, in the case of a hypereutectic alloy, the primary crystals do not form dendrites during the solidification process. That is, in the case of a hypereutectic Al-Si alloy, first, free Si is used as a primary crystal.
Is deposited, and thereafter, eutectic solidification of Al and Si proceeds, and a clear dendritic structure is not formed. Therefore, hypereutectic A
It is in an unknown situation as a semi-melt processing method for 1-Si alloy materials.

【0009】本発明は上記事情に鑑みてなされたもので
あり、過共晶Al−Si合金素材を固液共存域で円滑に
加工して、良品質の製品が得られるような半溶融加工法
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and is a semi-melt processing method by which a hypereutectic Al-Si alloy material is smoothly processed in a solid-liquid coexistence region to obtain a good quality product. It is intended to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成し得た本
発明の半溶融加工法(請求項1の発明)は、Al−Si
2元合金におけるSi含有量が共晶組成相当分以上であ
るような過共晶Al−Si合金素材を固液共存域に誘導
加熱して成形加工を行うに際し、素材の加熱を、その中
心部での固相率が0.65〜0.80の範囲に至った時
点で終了し加工することを要旨とするものである。また
請求項2の発明の半溶融加工法は、請求項1の構成を前
提として、加熱が終了した素材を500Torr以下の
減圧状態にある成形機の金型内へ充填することを要旨と
するものである。
The semi-melt processing method (invention of claim 1) of the present invention, which has achieved the above object, is Al-Si.
When the hypereutectic Al-Si alloy material whose Si content in the binary alloy is equal to or more than the eutectic composition is induction-heated into the solid-liquid coexistence region to perform the forming process, the heating of the material is performed at the central part. The gist is to finish and process when the solid phase ratio reaches 0.65 to 0.80. Further, the semi-melt processing method of the invention of claim 2 is based on the structure of claim 1 and is characterized in that the material after heating is filled into a mold of a molding machine in a depressurized state of 500 Torr or less. Is.

【0011】さらに本発明を詳しく説明する。本発明
は、半溶融加工法における特有の問題点をいかに解消す
べきかにつき鋭意研究の結果得られた知見に基づいてな
されたものである。まず請求項1の発明について説明す
る。固液共存域で加工を行う場合、素材の固相と液相の
割合(以下,この割合を「固相率」で把握し表示す
る。)如何によって素材の変形特性が大きく異なるた
め、加工開始時の固相率を素材の種類に応じた適切なも
のにしなければならないという問題がある。
The present invention will be further described in detail. The present invention was made based on the findings obtained as a result of earnest research on how to solve the problems peculiar to the semi-melt processing method. First, the invention of claim 1 will be described. When processing in the solid-liquid coexistence region, the deformation characteristics of the material greatly differ depending on the ratio of the solid phase and liquid phase of the material (hereinafter, this ratio is grasped and displayed as "solid phase ratio"), so processing starts There is a problem that the solid phase ratio at that time must be made appropriate according to the type of material.

【0012】即ち、固相率が適正な範囲を外れて低くな
れば、この固相率に対応する温度にまで加熱する過程
で、素材内部に液相の不均一分布が生じることは避けら
れない。そしてこのような液相の不均一分布が局部的に
生じると、素材はもはや固相域の状態の形状を保てな
い。そのため、このような状態の素材を金型内へ充填す
れば、充填された素材の内部で固相と液相が不均一に分
布した状態となる。また固相と液相との接触面(境界
面)がいわゆる湯境欠陥となる。従って良品質の加工品
を得ることができない。一方、固相率が適正な範囲を外
れて高くなれば、素材が流動しにくくなる。この場合に
素材を金型内へ充填するには大きな加工力を必要とする
が、これでは半溶融加工法を採用する意味がない。
That is, if the solid fraction falls outside the proper range and becomes low, inhomogeneous distribution of the liquid phase inevitably occurs in the material in the process of heating to the temperature corresponding to this solid fraction. . When such a non-uniform distribution of the liquid phase locally occurs, the material can no longer maintain the shape of the solid phase region. Therefore, if the material in such a state is filled in the mold, the solid phase and the liquid phase are non-uniformly distributed inside the filled material. Further, the contact surface (boundary surface) between the solid phase and the liquid phase becomes a so-called molten boundary defect. Therefore, a good quality processed product cannot be obtained. On the other hand, if the solid fraction goes out of the proper range and becomes high, the material becomes hard to flow. In this case, a large processing force is required to fill the material into the mold, but this does not make sense to adopt the semi-melt processing method.

