JP3764200B2 - Manufacturing method of high-strength die-cast products - Google Patents

Manufacturing method of high-strength die-cast products Download PDF

Info

Publication number
JP3764200B2
JP3764200B2 JP06290696A JP6290696A JP3764200B2 JP 3764200 B2 JP3764200 B2 JP 3764200B2 JP 06290696 A JP06290696 A JP 06290696A JP 6290696 A JP6290696 A JP 6290696A JP 3764200 B2 JP3764200 B2 JP 3764200B2
Authority
JP
Japan
Prior art keywords
die
cast product
cast
strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06290696A
Other languages
Japanese (ja)
Other versions
JPH09256127A (en
Inventor
博己 高木
澄 吉川
博志 山下
重樹 岩波
靖 渡辺
真也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Denso Corp
Original Assignee
Toyota Industries Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13213775&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3764200(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Industries Corp, Denso Corp filed Critical Toyota Industries Corp
Priority to JP06290696A priority Critical patent/JP3764200B2/en
Priority to DE69725490T priority patent/DE69725490T2/en
Priority to EP19970104527 priority patent/EP0796926B1/en
Publication of JPH09256127A publication Critical patent/JPH09256127A/en
Application granted granted Critical
Publication of JP3764200B2 publication Critical patent/JP3764200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rotary Pumps (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム−シリコン共晶系鋳造材料を用いるとともに、例えば、スクロールコンプレッサ用部品等の高い引張強度及び疲労強度といった優れた機械的強度の要求されるダイカスト品の製造方法に関するものである。
【0002】
【従来の技術】
この種の高強度ダイカスト品の製造方法としては、アルミニウム−シリコン共晶系鋳造材料を低速ダイカスト法にて鋳造した後、例えば溶体化処理等の熱処理を行うものが知られている。このような低速ダイカスト法では、溶湯の射出速度が遅いため、ガスの巻き込み量が少なく、ダイカスト品の鋳巣(空洞部分)の発生による強度低下を起こりにくい。しかし、低速ダイカスト法ではダイカスト品の凝固速度が遅く、アルミニウム合金等の鋳造においては銅やマグネシウム等の固溶強化成分が選択的に析出されて、アルミニウム素地中に局在化することがある。このため、低速ダイカスト法により成型されたダイカスト品は、そのダイカスト品を500〜540℃程度の温度で、数〜数十時間保持する溶体化処理を行って、機械的強度の向上が図られている。前記の溶体化処理を施すことによって、アルミニウム素地中に局在化した銅やマグネシウム等の固溶強化成分が、アルミニウム素地中に均一分散され、その後の水冷により再固溶される。
【0003】
【発明が解決しようとする課題】
ところが、従来の低速ダイカスト法では、射出速度が遅く、しかもダイカスト品を長時間にわたる溶体化処理を施す必要があって、必然的に製品製造のためのサイクルタイムが非常に長いものとなる。このため、生産性がきわめて低く、製品のコストが高くなるという問題があった。また、ダイカスト品は凝固組織が粗大化するため機械的強度のばらつきが大きく、大きな荷重が繰り返し作用されるスクロールコンプレッサ用部品に使用した場合、十分かつ一定の耐久性が得られない可能性があった。
【0004】
このような問題を解決するために、例えば射出速度が速く生産効率のよい高速ダイカスト法の適用が考えられる。しかし、高速ダイカスト法では、溶湯の射出速度が速く型内に急速充填されるため、ガスの巻き込み量が多く、ダイカスト品に鋳巣(空洞部分)が発生しやすいという問題がある。また、このような鋳巣の多いダイカスト品に溶体化処理を施すと、空洞部分のガスが膨張してふくれが発生して、製品が不良品となる。つまり、高速ダイカスト法によるダイカスト品では、溶体化処理によって機械的強度の向上を行うことができない。
【0005】
本発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的としては、引張強度及び疲労強度といった機械的強度の優れた高強度ダイカスト品を効率よく生産することのできる製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の高強度ダイカスト品の製造方法の発明では、アルミニウム−シリコン共晶系鋳造材料を用い、高速ダイカスト法にて鋳造し、そのダイカスト品に離型後水冷及び時効処理を施す高強度ダイカスト品の製造方法において、前記前記鋳造材料は、シリコンを7.5〜12重量%を含有し、1.5〜4.8重量%の銅及び0.2〜0.7重量%のマグネシウムの少なくとも一方を含有するとともに、水冷前の前記ダイカスト品の表面温度が、250〜450℃の範囲であることを特徴とするものである。
【0007】
請求項2に記載の発明では、請求項1に記載の高強度ダイカスト品の製造方法において、前記ダイカスト品に水冷後に時効処理を施すことを特徴とするものである。
【0010】
請求項に記載の発明では、請求項またはに記載の高強度ダイカスト品の製造方法において、前記時効処理の温度が、150〜250℃の範囲であることを特徴とするものである。
【0011】
請求項に記載の発明では、請求項1〜のいずれか一項に記載の高強度ダイカスト品の製造方法において、前記ダイカスト品が、スクロールコンプレッサ用部品であることを特徴とするものである。
【0012】
【発明の実施の形態】
以下、この発明の実施形態について、順次詳細に説明する。
この発明の高強度ダイカスト品の製造方法の発明は、アルミニウム−シリコン共晶系鋳造材料(以下、単に鋳造材料とする)を用い、高速ダイカスト法にて鋳造し、そのダイカスト品に離型後水冷及び時効処理の少なくとも一方を施すものである。
【0013】
鋳造材料としては、Al−Si−Cu、Al−Si−Mg、あるいは、Al−Si−Cu−Mg系のものが用いられる。つまり、この発明に供する鋳造材料には、銅及びマグネシウムのいずれか一方を含んだものでもよく、また両方を含んだものでもよい。
【0014】
ここで、シリコンは、ダイカスト品の機械的強度を向上させるとともに、鋳造性、つまり溶湯の流動性を向上させる特性を有する。このシリコンの含有量としては、7.5〜12重量%が好ましく、9〜12重量%がさらに好ましい。シリコンの含有量が7.5重量%未満では、機械的強度が徐々に低下しダイカスト品の機械的強度が不足がちになるとともに、溶湯の流動性が低下して型内での湯まわり性が不足し充填不良となったり、ダイカスト品にひけ等の不具合が発生したりしやすい。一方、シリコンの含有量が12重量%を越えると、初晶シリコンが析出するため、溶湯の流動性が低下して鋳造性が低下するとともに、ダイカスト品の切削加工性が大きく低下する。このようなダイカスト品を、スクロールコンプレッサ用部品に適用した場合、切削機械の刃物欠けが頻発して、製品の量産加工がほとんどできないという状態に至る。