【0013】そこで本発明者は、過共晶Al−Si合金
を素材としたときの、加工開始時の固相率の適切な範囲
を見出すべく鋭意実験を行った。まず、代表的な過共晶
Al−Si合金の一つであるA390について、既提案
の技術、即ち固液共存域での固相率の正確な推定技術
(特願平5−269648号)を用いて、図2に示すよ
うに温度と固相率との関係を求めた。
Therefore, the present inventor has conducted earnest experiments to find an appropriate range of the solid fraction at the start of processing when a hypereutectic Al-Si alloy is used as a raw material. First, regarding A390, which is one of the typical hypereutectic Al-Si alloys, the already proposed technique, that is, the technique for accurately estimating the solid fraction in the solid-liquid coexistence region (Japanese Patent Application No. 5-269648) is used. Then, the relationship between the temperature and the solid fraction was obtained as shown in FIG.

【0014】次に直径58mm,長さ36mmのA39
0素材を高周波加熱した。具体的には図1に示す成形機
のセラミックススリーブ2内で素材1を周波数2000
Hzで高波加熱した。その際、素材1の下側表層部から
セラミックススリーブ2への熱伝導による温度低下を防
止するために、既提案の技術(特願平5−273070
号)を利用し、これら両者が接触する面積に相当する部
分に厚さ約1.5mmの純Al板を敷設した。また加熱
中の素材1の温度としては、その中心部の温度をシース
熱電対で測定した。
Next, A39 having a diameter of 58 mm and a length of 36 mm
High frequency heating of 0 material. Specifically, in the ceramic sleeve 2 of the molding machine shown in FIG.
High frequency heating at Hz. At that time, in order to prevent a temperature drop due to heat conduction from the lower surface layer portion of the material 1 to the ceramic sleeve 2, a previously proposed technique (Japanese Patent Application No. Hei 5-273070).
No.) was used, and a pure Al plate having a thickness of about 1.5 mm was laid on a portion corresponding to an area where these two contact each other. As the temperature of the raw material 1 during heating, the temperature of the central portion was measured with a sheath thermocouple.

【0015】この結果、素材1の中心部の温度が約56
5℃まで、即ち固相率が約0.65までは、素材1は固
液共存状態にあるものの、固相,液相についての顕著な
不均一分布を生じることはなく、外見的にもほぼ固相域
状態での形状を保ことができ、著しい形くずれは生じな
いことを確認した。
As a result, the temperature at the center of the material 1 is about 56.
Up to 5 ° C, that is, until the solid fraction is about 0.65, although the material 1 is in a solid-liquid coexisting state, no significant non-uniform distribution of the solid and liquid phases occurs, and the appearance is almost the same. It was confirmed that the shape in the solid-phase region could be maintained and that no significant shape collapse occurred.

【0016】また本発明者は、A390よりもSi含有
量の高いAl−30%Si−4%Cu合金及びA390
よりもSi含有量の低いAl−9%Si−3%Cu−1
%Mgのそれぞれについて、上記と同様に温度と固相率
との関係を調べた。その結果を示したものがそれぞれ図
3,図4である。図2,図3,及び図4を比較考察すれ
ば明らかなように、どの素材であっても固相率が0.6
〜0.8程度であるとき、これに対応する温度範囲に大
差がないこと、言い換えれば固相率が0.6〜0.8程
度の範囲であるときの、これらの素材における固相と液
相の挙動は類似していることが分かる。
The inventor of the present invention has also found that an Al-30% Si-4% Cu alloy having a higher Si content than A390 and A390.
Al-9% Si-3% Cu-1 with lower Si content than
For each of the% Mg, the relationship between the temperature and the solid fraction was examined in the same manner as above. The results are shown in FIGS. 3 and 4, respectively. As is clear from a comparative examination of FIGS. 2, 3 and 4, the solid fraction is 0.6 for all materials.
When it is about 0.8, there is no great difference in the corresponding temperature range, in other words, when the solid phase ratio is in the range of about 0.6 to 0.8, the solid phase and the liquid in these materials are It can be seen that the phase behavior is similar.

【0017】さらに、Si含有量が共晶組成相当分(約
11%)以上であるような過共晶Al−Si合金素材に
おいては、固相率が約0.65までであれば、固相,液
相の著しい不均一分布はなく、素材もほぼ固相域での形
状を保つことができ、著しい形くずれを生じることはな
いことが確認できた。従ってこのような状態の素材を金
型内に充填すれば、成形品断面内で固相と液相の分布は
比較的均一なものとなり、湯境等の欠陥を抑制できて品
質上好ましいものとなる。一方、固相率が高すぎれば、
素材の流動性が低下し、金型内へ充填しにくくなるた
め、通常0.8以下に設定することが望ましい。
Further, in a hypereutectic Al-Si alloy material having a Si content equal to or more than the eutectic composition equivalent (about 11%), the solid phase ratio is up to about 0.65. It was confirmed that there was no significant non-uniform distribution of the liquid phase and the material could maintain its shape in the solid phase region without any significant shape loss. Therefore, if the material in such a state is filled in the mold, the distribution of the solid phase and the liquid phase becomes relatively uniform in the cross section of the molded product, and defects such as a water boundary can be suppressed, which is preferable in terms of quality. Become. On the other hand, if the solid fraction is too high,
Since the fluidity of the raw material decreases and it becomes difficult to fill the material into the mold, it is usually desirable to set it to 0.8 or less.

【0018】以上の実験結果を踏まえ、上述の如く請求
項1の発明に係る半溶融加工法として、Si含有量が共
晶組成相当分以上であるような過共晶Al−Si合金素
材を固液共存域に誘導加熱して成形加工を行うに際し、
素材の加熱を、その中心部での固相率が0.65〜0.
80の範囲に至った時点で終了し加工する特有の手段を
採用し得たものである。
Based on the above experimental results, as described above, as the semi-melt processing method according to the invention of claim 1, a hypereutectic Al--Si alloy material having a Si content equal to or more than the eutectic composition is solidified. When performing induction heating in the liquid coexistence region for molding,
When the material is heated, the solid fraction in the central portion is 0.65 to 0.
It is possible to adopt a peculiar means for finishing and processing when the range of 80 is reached.

【0019】次に、請求項2の発明について説明する。
固液共存域で加工を行う場合の他の問題点として、加工
開始前の素材自体の保有熱が鋳造法における溶湯に比べ
て少ないという事情からくる特有の問題点がある。即
ち、保有熱が少ない素材を金型内に円滑に充填するため
には、少なくとも、その充填操作を比較的高速で行う必
要がある。比較的高速で充填しなければ、素材と金型と
の接触時間が長くなり、その結果、素材の温度が一層低
下し、金型全体に充満する前に素材は固化してしまい、
良好な成形品は得られないからである。また金型への充
填時に素材の固相と液相が不均一に流動する結果、成形
品内部に固相と液相の不均一分布,即ちいわゆるマクロ
偏拆を生じ、好ましくないからである。
Next, the invention of claim 2 will be described.
Another problem in processing in the solid-liquid coexistence region is a unique problem due to the fact that the heat of the material itself before starting the processing is lower than that of the molten metal in the casting method. That is, in order to smoothly fill the material having a small amount of heat in the mold, at least the filling operation needs to be performed at a relatively high speed. Unless filling at a relatively high speed, the contact time between the material and the mold becomes longer, and as a result, the temperature of the material further decreases, and the material solidifies before filling the entire mold,
This is because a good molded product cannot be obtained. Further, the solid phase and the liquid phase of the material flow nonuniformly when the material is filled in the mold, resulting in a nonuniform distribution of the solid phase and the liquid phase inside the molded article, that is, so-called macro deviation, which is not preferable.

【0020】その一方で、そのような迅速充填操作を必
要とするがゆえに、充填時に素材内部に空気が巻き込ま
れ易くなるという特有の問題がある。このような空気の
巻き込みが生じると、充填後の素材表層部や内部に空隙
が生じ、熱処理後の欠陥(ブリスタ)の発生及び機械的
性質の低下をもたらし、品質上好ましくない。
On the other hand, since such a quick filling operation is required, there is a peculiar problem that air is easily trapped inside the material during filling. When such entrainment of air occurs, voids are formed in the surface layer portion or inside of the material after filling, causing defects (blister) after heat treatment and deteriorating mechanical properties, which is not preferable in terms of quality.

【0021】そこで本発明者は、いかにすれば、このよ
うな迅速充填時における素材内部への空気の巻き込み
を、品質に悪影響を及ぼさない程度にまで抑制できる
か、その手段を見出すべく研究を重ねた。まず、充填操
作の前に金型内を予め排気し、減圧状態にしておけば充
填時の空気の巻き込みを抑制できるのではないかとの考
えに基づき以下の実験を行った。図1は、成形機の金型
部を示す模式図であり、成形品は、楕円枠F内に破線で
示す断面形状から明らかなように、ディスク部Edを挟
んで両側にフィン部Ef及びブッシュ部Ebを有する部
品である。
[0021] Therefore, the present inventor has conducted extensive research to find out how to suppress the entrainment of air into the material during such rapid filling to the extent that the quality is not adversely affected. It was First, the following experiment was carried out based on the idea that it is possible to prevent the entrainment of air during filling if the interior of the mold is evacuated in advance and the pressure is reduced before the filling operation. FIG. 1 is a schematic view showing a mold part of a molding machine, and a molded product has fin portions Ef and bushes on both sides with a disc portion Ed interposed therebetween, as is apparent from a sectional shape shown by a broken line in an elliptical frame F. It is a component having a portion Eb.