【0015】
また、銅はダイカスト品の機械的強度を向上させるための固溶強化成分であり、その含有量は1.5〜4.8重量%が好ましく、2.5〜4.8重量%がさらに好ましい。銅の含有量が1.5重量%未満であったり、4.8重量%を越えたりすると、ダイカスト品の機械的強度が不十分となる。
【0016】
さらに、マグネシウムは、銅と同じくダイカスト品の機械的強度を向上させるための固溶強化成分であり、その含有量は0.2〜0.7重量%が好ましく、0.3〜0.7重量%がさらに好ましい。マグネシウムの含有量が0.2重量%未満であったり、0.7重量%を越えたりすると、ダイカスト品の機械的強度が不十分となる。
【0017】
さて、前記鋳造材料を溶融した溶湯を、酸化物除去処理及び脱ガス処理を行った後、高速ダイカスト法によって高速高圧で型内に急速充填する。そして、型内に溶湯が充填された状態で、型内の製品部を直接加圧して、ダイカスト品を凝固させる。
【0018】
ここで、前記の酸化物除去処理及び脱ガス処理を省略してダイカスト品を成型すると、ダイカスト品ごとに鋳巣の発生状況が異なったものとなって機械的強度に大きなばらつきを生じることがある。このため、溶湯の酸化物除去処理及び脱ガス処理を省略することは好ましくない。
【0019】
次に、ダイカスト品を離型後、直ちに水槽中に浸漬して水冷を施す。この水冷に供するダイカスト品の表面温度は、250〜450℃の範囲が好ましく、300〜400℃の範囲がさらに好ましい。表面温度が250℃未満の条件で水冷を施すと、ダイカスト品の引張強度、疲労強度等の機械的強度が不十分なものとなる。一方、表面温度が450℃を越えた条件で水冷を行うと、局部的なひけ及び焼き付き等の外観上や内質的な欠陥が発生し、良好なダイカスト品を得るのが困難となる。なお、水冷時の水温は、ダイカスト品の機械的性質に大きな影響を及ぼすものではなく、この実施形態においては40〜60℃とした。
【0020】
また、水冷後あるいは離型後のダイカスト品は、所定の時間、加温状態で放置して時効処理を施す。この時効処理の温度は、150〜250℃の範囲が好ましく、170〜210℃の範囲がさらに好ましい。処理温度が150℃未満での、あるいは、250℃を越える範囲での時効処理では、ダイカスト品の硬度が十分向上せず、機械的強度が不足がちとなる。また、処理時間は、例えば180℃での時効処理では、4時間程度であればよい。
【0021】
以上のようなこの発明の実施形態によれば、次のような効果が得られる。
(1) アルミニウム−シリコン共晶系鋳造材料を用いて、高速ダイカスト法にて鋳造を行うため、従来の低速ダイカスト法での鋳造に比べて、溶湯の型内への充填時間が短いものとなる。従って、鋳造時の時間を短縮できてダイカスト品の製造サイクルタイムを短縮できる。
【0022】
(2) 高速ダイカスト法にて鋳造を行うため、ダイカスト品の凝固速度が速く、アルミニウム素地中に銅及びマグネシウムといった固溶強化成分が均一に固溶される。このため、離型後のダイカスト品を水冷して焼き入れを行うことができて、その後短時間の時効処理を行うのみで十分な機械的強度を得ることができる。従って、長時間の溶体化処理を行う必要がなく、製品製造のサイクルタイムを著しく短縮することができる。
【0023】
(3) また、凝固速度が速いため、凝固組織が緻密で結晶の方向性もなくすことができる。従って、疲労強度に優れたダイカスト品を得ることができる。そして、このようなダイカスト品は、大きな荷重が繰り返し作用されるスクロールコンプレッサ用部品に好適である。従って、同部品を破損しにくいものとすることができて、ひいてはスクロールコンプレッサの耐久性を向上することができる。
【0024】
(4) 水冷前のダイカスト品の表面温度が250〜450℃の範囲となるようにしたため、ダイカスト品の機械的強度を向上することができる。
(5) 時効処理を150〜250℃の範囲の温度で行うため、ダイカスト品の機械的強度を向上することができる。しかも、従来の溶体化処理のようにダイカスト品が再溶融する高温を必要とせず、エネルギー的にも有利である。
【0025】
(6) 溶湯の酸化物除去処理及び脱ガス処理を行い、しかも充填後の型内の製品部を直接加圧するため、品質のばらつきの少ない製品を製造することができる。
【0026】
【実施例】
次に、実施例及び比較例により、この発明をさらに具体的に説明するが、この発明はこれらの実施例によってなんら限定されるものではない。
(実施例1)
シリコン10.5重量%、銅4.2重量%、マグネシウム0.5重量%を含有するアルミニウム−シリコン共晶系鋳造材料の溶湯は、まず酸化物除去処理及び脱ガス処理を行った。そして、この溶湯を、650トン横型ダイカストマシンを用いて、射出速度2.0m/sでスクロールコンプレッサ用部品の金型に充填した。この金型には、製品部が直接加圧されるように750kgf/cm^(2)の鋳造圧力を作用させた。(ここで、「^()」はべき乗を表す。)そして、加圧状態で所定時間保持した後、成型されたダイカスト品を離型して取り出した。離型したダイカスト品は、直ちに水槽中に浸漬して水冷した後、180℃で4時間保持し時効処理を行った。
(比較例1)
前記実施例1において、溶湯の射出速度を0.08m/sで金型内に充填して、低速ダイカスト法により成型したものである。その他の条件は、実施例1と同様である。
【0027】
図1に、実施例1及び比較例1の各ダイカスト品の凝固組織の平均粒径とともに、比較例1のダイカスト品に対する実施例1のダイカスト品の引張強度比を示す。この図1に示すように、実施例1のダイカスト品では凝固組織の平均粒径が2μm程度であるのに対して、比較例1のダイカスト品では30μm程度であった。また、引張強度においては、実施例1のダイカスト品は比較例1のダイカスト品に比べ50%ほど大きな値を示した。このように、高速ダイカスト法で鋳造した実施例1のダイカスト品は、凝固組織が緻密でかつ引張強度の高いものであった。
(比較例2)
前記実施例1と同様組成の鋳造材料の溶湯を、0.08m/sの射出速度で金型内に充填して、低速ダイカスト法によりダイカスト品を成型した。このダイカスト品を、520℃で8時間保持して、溶体化処理及び時効処理を行った。
【0028】
図2に、実施例1及び比較例2の各ダイカスト品をスクロールコンプレッサに実装して圧縮運転を行った時における、比較例2のダイカスト品に対する実施例1のダイカスト品の10^(7)回における疲労強度のばらつきの下限値の比を示す。この図2に示すように、実施例1のダイカスト品は、比較例2のダイカスト品に比べ引張強度が50%ほど大きな値を示した。このように、高速ダイカスト法で鋳造した実施例1のダイカスト品は、疲労強度が高いレベルでばらついており、大きな荷重が繰り返し作用するスクロールコンプレッサ用部品に好適である。
(実施例2)
実施例2は、前記実施例1において水冷を省略して、離型したダイカスト品を焼き鈍した後に時効処理を行ったものである。
(実施例3)
実施例3は、前記実施例1において時効処理を省略したものである。
(比較例3)
比較例3は、前記実施例1において水冷及び時効処理の両方を省略して、離型したダイカスト品を焼き鈍したものである。
【0029】
図3に、実施例1〜3及び比較例3の各ダイカスト品の比較例3のダイカスト品に対する引張強度比を示す。この図3に示すように、水冷あるいは時効処理を施した実施例2及び3のダイカスト品は、そのいずれも施していない比較例3のダイカスト品に比べて引張強度が20%程度大きな値を示し、引張強度の向上は認められた。これに対して、水冷及び時効処理をともに施した実施例1のダイカスト品は、比較例3のダイカスト品に比べて引張強度が50%程度大きな値を示し、さらに大きく引張強度が向上された。
【0030】
(実施例4、5、比較例4、5)
前記実施例1において、鋳造材料の固溶強化成分である銅及びマグネシウムの含有量を、表1に示す組成に変更したものである。
【0031】
【表1】