【0022】固液共存域での素材1の加熱を終了する
と、プランジャーチップ3が迅速に前進する。このチッ
プ3が所定の位置を通過した時点で、金型に設けた排気
口4から金型キャビティ5内の空気の吸引を開始する。
そして、素材1が排気溝6を通過して排気口4に到達す
る直前に開閉ピン7を動かして、排気溝6と排気口4と
の連通を遮断する。このようにして金型内を減圧した状
態で素材1を金型内へ充填できる構成とした。
When the heating of the material 1 in the solid-liquid coexisting region is completed, the plunger tip 3 advances rapidly. When this chip 3 passes a predetermined position, suction of air in the mold cavity 5 is started from the exhaust port 4 provided in the mold.
Immediately before the material 1 passes through the exhaust groove 6 and reaches the exhaust port 4, the open / close pin 7 is moved to block the communication between the exhaust groove 6 and the exhaust port 4. In this way, the material 1 can be filled into the mold while the pressure inside the mold is reduced.

【0023】なお、空気の吸引に際しては、具体的に
は、図示しない鋼製タンクを介して図示しない真空ポン
プと排気口4を連結し、真空ポンプで予めタンク内を1
Torr程度にまで減圧しておく。そして、プランジャ
ーチップ3が所定の位置を通過した時点でタンクの弁を
開くと、金型キャビティ5内の空気が排気口4を通り、
タンク内へ迅速に吸引されるようにした。また、金型合
わせ面に設けた排気溝6から吸引するだけでは、金型裏
面の押し出しピン部8等から金型キャビティ5内への空
気の侵入により、吸引効果に問題が生じた。そこで、押
し出し部にチャンバー9を取りつけてシール構造とし、
空気の侵入を防止することにより吸引効果を維持できる
ようにした。なお、10,11はダイプレートである。
When sucking air, specifically, a vacuum pump (not shown) and an exhaust port 4 are connected via a steel tank (not shown), and the inside of the tank is preliminarily set to 1 by the vacuum pump.
Reduce the pressure to about Torr. Then, when the valve of the tank is opened when the plunger tip 3 has passed the predetermined position, the air in the mold cavity 5 passes through the exhaust port 4,
It was designed to be quickly sucked into the tank. Further, if only suction is performed from the exhaust groove 6 provided on the die mating surface, air will enter into the die cavity 5 from the push pin portion 8 or the like on the back surface of the die, causing a problem in the suction effect. Therefore, the chamber 9 is attached to the extruded portion to form a seal structure,
The suction effect can be maintained by preventing the invasion of air. In addition, 10 and 11 are die plates.

【0024】さて、過共晶Al−Si合金の一つである
A390を素材として固液共存域で成形実験を行うに際
し、空気吸引用の上記タンクの弁の開閉タイミングを変
えることにより排気時間を調節し、金型内の減圧の程度
を変えられるようにした。その結果、金型内を予め約5
00Torrまで減圧しておけば、充填時の空気の巻き
込みを抑制でき、品質の良い成形品が得られることを確
認した。なお素材にはA390を用いたが、請求項1の
発明と同様、Si含有量が共晶組成相当分(約11%)
以上であるような過共晶Al−Si合金全般に対して有
効である。
When performing a molding experiment in the solid-liquid coexistence region using A390, which is one of the hypereutectic Al-Si alloys, as the material, the evacuation time is changed by changing the opening / closing timing of the valve of the tank for sucking air. It was adjusted so that the degree of vacuum in the mold could be changed. As a result, about 5
It was confirmed that if the pressure was reduced to 00 Torr, entrainment of air during filling could be suppressed, and a molded product of good quality could be obtained. Although A390 was used as the material, the Si content is equivalent to the eutectic composition (about 11%) as in the invention of claim 1.
It is effective for all the hypereutectic Al-Si alloys as described above.

【0025】以上の実験結果を踏まえ、請求項2の発明
に係る半溶融加工法として、Si含有量が共晶組成相当
分以上であるような過共晶Al−Si合金素材を固液共
存域に誘導加熱して成形加工を行うに際し、素材の加熱
を、その中心部での固相率が0.65〜0.80の範囲
に至った時点で終了し、この素材を500Torr以下
の減圧状態にある成形機の金型内に充填するという特有
の手段を採用し得たものである。
Based on the above experimental results, in the semi-melt processing method according to the invention of claim 2, a hypereutectic Al-Si alloy material having a Si content equal to or more than the eutectic composition is used in the solid-liquid coexistence region. When the induction heating is performed and the forming process is performed, the heating of the material is finished when the solid fraction at the central portion reaches the range of 0.65 to 0.80, and the material is depressurized to 500 Torr or less. It is possible to adopt a unique means of filling the mold of the molding machine in.