Figure 0003764200
表1に、実施例1、4、5及び比較例3〜5の各ダイカスト品の比較例3のダイカスト品に対する引張強度比を示す。この表1に示すように、銅の含有量が3.0重量%の鋳造材料を用いた実施例4のダイカスト品においても、前記比較例3のダイカスト品に比べて引張強度が30%大きい値を示し、引張強度の向上が認められた。これに対して、銅の含有量5.5重量%の鋳造材料を用いた比較例4のダイカスト品においては、前記比較例3のダイカスト品に比べて引張強度の低下が認められた。
【0032】
マグネシウムの含有量が0.3重量%の鋳造材料を用いた実施例5のダイカスト品においても、前記比較例3のダイカスト品に比べて引張強度が20%大きい値を示し、引張強度の向上が認められた。これに対して、マグネシウムの含有量が0.8重量%の鋳造材料を用いた比較例5のダイカスト品においては、前記比較例3のダイカスト品に比べて引張強度の低下が認められた。
【0033】
なお、この発明は以下のように変更して具体化することもできる。
(1) 前記実施形態に記載の鋳造材料において、ダイカスト品の高温における軟化を防止するための成分(ニッケル、マンガン等)、結晶粒を微細化するための成分(チタン、クロム等)、離型性を改善し金型の侵食を抑制するための成分(鉄等)、その他ダイカスト品の物性を改善するための成分を、少量(0.5重量%未満)添加してもよい。
【0034】
つぎに、上記実施形態によって把握される技術的思想を述べる。
(1) 溶湯を酸化物除去処理及び脱ガス処理を行った後、型内に充填し、型内の製品部を直接加圧することを特徴とする高強度ダイカスト品の製造方法。
【0035】
このように構成した場合、品質のばらつきの少ない製品を製造することができる。
【0036】
【発明の効果】
以上詳述したように、この発明によれば以下の優れた効果を奏する。
請求項1及び2に記載の発明によれば、アルミニウム−シリコン共晶系鋳造材料を用いて、高速ダイカスト法にて鋳造を行うため、従来の低速ダイカスト法での鋳造に比べて、溶湯の型内への充填時間が短いものとなる。従って、鋳造時の時間を短縮できてダイカスト品の製造サイクルタイムを短縮できる。
【0037】
また、高速ダイカスト法にて鋳造を行うため、ダイカスト品の凝固速度が速く、アルミニウム素地中に銅及びマグネシウムといった固溶強化成分が均一に固溶される。このため、離型後のダイカスト品を水冷して焼き入れを行うことができるとともに、短時間の時効処理を行うのみで十分な機械的強度を得ることができる。従って、長時間の溶体化処理を行う必要がなく、製品製造のサイクルタイムを短縮することができる。
【0038】
請求項に記載の発明によれば、前記鋳造材料がシリコンを7.5〜12重量%を含有し、1.5〜4.8重量%の銅及び0.2〜0.7重量%のマグネシウムの少なくとも一方を含有するようにしたため、各元素の特性を十分に引き出すことができる。
【0039】
請求項に記載の発明によれば、水冷前のダイカスト品の表面温度が250〜450℃の範囲となるようにしたため、ダイカスト品の機械的強度を向上することができる。
【0040】
請求項に記載の発明によれば、時効処理を150〜250℃の範囲の温度で行うため、ダイカスト品の機械的強度を向上することができる。また、溶体化処理に比べて低温でダイカスト品を処理することができて、エネルギー的にも有利である。
【0041】
請求項に記載の発明によれば、前記のように凝固速度が速いため、凝固組織が緻密で結晶の方向性もなくすことができて、疲労強度の優れたダイカスト品を得ることができる。そして、このようなダイカスト品は大きな荷重が繰り返し作用されるスクロールコンプレッサ用部品に好適である。従って、同部品を破損しにくいものとすることができて、ひいてはスクロールコンプレッサの耐久性を向上することができる。
【図面の簡単な説明】
【図1】 実施例1及び比較例1の各ダイカスト品の凝固組織の平均粒径、及び、引張強度比を示す説明図。
【図2】 実施例1及び比較例2の各ダイカスト品の疲労強度比を示す説明図。
【図3】 実施例1〜3及び比較例3の各ダイカスト品の引張強度比を示す説明図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a die-cast product that uses an aluminum-silicon eutectic cast material and requires excellent mechanical strength such as high tensile strength and fatigue strength, such as parts for scroll compressors.
[0002]
[Prior art]
As a method for producing this type of high-strength die-cast product, a method in which an aluminum-silicon eutectic cast material is cast by a low-speed die casting method and then subjected to heat treatment such as solution treatment is known. In such a low-speed die casting method, since the injection speed of the molten metal is low, the amount of entrained gas is small, and the strength is not easily lowered due to the occurrence of a cast hole (cavity portion) of the die cast product. However, in the low-speed die casting method, the solidification rate of the die-cast product is slow, and in the casting of an aluminum alloy or the like, a solid solution strengthening component such as copper or magnesium is selectively precipitated and may be localized in the aluminum substrate. For this reason, the die-cast product molded by the low-speed die-casting method is subjected to a solution treatment for holding the die-cast product at a temperature of about 500 to 540 ° C. for several to several tens of hours to improve the mechanical strength. Yes. By performing the above solution treatment, the solid solution strengthening components such as copper and magnesium localized in the aluminum substrate are uniformly dispersed in the aluminum substrate and then re-dissolved by water cooling.
[0003]
[Problems to be solved by the invention]
However, in the conventional low-speed die casting method, the injection speed is slow, and it is necessary to subject the die cast product to a solution treatment for a long time, which inevitably results in a very long cycle time for manufacturing the product. For this reason, there was a problem that productivity was very low and the cost of the product was high. Die-cast products have a large variation in mechanical strength due to coarsening of the solidified structure, and if used for parts for scroll compressors where large loads are repeatedly applied, sufficient and certain durability may not be obtained. It was.
[0004]
In order to solve such a problem, for example, application of a high-speed die casting method having a high injection speed and high production efficiency can be considered. However, the high-speed die casting method has a problem that since the molten metal injection speed is high and the mold is rapidly filled, a large amount of gas is entrained, and a cast hole (cavity portion) is likely to occur in the die cast product. Further, when a solution treatment is performed on such a die-cast product with many cast holes, the gas in the cavity expands and blisters occur, resulting in a defective product. That is, in the die-cast product by the high-speed die casting method, the mechanical strength cannot be improved by the solution treatment.
[0005]
The present invention has been made paying attention to such problems existing in the prior art. The purpose is to provide a production method capable of efficiently producing a high-strength die cast product having excellent mechanical strength such as tensile strength and fatigue strength.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of the method for producing a high-strength die-cast product according to claim 1, an aluminum-silicon eutectic casting material is used for casting by a high-speed die casting method, and the die-cast product is released from the mold. the method of manufacturing a rear water cooling and high strength die cast product is subjected to an aging treatment, wherein the casting material contains 7.5 to 12 wt% of silicon, 1.5 to 4.8% by weight copper and 0. While containing at least one of 2 to 0.7% by weight of magnesium, the surface temperature of the die-cast product before water cooling is in the range of 250 to 450 ° C.