【0026】なお、減圧のための排気手段としては、上
記実験例以外に、例えば図1に示すように空気がトラッ
プされ易いフィン部Efのみから排気し、金型合わせ面
には、金型成形における通常のエアベント部を設けると
いった局部的な排気手段を採用してもよい。また、上述
の金型内事前減圧手段は、過共晶Al−Si合金以外に
もAl合金やMg合金などの固液共存域での成形加工に
適用可能である。
As the exhaust means for reducing the pressure, in addition to the experimental example described above, for example, as shown in FIG. 1, air is exhausted only from the fin portion Ef where air is easily trapped, and the die mating surface is molded with a die. A local exhaust means such as a normal air vent section may be used. Further, the above-mentioned pre-depressurizing means in the mold can be applied to the forming process in the solid-liquid coexistence region of Al alloy, Mg alloy, etc. other than the hypereutectic Al—Si alloy.

【0027】[0027]

【作用】請求項1の発明によれば、固液共存域での過共
晶Al−Si合金素材の成形加工に際し、加工開始直前
の固相率が0.65となる段階で加熱を終了し金型に充
填するので、固相,液相について著しい不均一分布が生
じることはない。また素材は、ほぼ固相域での形状を保
つことができ、著しい形くずれが生じることはない。従
って、このような素材を成形すれば、成形品断面内で固
相と液相の分布は比較的均一なものとなり、湯境等の欠
陥の発生を抑制することができる。また上記素材の成形
加工に際し、加工開始直前の固相率が0.8以下である
ように制御するので、素材の流動性の低下を防止でき、
固相域での成形に比べて小さい加工力で済ますことがで
き、半溶融加工法の長所を十分生かすことができる。
According to the invention of claim 1, when forming a hypereutectic Al-Si alloy material in the solid-liquid coexistence region, the heating is terminated at the stage where the solid phase ratio becomes 0.65 immediately before the start of the processing. Since it is filled in the mold, no significant non-uniform distribution of solid and liquid phases occurs. Further, the material can maintain the shape in the substantially solid phase region, and the shape is not significantly deformed. Therefore, if such a material is molded, the distribution of the solid phase and the liquid phase becomes relatively uniform in the cross section of the molded product, and it is possible to suppress the occurrence of defects such as the molten metal boundary. Further, when the above-mentioned material is molded and processed, the solid fraction immediately before the processing is started is controlled to be 0.8 or less, so that the fluidity of the material can be prevented from decreasing.
Compared to molding in the solid phase, it requires less processing force, and the advantages of semi-melt processing can be fully utilized.

【0028】また請求項2の発明では、上記素材を金型
に充填する前に金型内を予め減圧するようにしたもので
ある。従って、固液共存域では迅速充填操作を必要とす
るがゆえに発生し易かった素材内部への空気の巻き込み
やトラップを完全に抑制することができる。この結果、
熱処理後の欠陥(ブリスタ)の発生や機械的性質の低下
を防止することができる。
According to the second aspect of the invention, the inside of the mold is depressurized before the mold is filled with the material. Therefore, in the solid-liquid coexistence region, it is possible to completely suppress the entrapment and trapping of air into the material, which is likely to occur because a quick filling operation is required. As a result,
Occurrence of defects (blister) and deterioration of mechanical properties after heat treatment can be prevented.

【0029】[0029]

【実施例】【Example】

(実施例1)直径58mm,長さ36mmのA390素
材をダイカスト機のAl板を底面に敷いたセラミックス
スリーブ内で2000Hzによる高周波加熱を行い、中
心温度が約565℃(固相率約0.65)となった時点
で加熱を終了し、プランジャーを迅速(1m/s)に作
動させて素材を金型内に充填した。得られた成形品断面
のマクロ組織の写真を図5に示す。またディスク部(図
1のEdに相当)のミクロ組織の写真を図6に示す。図
5より成形品断面内で固相と液相は比較的均一に分布し
ている状態がよく分かり、また図6よりミクロ組織も健
全なものであることが分かる。
(Example 1) A390 material having a diameter of 58 mm and a length of 36 mm was subjected to high-frequency heating at 2000 Hz in a ceramic sleeve having an Al plate of a die casting machine laid on the bottom, and the center temperature was about 565 ° C (solid phase ratio about 0.65). ) Was reached, heating was terminated, and the plunger was rapidly operated (1 m / s) to fill the material into the mold. A photograph of the macrostructure of the cross section of the obtained molded product is shown in FIG. A photograph of the microstructure of the disk portion (corresponding to Ed in FIG. 1) is shown in FIG. It is clear from FIG. 5 that the solid phase and the liquid phase are relatively evenly distributed in the cross section of the molded product, and from FIG. 6 that the microstructure is also sound.

【0030】(比較例1)実施例1と同一の素材を同一
構成に係るダイカスト機のセラミックススリーブ内で高
周波加熱し、中心温度が約571℃(固相率約0.5)
となった時点で加熱を終了し、プランジャーを迅速に作
動させて素材を金型内に充填した。得られた成形品断面
のマクロ組織の写真を図7に示す。またディスク部のミ
クロ組織の写真を図8に示す。図7より成形品断面内の
固相と液相は不均一に分布している状態が分かり、また
図8より顕著な湯境欠陥が認められる。
(Comparative Example 1) The same material as in Example 1 was subjected to high frequency heating in a ceramic sleeve of a die casting machine having the same structure, and the center temperature was about 571 ° C (solid phase ratio about 0.5).
When, the heating was terminated and the plunger was quickly operated to fill the material into the mold. A photograph of the macrostructure of the cross section of the obtained molded product is shown in FIG. 7. A photograph of the microstructure of the disc portion is shown in FIG. It can be seen from FIG. 7 that the solid phase and the liquid phase in the cross section of the molded product are non-uniformly distributed, and from FIG.

【0031】(実施例2)実施例1と同一の素材を同一
構成に係るダイカスト機のセラミックススリーブ内で高
周波加熱し、中心温度が約562℃(固相率約0.6
8)となった時点で加熱を終了し、プランジャーを迅速
(1m/s)に作動させて、素材を、約480Torr
にまで減圧した金型内に充填した。得られた成形品断面
のカラーチェック後の状態を示した写真が図9である。
この図からよく分かるように成形品断面内にはポア等の
欠陥は全く認められない。
(Embodiment 2) The same material as that of Embodiment 1 is subjected to high frequency heating in a ceramic sleeve of a die casting machine having the same structure, and the center temperature is about 562 ° C (solid phase ratio about 0.6).
When the temperature reaches 8), the heating is terminated and the plunger is quickly operated (1 m / s), and the material is removed at about 480 Torr.
It was filled in a mold whose pressure was reduced to 1. FIG. 9 is a photograph showing the state of the cross section of the obtained molded product after color check.
As is clear from this figure, no defects such as pores are found in the cross section of the molded product.

【0032】(比較例2)実施例1と同一の素材を同一
構成に係るダイカスト機のセラミックススリーブ内で高
周波加熱し、中心温度が約562℃(固相率約0.6
8)となった時点で加熱を終了し、プランジャーを迅速
に作動させて、素材を、金型合わせ面にエアベント部の
みを設けて減圧されていない金型内に充填した。得られ
た成形品断面のカラーチェック後の状態を示した写真が
図10である。この図よりフィン部(図1のEfに相
当)の先端には大きな空隙が生じており、また断面内全
体にわたって欠陥が認められる。
(Comparative Example 2) The same material as in Example 1 was subjected to high frequency heating in a ceramic sleeve of a die casting machine having the same structure, and the center temperature was about 562 ° C (solid phase ratio about 0.6).
When 8) was reached, the heating was terminated, the plunger was quickly operated, and the material was filled into the mold that was not depressurized by providing only the air vent portion on the mold mating surface. FIG. 10 is a photograph showing the state of the cross section of the obtained molded product after color check. From this figure, a large void is formed at the tip of the fin portion (corresponding to Ef in FIG. 1), and defects are recognized throughout the cross section.

【0033】[0033]

【発明の効果】本発明の半溶融加工法は以上のように構
成したので、過共晶Al−Si合金素材を固液共存域で
成形加工した場合に、断面内での固相,液相の分布が均
一で湯境等の欠陥のない加工部品を比較的小さい加工力
で製造することができる。また熱処理後の欠陥(ブリス
タ)の発生や機械的性質の低下のおそれを無くし、良品
質の加工部品を製造することができる。
Since the semi-melt processing method of the present invention is constructed as described above, when the hypereutectic Al-Si alloy material is formed in the solid-liquid coexistence region, the solid phase and liquid phase in the cross section are It is possible to manufacture a machined part having a uniform distribution and no defects such as a molten metal boundary with a relatively small machining force. Further, it is possible to manufacture a good-quality processed part by eliminating the risk of occurrence of defects (blister) and deterioration of mechanical properties after heat treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための成形機の金型部を
示す要部断面模式図である。
FIG. 1 is a schematic cross-sectional view of an essential part showing a mold part of a molding machine for carrying out the method of the present invention.

【図2】過共晶Al−Si合金A390について、固液
共存域における温度と固相率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al—Si alloy A390.

【図3】過共晶Al−30%Si−4%Cu合金につい
て、固液共存域における温度と固相率との関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al-30% Si-4% Cu alloy.