[0007]
According to a second aspect of the present invention, in the method for manufacturing a high-strength die-cast product according to the first aspect, the die-cast product is subjected to aging treatment after water cooling.
[0010]
According to a third aspect of the present invention, in the method for manufacturing a high-strength die cast product according to the first or second aspect , the temperature of the aging treatment is in the range of 150 to 250 ° C.
[0011]
According to a fourth aspect of the present invention, in the method for manufacturing a high-strength die-cast product according to any one of the first to third aspects, the die-cast product is a scroll compressor part. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be sequentially described in detail.
The invention of the method for producing a high-strength die-cast product of the present invention uses an aluminum-silicon eutectic casting material (hereinafter simply referred to as a casting material), casts by a high-speed die casting method, and after the mold release, water cooling is performed. And at least one of aging treatment.
[0013]
As the casting material, Al-Si-Cu, Al-Si-Mg, or Al-Si-Cu-Mg-based materials are used. In other words, the casting material used in the present invention may include one of copper and magnesium, or may include both.
[0014]
Here, silicon has the characteristics of improving the mechanical strength of the die-cast product and improving the castability, that is, the fluidity of the molten metal. The silicon content is preferably 7.5 to 12% by weight, more preferably 9 to 12% by weight. When the silicon content is less than 7.5% by weight, the mechanical strength gradually decreases and the mechanical strength of the die-cast product tends to be insufficient, and the fluidity of the molten metal decreases and the hot water property in the mold is reduced. Insufficient filling is likely to occur, and defects such as sink marks are likely to occur in die-cast products. On the other hand, when the silicon content exceeds 12% by weight, primary silicon is precipitated, so that the fluidity of the molten metal is lowered, the castability is lowered, and the machinability of the die-cast product is greatly lowered. When such a die-cast product is applied to a scroll compressor part, the cutting tool is frequently chipped and the mass production of the product is almost impossible.
[0015]
Copper is a solid solution strengthening component for improving the mechanical strength of the die-cast product, and its content is preferably 1.5 to 4.8% by weight, more preferably 2.5 to 4.8% by weight. . If the copper content is less than 1.5% by weight or exceeds 4.8% by weight, the mechanical strength of the die-cast product becomes insufficient.
[0016]
Furthermore, magnesium is a solid solution strengthening component for improving the mechanical strength of a die-cast product like copper, and its content is preferably 0.2 to 0.7% by weight, and 0.3 to 0.7% by weight. % Is more preferable. If the magnesium content is less than 0.2% by weight or exceeds 0.7% by weight, the mechanical strength of the die-cast product becomes insufficient.
[0017]
Now, the molten metal obtained by melting the casting material is subjected to oxide removal treatment and degassing treatment, and then rapidly filled into the mold at a high speed and a high pressure by a high speed die casting method. Then, with the molten metal filled in the mold, the product part in the mold is directly pressurized to solidify the die-cast product.
[0018]
Here, when the die-cast product is molded without the oxide removal treatment and the degassing treatment, the state of occurrence of the cast hole differs for each die-cast product, and the mechanical strength may vary greatly. . For this reason, it is not preferable to omit the oxide removal treatment and degassing treatment of the molten metal.
[0019]
Next, after releasing the die-cast product, it is immediately immersed in a water bath and water-cooled. The surface temperature of the die-cast product subjected to water cooling is preferably in the range of 250 to 450 ° C, more preferably in the range of 300 to 400 ° C. When water cooling is performed under a condition where the surface temperature is less than 250 ° C., the mechanical strength such as tensile strength and fatigue strength of the die-cast product becomes insufficient. On the other hand, when water cooling is performed under conditions where the surface temperature exceeds 450 ° C., appearance and internal defects such as local sinks and seizures occur, making it difficult to obtain a good die-cast product. In addition, the water temperature at the time of water cooling does not have big influence on the mechanical property of a die-cast product, and it was 40-60 degreeC in this embodiment.
[0020]
In addition, the die-cast product after water cooling or mold release is left in a heated state for a predetermined time to be subjected to an aging treatment. The aging treatment temperature is preferably in the range of 150 to 250 ° C, more preferably in the range of 170 to 210 ° C. In the aging treatment at a treatment temperature of less than 150 ° C. or over 250 ° C., the hardness of the die-cast product is not sufficiently improved and the mechanical strength tends to be insufficient. The treatment time may be about 4 hours in the aging treatment at 180 ° C., for example.
[0021]
According to the embodiment of the present invention as described above, the following effects can be obtained.
(1) Since casting is performed by a high-speed die casting method using an aluminum-silicon eutectic casting material, the filling time of the molten metal into the mold is shorter than that of casting by the conventional low-speed die casting method. . Accordingly, the casting time can be shortened and the manufacturing cycle time of the die-cast product can be shortened.
[0022]
(2) Since casting is performed by the high-speed die casting method, the solidification speed of the die-cast product is fast, and solid solution strengthening components such as copper and magnesium are uniformly dissolved in the aluminum substrate. For this reason, the die-cast product after mold release can be quenched by water cooling, and sufficient mechanical strength can be obtained only by performing a short-term aging treatment thereafter. Therefore, it is not necessary to perform a long-time solution treatment, and the cycle time of product manufacture can be remarkably shortened.
[0023]
(3) Further, since the solidification rate is fast, the solidified structure is dense and the crystal orientation can be eliminated. Therefore, a die-cast product excellent in fatigue strength can be obtained. Such a die-cast product is suitable for a scroll compressor component in which a large load is repeatedly applied. Therefore, it is possible to make the parts difficult to break, and as a result, it is possible to improve the durability of the scroll compressor.
[0024]
(4) Since the surface temperature of the die-cast product before water cooling is in the range of 250 to 450 ° C., the mechanical strength of the die-cast product can be improved.
(5) Since the aging treatment is performed at a temperature in the range of 150 to 250 ° C., the mechanical strength of the die-cast product can be improved. Moreover, it does not require a high temperature at which the die-cast product is remelted unlike the conventional solution treatment, which is advantageous in terms of energy.
[0025]
(6) Since the oxide removal process and the degassing process of the molten metal are performed and the product part in the mold after filling is directly pressurized, a product with little variation in quality can be manufactured.
[0026]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
Example 1
The molten aluminum-silicon eutectic cast material containing 10.5% by weight of silicon, 4.2% by weight of copper and 0.5% by weight of magnesium was first subjected to oxide removal treatment and degassing treatment. Then, this molten metal was filled into a scroll compressor part mold at an injection speed of 2.0 m / s using a 650-ton horizontal die casting machine. A casting pressure of 750 kgf / cm ^ (2) was applied to the mold so that the product part was directly pressurized. (Here, “^ ()” represents a power.) After holding for a predetermined time in a pressurized state, the molded die-cast product was released and taken out. The released die-cast product was immediately immersed in a water bath and cooled with water, and then kept at 180 ° C. for 4 hours for aging treatment.
(Comparative Example 1)
In Example 1, the mold was filled in the mold at an injection speed of 0.08 m / s and molded by the low speed die casting method. Other conditions are the same as in the first embodiment.
[0027]
FIG. 1 shows the tensile strength ratio of the die cast product of Example 1 to the die cast product of Comparative Example 1 together with the average particle size of the solidified structure of each die cast product of Example 1 and Comparative Example 1. As shown in FIG. 1, the average particle size of the solidified structure was about 2 μm in the die-cast product of Example 1, whereas it was about 30 μm in the die-cast product of Comparative Example 1. Further, in terms of tensile strength, the die cast product of Example 1 showed a value about 50% larger than the die cast product of Comparative Example 1. Thus, the die-cast product of Example 1 cast by the high-speed die casting method had a dense solidified structure and high tensile strength.
(Comparative Example 2)
A molten cast material having the same composition as in Example 1 was filled into the mold at an injection speed of 0.08 m / s, and a die-cast product was molded by a low-speed die casting method. This die-cast product was held at 520 ° C. for 8 hours to perform solution treatment and aging treatment.
[0028]
FIG. 2 shows 10 ^ (7) times of the die-cast product of Example 1 with respect to the die-cast product of Comparative Example 2 when each die-cast product of Example 1 and Comparative Example 2 is mounted on a scroll compressor and the compression operation is performed. The ratio of the lower limit value of the fluctuation of the fatigue strength is shown. As shown in FIG. 2, the die-cast product of Example 1 showed a value about 50% higher than that of the die-cast product of Comparative Example 2. Thus, the die-cast product of Example 1 cast by the high-speed die casting method varies at a high fatigue strength level, and is suitable for a scroll compressor component in which a large load repeatedly acts.
(Example 2)
In Example 2, the water cooling in Example 1 was omitted, and the die-cast product that had been released from the mold was annealed and then an aging treatment was performed.
Example 3
In the third embodiment, the aging treatment is omitted from the first embodiment.
(Comparative Example 3)
In Comparative Example 3, both the water cooling and the aging treatment in Example 1 were omitted, and the released die-cast product was annealed.
[0029]
In FIG. 3, the tensile strength ratio with respect to the die-cast goods of the comparative example 3 of each die-cast goods of Examples 1-3 and the comparative example 3 is shown. As shown in FIG. 3, the die-cast products of Examples 2 and 3 subjected to water cooling or aging treatment show a value about 20% higher than the die-cast product of Comparative Example 3 to which neither of them is applied. An improvement in tensile strength was observed. On the other hand, the die-cast product of Example 1 subjected to both water cooling and aging treatment showed a value about 50% higher than that of Comparative Example 3, and the tensile strength was further improved.
[0030]
(Examples 4 and 5 and Comparative Examples 4 and 5)
In Example 1, the contents of copper and magnesium, which are solid solution strengthening components of the casting material, are changed to the compositions shown in Table 1.
[0031]
[Table 1]
Figure 0003764200
Table 1 shows the tensile strength ratio of each of the die cast products of Examples 1, 4, 5 and Comparative Examples 3 to 5 to the die cast product of Comparative Example 3. As shown in Table 1, in the die-cast product of Example 4 using a casting material having a copper content of 3.0% by weight, the tensile strength is 30% larger than that of the die-cast product of Comparative Example 3. An improvement in tensile strength was observed. On the other hand, in the die-cast product of Comparative Example 4 using a casting material having a copper content of 5.5% by weight, a decrease in tensile strength was recognized as compared with the die-cast product of Comparative Example 3.
[0032]
Also in the die-cast product of Example 5 using a casting material having a magnesium content of 0.3% by weight, the tensile strength is 20% larger than that of the die-cast product of Comparative Example 3, and the tensile strength is improved. Admitted. On the other hand, in the die-cast product of Comparative Example 5 using a casting material having a magnesium content of 0.8% by weight, a decrease in tensile strength was observed as compared with the die-cast product of Comparative Example 3.
[0033]
In addition, this invention can also be changed and embodied as follows.
(1) In the casting material described in the above embodiment, components for preventing softening of the die-cast product at high temperature (nickel, manganese, etc.), components for refining crystal grains (titanium, chromium, etc.), mold release A small amount (less than 0.5% by weight) of a component for improving the properties and suppressing the erosion of the mold (such as iron) and other components for improving the physical properties of the die cast product may be added.
[0034]
Next, the technical idea grasped by the above embodiment will be described.
(1) After the oxide removal treatment and degassing treatment molten metal filled into the mold, high-strength method for producing the die cast product you characterized in that pressure directly pressurizing the product portion of the mold.
[0035]
When configured in this way, a product with little variation in quality can be manufactured.
[0036]
【The invention's effect】
As described in detail above, the present invention has the following excellent effects.
According to the first and second aspects of the invention, since the casting is performed by the high-speed die casting method using the aluminum-silicon eutectic casting material, the mold of the molten metal is compared with the casting by the conventional low-speed die casting method. The filling time is short. Accordingly, the casting time can be shortened and the manufacturing cycle time of the die-cast product can be shortened.
[0037]
Further, since casting is performed by the high speed die casting method, the solidification speed of the die cast product is fast, and solid solution strengthening components such as copper and magnesium are uniformly dissolved in the aluminum base. For this reason, the die-cast product after mold release can be quenched by water cooling, and sufficient mechanical strength can be obtained only by performing a short-term aging treatment. Therefore, it is not necessary to perform a long-time solution treatment, and the cycle time of product manufacture can be shortened.
[0038]
According to invention of Claim 1 , the said casting material contains 7.5 to 12 weight% of silicon, 1.5 to 4.8 weight% copper and 0.2 to 0.7 weight% Since at least one of magnesium is contained, the characteristics of each element can be sufficiently extracted.
[0039]
According to the first aspect of the present invention, since the surface temperature of the die-cast product before water cooling is in the range of 250 to 450 ° C., the mechanical strength of the die-cast product can be improved.
[0040]
According to the invention described in claim 3 , since the aging treatment is performed at a temperature in the range of 150 to 250 ° C., the mechanical strength of the die-cast product can be improved. In addition, the die-cast product can be processed at a lower temperature than the solution treatment, which is advantageous in terms of energy.
[0041]
According to the fourth aspect of the present invention, since the solidification rate is fast as described above, the solidified structure is dense and the crystal orientation can be eliminated, and a die-cast product with excellent fatigue strength can be obtained. Such a die-cast product is suitable for a scroll compressor component in which a large load is repeatedly applied. Therefore, it is possible to make the parts difficult to break, and as a result, it is possible to improve the durability of the scroll compressor.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an average particle diameter of a solidified structure and a tensile strength ratio of each die-cast product of Example 1 and Comparative Example 1. FIG.
FIG. 2 is an explanatory diagram showing the fatigue strength ratio of each die-cast product of Example 1 and Comparative Example 2.
FIG. 3 is an explanatory diagram showing the tensile strength ratio of each die-cast product of Examples 1 to 3 and Comparative Example 3.

Claims (4)

アルミニウム−シリコン共晶系鋳造材料を用い、高速ダイカスト法にて鋳造し、そのダイカスト品に離型後水冷及び時効処理を施すことを特徴とする高強度ダイカスト品の製造方法において、
前記鋳造材料は、シリコンを7.5〜12重量%を含有し、1.5〜4.8重量%の銅及び0.2〜0.7重量%のマグネシウムの少なくとも一方を含有するとともに、水冷前の前記ダイカスト品の表面温度が、250〜450℃の範囲であることを特徴とする高強度ダイカスト品の製造方法。
Aluminum - a silicon eutectic casting material, cast in a high-speed die casting method, the method of producing a high strength die cast product, characterized by applying a release after water cooling and aging treatment on the die cast product,
The casting material contains 7.5 to 12% by weight of silicon, 1.5 to 4.8% by weight of copper and 0.2 to 0.7% by weight of magnesium, and is water-cooled. A method for producing a high-strength die-cast product, wherein the surface temperature of the previous die-cast product is in the range of 250 to 450 ° C.
前記ダイカスト品に水冷後に時効処理を施すことを特徴とする請求項1に記載の高強度ダイカスト品の製造方法。  The method for producing a high-strength die-cast product according to claim 1, wherein the die-cast product is subjected to aging treatment after water cooling. 前記時効処理の温度が、150〜250℃の範囲であることを特徴とする請求項1または2に記載の高強度ダイカスト品の製造方法。 The method for producing a high-strength die-cast product according to claim 1 or 2, wherein the temperature of the aging treatment is in a range of 150 to 250 ° C. 前記ダイカスト品が、スクロールコンプレッサ用部品であることを特徴とする請求項1〜のいずれか一項に記載の高強度ダイカスト品の製造方法。 The method for producing a high-strength die-cast product according to any one of claims 1 to 3 , wherein the die-cast product is a scroll compressor component .
JP06290696A 1996-03-19 1996-03-19 Manufacturing method of high-strength die-cast products Expired - Lifetime JP3764200B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06290696A JP3764200B2 (en) 1996-03-19 1996-03-19 Manufacturing method of high-strength die-cast products
DE69725490T DE69725490T2 (en) 1996-03-19 1997-03-17 Process for the production of a die-cast high-strength product
EP19970104527 EP0796926B1 (en) 1996-03-19 1997-03-17 Production method for high strength die cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06290696A JP3764200B2 (en) 1996-03-19 1996-03-19 Manufacturing method of high-strength die-cast products

Publications (2)

Publication Number Publication Date
JPH09256127A JPH09256127A (en) 1997-09-30
JP3764200B2 true JP3764200B2 (en) 2006-04-05

Family

ID=13213775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06290696A Expired - Lifetime JP3764200B2 (en) 1996-03-19 1996-03-19 Manufacturing method of high-strength die-cast products

Country Status (3)

Country Link
EP (1) EP0796926B1 (en)
JP (1) JP3764200B2 (en)
DE (1) DE69725490T2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250368B1 (en) 1996-09-25 2001-06-26 Honda Giken Kabushiki Kaisha Casting mold for producing a fiber-reinforced composite article by die-casting process
JPH1094853A (en) * 1996-09-25 1998-04-14 Honda Motor Co Ltd Die for casting fiber-reinforcing composite by die casting
JPH10103261A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Scroll compressor
IT1299077B1 (en) * 1997-04-16 2000-02-07 Luk Fahrzeug Hydraulik ROTARY VANE PUMP
JP2001049376A (en) * 1999-05-12 2001-02-20 Daiki Aluminium Industry Co Ltd High strength aluminum alloy for pressure-casting and the same aluminum alloy casting
US6752885B1 (en) 1999-09-24 2004-06-22 Honsel Guss Gmbh Method for the treatment of structure castings from an aluminum alloy to be used therefor
JP2003003970A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Scroll compressor
US20050100472A1 (en) 2002-08-29 2005-05-12 Kouji Yamada High strength aluminum alloy casting and method of production of same
BRPI0519400A2 (en) * 2004-12-23 2009-01-20 Commw Scient Ind Res Org heat treatment of aluminum alloy high pressure die castings
JP4765600B2 (en) * 2005-12-13 2011-09-07 アイシン精機株式会社 Method for producing aluminum alloy member
DE102006057660B4 (en) * 2006-12-07 2019-08-22 Bayerische Motoren Werke Aktiengesellschaft Method for die casting of components and use of a spray device of a die casting device
US9068252B2 (en) 2009-03-05 2015-06-30 GM Global Technology Operations LLC Methods for strengthening slowly-quenched/cooled cast aluminum components
US8636855B2 (en) 2009-03-05 2014-01-28 GM Global Technology Operations LLC Methods of enhancing mechanical properties of aluminum alloy high pressure die castings
JP5355320B2 (en) * 2009-09-10 2013-11-27 日産自動車株式会社 Aluminum alloy casting member and manufacturing method thereof
JP2011208253A (en) * 2010-03-30 2011-10-20 Honda Motor Co Ltd Aluminum die-cast alloy for vehicle material
JP5825583B2 (en) * 2011-09-15 2015-12-02 国立大学法人東北大学 Die casting product and die casting method
CN110402295A (en) 2017-03-09 2019-11-01 通用汽车环球科技运作有限责任公司 Aluminium alloy
EP3550036B1 (en) * 2018-04-06 2022-01-05 GF Casting Solutions AG Direct aging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153728A (en) * 1978-05-26 1979-12-04 Hitachi Ltd High wear resistant aluminum diecast parts
JPS62127447A (en) * 1985-11-26 1987-06-09 Mitsubishi Heavy Ind Ltd Aluminum alloy for casting
JPH0650114B2 (en) * 1985-11-26 1994-06-29 三菱重工業株式会社 Scroll type fluid machinery
DE3817350A1 (en) * 1987-05-23 1988-12-22 Sumitomo Electric Industries METHOD FOR PRODUCING SPIRAL-SHAPED PARTS AND METHOD FOR PRODUCING AN ALUMINUM POWDER FORGING ALLOY
JPS6465242A (en) * 1987-09-04 1989-03-10 Nippon Light Metal Co Scroll made of aluminum alloy
JPH0828493A (en) * 1994-07-14 1996-01-30 Furukawa Electric Co Ltd:The Manufacture of aluminum alloy-made scroll
JP3684247B2 (en) * 1995-01-24 2005-08-17 株式会社豊田自動織機 Scroll compressor and method for manufacturing the same

Also Published As

Publication number Publication date
EP0796926B1 (en) 2003-10-15
DE69725490T2 (en) 2004-08-12
EP0796926A1 (en) 1997-09-24
JPH09256127A (en) 1997-09-30
DE69725490D1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
CN109295351B (en) Die-casting aluminum alloy and preparation method and application thereof
MX2007001008A (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings.
EP1882753A1 (en) Aluminium alloy
CN107881378B (en) Aluminum alloy composition, aluminum alloy element, communication product and preparation method of aluminum alloy element
JP2001220639A (en) Aluminum alloy for casting
CN111876637B (en) Heat-resistant and wear-resistant Al-Si-Cu-Ni aluminum alloy and preparation method and application thereof
KR101052517B1 (en) High strength aluminum alloy casting
KR100498002B1 (en) Foundry alloy and method of manufacturing foundry alloy article
CN113293328B (en) Al-Mg high-strength and toughness die-casting aluminum alloy and preparation method thereof
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
EP1501954B1 (en) Brake product, brake system and method for their production.
JP2789035B2 (en) Method for producing aluminum / silicon alloy article
EP2010685A2 (en) Squeeze cast rear suspension components using adc12-t4 aluminum alloy
Wessén et al. The RSF technology–a possible breakthrough for semi-solid casting processes
JP2002144018A (en) Method for producing light weight and high strength member
JP6975421B2 (en) Aluminum alloy manufacturing method
Zhang et al. Effects of punch velocity on microstructure and tensile properties of thixoforged Mg2Sip/AM60B composite
CN118180357B (en) Copper-aluminum composite metal plate, casting forming method and application of copper-aluminum composite metal plate in radiator
CN116121608B (en) High-strength cast aluminum lithium alloy and preparation method thereof
Mandal et al. Development of a novel hypereutectic aluminum-siliconmagnesium alloy for die casting
JPH10324938A (en) Zinc-copper-aluminum alloy and its die casting
KR102016144B1 (en) Method for manufacturng magnesium alloy having eccellent thermal dissipation properties
JPH0941057A (en) Zinc alloy for thixocasting and injection molding
JPH0499140A (en) Die material for plastic molding and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

EXPY Cancellation because of completion of term