【図4】過共晶Al−9%Si−3%Cu−1%Mg合
金について、固液共存域における温度と固相率との関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al-9% Si-3% Cu-1% Mg alloy.

【図5】請求項1の発明方法を実施して得られた成形加
工品の断面のマクロ組織を示す写真である。
FIG. 5 is a photograph showing a macrostructure of a cross section of a molded product obtained by carrying out the method of the invention of claim 1.

【図6】上記成形加工品のディスク部のミクロ組織を示
す写真である。
FIG. 6 is a photograph showing a microstructure of a disk portion of the molded product.

【図7】(比較例1)で得られた成形加工品の断面のマ
クロ組織を示す写真である。
FIG. 7 is a photograph showing a macrostructure of a cross section of a molded product obtained in (Comparative Example 1).

【図8】(比較例1)で得られた成形加工品のディスク
部のミクロ組織を示す写真である。
FIG. 8 is a photograph showing a microstructure of a disk portion of a molded product obtained in (Comparative Example 1).

【図9】請求項2の発明方法を実施して得られた成形加
工品のカラーチェック後の状態を示す写真である。
FIG. 9 is a photograph showing a state after a color check of a molded product obtained by carrying out the method of the invention as claimed in claim 2.

【図10】(比較例2)で得られた成形加工品のカラー
チェック後の状態を示す写真である。
FIG. 10 is a photograph showing the state of the molded product obtained in (Comparative Example 2) after color check.

【符号の説明】[Explanation of symbols]

1 素材 2 セラミックススリーブ 3 プランジャーチップ 4 排気口 5 金型キャビティ 6 排気溝 7 開閉ピン 8 押し出しピン部 9 チャンバー 10,11 ダイプレート 1 Material 2 Ceramics Sleeve 3 Plunger Chip 4 Exhaust Port 5 Mold Cavity 6 Exhaust Groove 7 Opening Pin 8 Extruding Pin 9 Chamber 10 and 11 Die Plate

【手続補正書】[Procedure amendment]

【提出日】平成8年5月27日[Submission date] May 27, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための成形機の金型部を
示す要部断面模式図である。
FIG. 1 is a schematic cross-sectional view of an essential part showing a mold part of a molding machine for carrying out the method of the present invention.

【図2】過共晶Al−Si合金A390について、固液
共存域における温度と固相率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al—Si alloy A390.

【図3】過共晶Al−30%Si−4%Cu合金につい
て、固液共存域における温度と固相率との関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al-30% Si-4% Cu alloy.

【図4】過共晶Al−9%Si−3%Cu−1%Mg合
金について、固液共存域における温度と固相率との関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a temperature and a solid phase ratio in a solid-liquid coexistence region for a hypereutectic Al-9% Si-3% Cu-1% Mg alloy.

【図5】請求項1の発明方法を実施して得られた成形加
工品の断面のマクロ組織を示す写真を模した図である。
FIG. 5 is a drawing imitating a photograph showing a macrostructure of a cross section of a molded product obtained by carrying out the method of the invention of claim 1.

【図6】上記成形加工品のディスク部のミクロ組織を示
す写真を模した図である。
FIG. 6 is a diagram simulating a photograph showing a microstructure of a disk portion of the molded product.

【図7】(比較例1)で得られた成形加工品の断面のマ
クロ組織を示す写真を模した図である。
FIG. 7 is a diagram simulating a photograph showing a macrostructure of a cross section of a molded product obtained in (Comparative example 1).

【図8】(比較例1)で得られた成形加工品のディスク
部のミクロ組織を示す写真を模した図である。
FIG. 8 is a diagram simulating a photograph showing a microstructure of a disk portion of a molded product obtained in (Comparative Example 1).

【図9】請求項2の発明方法を実施して得られた成形加
工品のカラーチェック後の状態を示す写真を模した図
ある。
FIG. 9 is a drawing imitating a photograph showing a state after a color check of a molded product obtained by carrying out the method of the second aspect of the present invention.

【図10】(比較例2)で得られた成形加工品のカラー
チェック後の状態を示す写真を模した図である。
FIG. 10 is a model imitating a photograph showing a state of the molded product obtained in (Comparative Example 2) after color check.

【符号の説明】 1 素材 2 セラミックススリーブ 3 プランジャーチップ 4 排気口 5 金型キャビティ 6 排気溝 7 開閉ピン 8 押し出しピン部 9 チャンバー 10,11 ダイプレート[Explanation of symbols] 1 Material 2 Ceramics sleeve 3 Plunger tip 4 Exhaust port 5 Mold cavity 6 Exhaust groove 7 Opening pin 8 Extruding pin part 9 Chamber 10, 11 Die plate

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 27/15 B22D 27/15 C22C 21/02 C22C 21/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display part B22D 27/15 B22D 27/15 C22C 21/02 C22C 21/02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Al−Si2元合金におけるSi含有量
が共晶組成相当分以上であるような過共晶Al−Si合
金素材を固液共存域に誘導加熱して成形加工を行うに際
し、素材の加熱を、その中心部での固相率が0.65〜
0.80の範囲に至った時点で終了し、加工することを
特徴とする金属素材の半溶融加工法。
1. A hypereutectic Al-Si alloy material having a Si content in the Al-Si binary alloy equal to or more than the eutectic composition is induction-heated in a solid-liquid coexistence region to perform a forming process. The solid phase rate at the center of the
A semi-melt processing method for a metal material, characterized in that it is finished and processed when the range reaches 0.80.
【請求項2】 加熱が終了した素材を、500Torr
以下の減圧状態にある成形機の金型内へ充填する請求項
1記載の半溶融加工法。
2. The material which has been heated is heated to 500 Torr.
The semi-melt processing method according to claim 1, wherein the mold is filled in a mold of a molding machine in the following reduced pressure state.
JP6279948A 1994-10-18 1994-10-18 Semisolid forming process for metallic material Pending JPH08319523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279948A JPH08319523A (en) 1994-10-18 1994-10-18 Semisolid forming process for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279948A JPH08319523A (en) 1994-10-18 1994-10-18 Semisolid forming process for metallic material

Publications (1)

Publication Number Publication Date
JPH08319523A true JPH08319523A (en) 1996-12-03

Family

ID=17618158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279948A Pending JPH08319523A (en) 1994-10-18 1994-10-18 Semisolid forming process for metallic material

Country Status (1)

Country Link
JP (1) JPH08319523A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263107A (en) * 2006-02-28 2007-10-11 Daikin Ind Ltd Sliding component of compressor
JP2011067838A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Method of casting semi-molten metal and apparatus of casting semi-molten metal
CN102423798A (en) * 2011-11-25 2012-04-25 沈阳工业大学 Hypereutectic Al-Si alloy extrusion casting forming method and mould thereof
US8366425B2 (en) 2006-02-28 2013-02-05 Daikin Industries, Ltd. Compressor slider, slider preform, scroll part, and compressor
CN110724858A (en) * 2019-10-24 2020-01-24 成都先进金属材料产业技术研究院有限公司 Preparation method of hypereutectic aluminum-silicon alloy semi-solid slurry or blank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263107A (en) * 2006-02-28 2007-10-11 Daikin Ind Ltd Sliding component of compressor
US8366425B2 (en) 2006-02-28 2013-02-05 Daikin Industries, Ltd. Compressor slider, slider preform, scroll part, and compressor
JP2011067838A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Method of casting semi-molten metal and apparatus of casting semi-molten metal
CN102423798A (en) * 2011-11-25 2012-04-25 沈阳工业大学 Hypereutectic Al-Si alloy extrusion casting forming method and mould thereof
CN110724858A (en) * 2019-10-24 2020-01-24 成都先进金属材料产业技术研究院有限公司 Preparation method of hypereutectic aluminum-silicon alloy semi-solid slurry or blank

Similar Documents

Publication Publication Date Title
US4798237A (en) Molding die for use in casting
JP2976073B2 (en) Method for producing thixotropic material
JPH09509101A (en) Permanent mold casting of reactive melt
JPH10507690A (en) Manufacturing method of cylinder block
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
WO2004002658A1 (en) Method and device for vacuum die casting of aluminum alloy, and aluminum alloy product
CN109234552A (en) A kind of method that Under Pressure Solidification prepares high Cu content made of Al-Cu alloy
US20160167122A1 (en) Die casting system and method
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
WO2020052528A1 (en) Method for producing high-strength near-net-shaped metal part
JPH08319523A (en) Semisolid forming process for metallic material
JP3416036B2 (en) Mold structure for magnesium alloy injection molding and method for molding magnesium alloy parts using the mold structure
JPH06142870A (en) Method of die casting high mechanical performance part by injecting semi-fluid metal alloy
JPS59189055A (en) Production of die cast parts having less blowhole
JP2000355722A (en) Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
US8312913B2 (en) Casting process
JPH08200249A (en) Scroll type compressor and manufacture thereof
AU2016211088B2 (en) Process for obtaining a low silicon aluminium alloy part
Moradi et al. Defect control and mechanical properties of thixoformed Al–Si alloy
Soundararajan et al. Effect of squeeze casting process parameters on surface roughness of A413 alloy and A413-B4C composites
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP3141615B2 (en) Differential pressure casting equipment
US20050103461A1 (en) Process for generating a semi-solid slurry
RU2771078C1 (en) Method for controlling the process of producing workpieces of pistons of internal combustion engines from hypereutectic aluminium alloys
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate