JPH08319143A - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition

Info

Publication number
JPH08319143A
JPH08319143A JP8072440A JP7244096A JPH08319143A JP H08319143 A JPH08319143 A JP H08319143A JP 8072440 A JP8072440 A JP 8072440A JP 7244096 A JP7244096 A JP 7244096A JP H08319143 A JPH08319143 A JP H08319143A
Authority
JP
Japan
Prior art keywords
cement
amount
weight
blast furnace
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8072440A
Other languages
Japanese (ja)
Other versions
JP2853989B2 (en
Inventor
Yoshiharu Watanabe
芳春 渡辺
Hisayuki Shimizu
久行 清水
Mitsuo Ishitani
満夫 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP7244096A priority Critical patent/JP2853989B2/en
Publication of JPH08319143A publication Critical patent/JPH08319143A/en
Application granted granted Critical
Publication of JP2853989B2 publication Critical patent/JP2853989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE: To impart cement with high strength and improve resistance to penetration of chlorine ion (resistance to salt) and durability by mainly using a cement admixture mainly comprising II-type anhydrous gypsum, pozzolan material and blast furnace slag and cement. CONSTITUTION: This cement composition is mainly composed of 8-45 pts.wt. of cement admixture mainly comprising 100 pts. wt. of II-type anhydrous gypsum having >=3000 cm<2> /g Blaine number, 40-50 pts.wt. of pozzolan material such as silica fume and diatomaceous earth, etc. and 2-15 pts. wt. of blast furnace slag having >=1.4 basicity as (CaO+Al2 O3 +MgO)/SiO2 , >=50% vitrification ratio and >=4000cm<2> /g Blaine value and 100 pts.wt. of cement. The composition is used in an amount of 250-450kg/m<3> unit cement amount and mixed with sand, ballast and a suitable amount of water, and further, a water reducing agent, as necessary, blended with mortar or concrete to form a pole, then steam cured at 40-100 deg.C under normal pressure to obtain a pole having high strength, resistance to salt and durability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐塩性ポールに適
するセメント混和材及びセメント組成物に関する。
TECHNICAL FIELD The present invention relates to a cement admixture and a cement composition suitable for salt-resistant poles.

【0002】[0002]

【従来の技術及びその課題】従来、ポールの製造を行う
際に使用されるコンクリートは、材令28日の設計強度
500kgf/cm2 を越えるように設計配合されており、具
体的には、単位セメント量が460〜550kg/m3 、水
セメント比が35%程度のコンクリートが使用されてい
る。
2. Description of the Related Art Conventionally, the concrete used for manufacturing poles is designed and mixed so that the design strength on the 28th day exceeds the design strength of 500 kgf / cm 2. Concrete with an amount of cement of 460 to 550 kg / m 3 and a water cement ratio of about 35% is used.

【0003】しかしながら、このようなコンクリートを
使用して製造されたポールを、海岸沿いに設置した場
合、波しぶき、即ち、海水中の塩素イオンの浸透によ
り、鉄筋が発錆したり、クラックが入り、赤錆が吹き出
すなど耐久性に課題があった。
However, when a pole manufactured using such concrete is installed along the coast, the reinforcing bars rust or crack due to the splash of water, that is, the permeation of chlorine ions in seawater. However, there was a problem with durability, such as red rust blowing out.

【0004】また、蒸気養生して高強度を得る方法とし
て、II型無水セッコウ100重量部と、例えば、シリカ
ヒューム、ケイ酸白土及びフライアッシュ等のシリカ質
物質5〜40重量部を配合したセメント混和材を使用す
る方法が知られている(特公昭57-49504号公報)。
As a method for obtaining high strength by steam curing, cement containing 100 parts by weight of type II anhydrous gypsum and 5 to 40 parts by weight of a siliceous substance such as silica fume, silicate clay and fly ash. A method using an admixture is known (Japanese Patent Publication No. 57-49504).

【0005】しかしながら、この方法では合理的に高強
度は得られるが、耐久性、特に、塩素イオンの浸透抵抗
性(耐塩性)については、十分な効果が得られないなど
の課題があった。
However, although this method can reasonably obtain high strength, there is a problem that durability, particularly permeation resistance of chlorine ions (salt resistance), cannot be sufficiently obtained.

【0006】本発明者らは、前記課題を解決すべく鋭意
検討した結果、II型無水セッコウと、ポゾラン物及び高
炉スラグを特定量使用することにより、前記課題が解決
できる知見を得て本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by using specific amounts of type II anhydrous gypsum, pozzolanic substances and blast furnace slag. Has been completed.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、(1)
II型無水セッコウ100重量部と、ポゾラン物40重量
部を越え、500重量部以下及び高炉スラグ2〜15重
量部を主成分とするセメント混和材、(2)セメント1
00重量部と、(1)記載のセメント混和材8〜45重
量部とを主成分とするセメント組成物である。
Means for Solving the Problems That is, the present invention provides (1)
Cement admixture mainly composed of 100 parts by weight of type II anhydrous gypsum, 40 parts by weight of pozzolanic material and 500 parts by weight or less and 2 to 15 parts by weight of blast furnace slag, (2) Cement 1
A cement composition containing, as main components, 00 parts by weight and 8 to 45 parts by weight of the cement admixture described in (1).

【0008】[0008]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明におけるII型無水セッコウとは、X線回折パター
ンがII−CaSO4 の形態を示すものであり、二水、半
水及びIII 型無水セッコウなどを焼成して得られるもの
の他、弗酸製造工程より副生するものや天然無水セッコ
ウも使用可能である。また、II型無水セッコウは天然に
又は工業的に含まれる不純物には制限されない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The type II anhydrous gypsum in the present invention has an X-ray diffraction pattern of the form II-CaSO 4 , and is obtained by firing dihydrate, semi-water, type III anhydrous gypsum, etc. It is also possible to use a natural byproduct or natural anhydrous gypsum. Further, the type II anhydrous gypsum is not limited to impurities contained naturally or industrially.

【0009】II型無水セッコウの粉末度は、ブレーン値
で3,000cm2/g 以上が好ましく、4,000〜7,
500cm2/g がより好ましい。ブレーン値が3,000
cm2/g 未満では、蒸気養生を行っても未反応で残り易
く、これが長期にわたって反応し、コンクリート硬化体
の安定性を欠く傾向にあるので好ましくない。
The type-II anhydrous gypsum preferably has a Blaine value of 3,000 cm 2 / g or more, preferably 4,000 to 7,
500 cm 2 / g is more preferable. Brain value is 3,000
If it is less than cm 2 / g, it remains unreacted even after steam curing, and this tends to react for a long period of time and lose the stability of the hardened concrete, which is not preferable.

【0010】本発明におけるポゾラン物には種々のもの
が挙げられるが、シリカヒュームとケイソウ土が、強度
や耐塩性などの特性の他、ポール製造時のコンクリート
のハンドリング性の面から好ましい。
Although various types of pozzolanic substances in the present invention can be mentioned, silica fume and diatomaceous earth are preferable from the viewpoints of properties such as strength and salt resistance as well as handleability of concrete during pole production.

【0011】即ち、ポールは、他の遠心成型製品より細
いため、二つ割りにした型枠にコンクリートを盛り込む
とき、コンクリートが山盛りとなる。そのため、コンク
リートがプラスチック性を保持していないと、型枠が組
立られない傾向がある。シリカヒュームやケイソウ土
は、このコンクリートのプラスチック性を高め、効率的
な生産を促す重要な要素となるものである。
That is, since the pole is thinner than other centrifugally-molded products, when the concrete is put in the formwork divided into two parts, the concrete becomes a heap. Therefore, if concrete does not have plasticity, there is a tendency that the formwork cannot be assembled. Silica fume and diatomaceous earth are important factors that enhance the plasticity of this concrete and promote efficient production.

【0012】ここでいう、シリカヒュームとは、金属シ
リコン、フェロシリコンやカルシウムシリコンなどのシ
リコンアロイ等の製造時に副生する非晶質SiO2 を主
成分とする超微粉である。
The term "silica fume" as used herein refers to ultrafine powder containing as a main component amorphous SiO 2 which is a by-product during the production of silicon alloys such as metallic silicon, ferrosilicon and calcium silicon.

【0013】また、ケイソウ土とは、ケイソウと呼ばれ
る単細胞藻類の遺骸が堆積したもので、特徴は、その多
孔性にある。
[0013] The diatomaceous earth is a deposit of unicellular algae remains called diatom, which is characterized by its porosity.

【0014】本発明において、ポゾラン物の使用量は、
II型無水セッコウ100重量部に対し、ポゾラン物40
重量部を超え、500重量部以下である。ポゾラン物が
40重量部以下では、前記耐久性を改善する効果が小さ
く、500重量部を超えると単位水量が増加し、強度が
低下したり、スランプドロップによる作業性の低下が大
きくなる。
In the present invention, the amount of the pozzolanic substance used is
Type II anhydrous gypsum 100 parts by weight, pozzolanic substance 40
It is more than 500 parts by weight and more than 500 parts by weight. If the pozzolanic substance is 40 parts by weight or less, the effect of improving the durability is small, and if it exceeds 500 parts by weight, the unit water amount increases, the strength decreases, and the workability due to slump drop largely decreases.

【0015】本発明のII型無水セッコウとポゾラン物の
使用量は、セメント100重量部に対し、6〜30重量
部である。II型無水セッコウとポゾラン物の使用量が6
重量部未満では耐久性改善効果が小さく、30重量部を
超えると単位水量の増加に伴い、強度が低下する傾向を
示し、かつ、スランプドロップによる作業性の低下が大
きくなる。
The amount of type II anhydrous gypsum and pozzolan of the present invention used is 6 to 30 parts by weight per 100 parts by weight of cement. The amount of type II anhydrous gypsum and pozzolan used is 6
If it is less than 30 parts by weight, the effect of improving the durability is small, and if it exceeds 30 parts by weight, the strength tends to decrease with an increase in the unit water amount, and the workability due to the slump drop becomes large.

【0016】本発明では、さらに、高炉スラグ粉を使用
するものである。高炉スラグ粉は、高炉より副生する溶
融スラグを急冷しガラス化したものを粉砕又は粉砕・分
級して得られる微粉末であり、その他、通常高炉セメン
ト用に使用されるものも使用可能である。
The present invention further uses blast furnace slag powder. Blast furnace slag powder is a fine powder obtained by crushing or crushing and classifying molten slag by-produced from the blast furnace, which is rapidly cooled and vitrified, and in addition, those normally used for blast furnace cement can also be used. .

【0017】高炉スラグの潜在水硬性の度合いを表わす
ものとして示される塩基度(CaO+Al 2O3 +MgO)/SiO
2 は、本発明では、1.4以上が好ましく、1.7以上
がより好ましい。
Represents the degree of latent hydraulicity of blast furnace slag
Basicity (CaO + Al) 2O3+ MgO) / SiO
2Is preferably 1.4 or higher in the present invention, and 1.7 or higher.
Is more preferable.

【0018】また、高炉スラグ粉のガラス化率は50%
以上が好ましく、90%以上がより好ましい。
The vitrification rate of the blast furnace slag powder is 50%.
The above is preferable, and 90% or more is more preferable.

【0019】高炉スラグ粉は、粉砕又は粉砕・分級して
得られる、ブレーン値で4,000cm2/g 以上のものが
好ましく、粒度が細かければ細かい程良い。また、工業
的に、かつ、経済的に粉砕又は粉砕・分級されて得られ
る最小の高炉スラグ粉の粒度は、通常、10μ以下で、
D50の値が3〜6μ程度であり、また、ブレーン値で
10,000cm2/g 前後である。このような微粉末の高
炉スラグ粉の使用はより好ましい。
The blast furnace slag powder preferably has a Blaine value of 4,000 cm 2 / g or more obtained by crushing or crushing / classifying, and the finer the particle size, the better. Further, the minimum particle size of the blast furnace slag powder obtained by crushing or crushing / classifying industrially and economically is usually 10 μm or less,
The value of D50 is about 3 to 6 μ, and the Blaine value is about 10,000 cm 2 / g. The use of such finely ground blast furnace slag powder is more preferred.

【0020】高炉スラグ粉はII型無水セッコウとポゾラ
ン物と併用した場合、著しく高い強度を発現させ、か
つ、耐塩性も、より改善することが可能である。
When the blast furnace slag powder is used in combination with type II anhydrous gypsum and a pozzolanic substance, it exhibits remarkably high strength, and salt resistance can be further improved.

【0021】高炉スラグ粉の使用量は、セメント100
重量部に対し、2〜15重量部が好ましく、4〜10重
量部がより好ましい。高炉スラグ粉が2重量部未満で
は、II型無水セッコウとポゾラン物の強度発現性や耐塩
性を助長する効果が小さく、15重量部を越えると、強
度や耐塩性の効果の伸びが期待できず、不経済となるば
かりでなく、ポゾラン物の使用量によっては、コンクリ
ート硬化体中のポルトランダイトが全くなくなり、アル
カリ度の低下による、鉄筋の発錆が懸念され、特に、ポ
ール等のプレストレス製品は、鋼棒の緊張による応力腐
食も加わるので好ましくない。
The amount of blast furnace slag powder used is 100% cement.
2 to 15 parts by weight is preferable, and 4 to 10 parts by weight is more preferable. If the amount of blast furnace slag powder is less than 2 parts by weight, the effect of promoting the strength development and salt resistance of type II anhydrous gypsum and pozzolan is small, and if it exceeds 15 parts by weight, the extension of strength and salt resistance cannot be expected. Not only is it uneconomical, but depending on the amount of pozzolanic substances used, there is no portlandite in the hardened concrete at all, and there is concern that rusting of the reinforcing bars may occur due to a decrease in alkalinity, especially prestressing of poles, etc. The product is not preferable because it is also subjected to stress corrosion due to the tension of the steel rod.

【0022】従って、本発明のセント混和材すなわち、
II型無水セッコウとポゾラン物及び高炉スラグの使用量
は、セメント100重量部に対し、8〜45重量部であ
る。
Therefore, the cent admixture of the present invention, namely,
The amount of type II anhydrous gypsum, pozzolanic material and blast furnace slag used is 8 to 45 parts by weight per 100 parts by weight of cement.

【0023】なお、本発明において、高炉スラグ粉が、
このような相乗的効果を発現する理由は不明であるが、
高炉スラグを微粉化することにより、高炉スラグ粉中に
多量にあるAl成分の溶解速度が速くなり、II型無水セ
ッコウの溶解速度とバランスして、効率的にエトリンガ
イト(3CaO ・ Al2O3 ・3CaSO4 ・32H2O) を生成し、コンク
リート中の空隙を充填し、密実化すること。また、同時
に、II型無水セッコウが高炉スラグ粉中のAl成分の溶
出量を高かめ、高炉スラグ粒子をポーラスにして、高炉
スラグ粉全体の水和反応量を高め、それにより、顕著な
強度の増大や耐塩性の改善が示されるものと思われる。
In the present invention, the blast furnace slag powder is
The reason why such a synergistic effect is exhibited is unknown,
By pulverizing blast furnace slag, the dissolution rate of the Al component in a large amount in the blast furnace slag flour is faster, and dissolution rate and balance of type II anhydrous gypsum, efficiently ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O), fill the voids in the concrete, and solidify. At the same time, type II anhydrous gypsum increases the elution amount of the Al component in the blast furnace slag powder, makes the blast furnace slag particles porous, and enhances the hydration reaction amount of the entire blast furnace slag powder, which results in remarkable strength. It is believed that they show an increase and an improvement in salt resistance.

【0024】さらに、本発明において、単位セメント量
は250〜450kg/m3 の範囲が好ましい。250kg/m
3 未満では、水セメント比が急に大きくなり、セメント
濃度が低下することから、設計強度が得られず、耐塩性
も期待できない。単位セメント量が450kg/m3 を越え
ると、強度は大きくなるが、耐塩性は、むしろ低下する
傾向にあり、かつ、耐候性が悪くなる傾向があり、屋外
で長期間曝露養生した場合、ひびわれが発生する傾向が
ある。
Further, in the present invention, the unit cement amount is preferably in the range of 250 to 450 kg / m 3 . 250 kg / m
If it is less than 3 , the water-cement ratio will suddenly increase and the cement concentration will decrease, so design strength cannot be obtained and salt resistance cannot be expected. When the unit cement content exceeds 450 kg / m 3 , the strength increases, but the salt resistance tends to decrease, and the weather resistance tends to deteriorate. Tend to occur.

【0025】この、強度が増大するにもかかわらず、耐
塩性が低下する理由は明確ではないが、単位セメント量
が多くなると、水セメント比も必然的に下がるので、こ
の時のポゾラン物及び高炉スラグ粉の反応量が低下する
ことに起因するものと思われる。
Although the reason why the salt resistance is reduced despite the increase in the strength is not clear, the water cement ratio also inevitably decreases when the unit cement amount increases, so the pozzolanic material and the blast furnace at this time are also reduced. This is probably because the reaction amount of slag powder decreased.

【0026】本発明に使用するセメントとは、普通・早
強・超早強・中庸熱・白色等の各種ポルトランドセメン
トなどである。また、高炉セメントは中性化、酸化及び
変色等の問題があるので使用しにくいが、シリカセメン
トやフライアッシュセメントは使用できる。セメントは
水硬性係数が大きいものほど、また、粉末度が大きいほ
ど耐塩性が向上する。
The cement used in the present invention includes various portland cements such as normal, early strength, super early strength, moderate heat and white. Further, blast furnace cement is difficult to use because of problems such as neutralization, oxidation and discoloration, but silica cement and fly ash cement can be used. As the cement has a larger hydraulic coefficient and a higher fineness, the salt resistance is improved.

【0027】本発明のセメント混和材を用いて耐塩性ポ
ールを製造するに当り、必要に応じ、減水剤、AE減水
剤、促進剤及び遅延剤等の化学混和剤を併用することが
できる。特に、減水剤の併用は好ましく、その減水剤の
中でも高性能減水剤の併用はより好ましいものである。
In producing a salt-resistant pole using the cement admixture of the present invention, a chemical admixture such as a water reducing agent, an AE water reducing agent, an accelerator and a retarder may be used in combination, if necessary. In particular, the combined use of a water reducing agent is preferable, and among the water reducing agents, the combined use of a high performance water reducing agent is more preferable.

【0028】高性能減水剤とは、多量に添加しても凝結
の過遅延や過度の空気連行を伴わない、分散能力の大き
な界面活性剤であって、ナフタレンスルホン酸ホルムア
ルデヒド縮合物の塩、メラミンスルホン酸ホルムアルデ
ヒド縮合物の塩、高分子量リグニンスルホン酸塩及びポ
リカルボン酸塩等を主成分とするものなどであり、具体
的には、例えば、花王(株)製商品名「マイティ15
0」、電気化学工業(株)製商品名「FT−500」、
ポゾリス物産(株)製商品名「NL−4000」等が挙
げられる。
The high-performance water-reducing agent is a surfactant having a large dispersibility, which does not cause excessive delay of coagulation or excessive air entrainment even when added in a large amount, and is a salt of a naphthalenesulfonic acid formaldehyde condensate, melamine. Examples thereof include salts of sulfonic acid-formaldehyde condensate, high molecular weight lignin sulfonates, polycarboxylates and the like as main components. Specifically, for example, product name "Mighty 15 manufactured by Kao Corporation" is used.
0 ", product name" FT-500 "manufactured by Denki Kagaku Kogyo Co., Ltd.,
The product name "NL-4000" manufactured by Pozoris Bussan Co., Ltd. and the like can be mentioned.

【0029】高性能減水剤の使用量は特に限定されるも
のではないが、固形分換算でセメント100重量部に対
し、0.2〜2重量部程度が好ましい。そして、セメン
トの種類や銘柄、砂などの骨材の変動に対応して、コン
クリートがプラスチック性を保持するように、この範囲
内で使用量を選定することが好ましい。
The amount of the high-performance water reducing agent used is not particularly limited, but is preferably about 0.2 to 2 parts by weight based on 100 parts by weight of cement in terms of solid content. Then, it is preferable to select the amount to be used within this range so that the concrete retains plasticity in response to variations in the type of cement, brand, and aggregate such as sand.

【0030】本発明のセメント混和材とセメント、砂、
砂利及び適量の水、さらに、必要に応じ減水剤等を配合
して、モルタル又はコンクリートを混練し、ポールを製
造するにあたり、本発明のセメント混和材は、予めセメ
ントに混合してセメント組成物としても良いし、混練時
直接ミキサーへ各々の成分を別々に又は予め混合したも
のを添加しても良く、さらに、水に分散させスラリー状
で添加しても良い。
The cement admixture of the present invention and cement, sand,
Gravel and an appropriate amount of water, further, if necessary, a water reducing agent and the like are blended, kneading mortar or concrete, in producing a pole, the cement admixture of the present invention, as a cement composition by mixing it with cement in advance. Alternatively, the respective components may be added to the mixer directly or separately in advance during kneading, or may be added in the form of a slurry by dispersing in water.

【0031】混練方法、成形方法、ポールの配筋方法及
びプレストレスの導入方法等については、特に制限され
るものではなく、通常、ポールを製造する際に実施され
る方法が利用できる。
The kneading method, the molding method, the method for arranging the poles, the method for introducing the prestress, etc. are not particularly limited, and the methods generally used when manufacturing the poles can be used.

【0032】また、本発明のセメント混和材を用いたポ
ールの常圧蒸気養生は40〜100℃の範囲で行なわ
れ、50〜80℃の範囲がより好ましい。
Further, the atmospheric pressure steam curing of the pole using the cement admixture of the present invention is carried out in the range of 40 to 100 ° C, more preferably in the range of 50 to 80 ° C.

【0033】[0033]

【実施例】以下、実施例にて本発明を説明する。 実施例1 表1に示すコンクリート配合記号Cを用い、表2のよう
に、II型無水セッコウ100重量部に対し、ポゾラン物
の量を変化させ、セメント混和材のセメントへの添加量
を変えて、常法でコンクリートを混練し、φ10×20
cmの供試体を成形した。供試体は、前置き養生を4時間
行った後、15℃/hの昇温速度で、65℃まで昇温し、
常圧蒸気養生し、そのまま4時間保持した後、自然放冷
し、翌朝蒸気養生槽より取り出し、各種試験を行なっ
た。結果を表2に併記する。なお、水セメント比は、水
量とセメント量の重量比であり、セメント混和材は、セ
メント100量部に対しての重量部で、細骨材と容積で
置き換えた。セメント混和材の使用量によって、目標ス
ランプ外となるものは、多少の水量を加減してスランプ
を調節した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 Concrete mixing code C shown in Table 1 was used, and as shown in Table 2, the amount of pozzolanic material was changed with respect to 100 parts by weight of II type anhydrous gypsum, and the addition amount of cement admixture to cement was changed. , Kneading concrete by the usual method, φ10 × 20
A cm test piece was molded. The specimen was pre-cured for 4 hours and then heated up to 65 ° C at a heating rate of 15 ° C / h,
After steam curing at normal pressure and holding for 4 hours as it was, it was naturally cooled, taken out from the steam curing tank the next morning, and subjected to various tests. The results are also shown in Table 2. The water-cement ratio is the weight ratio of the amount of water to the amount of cement, and the cement admixture was parts by weight with respect to 100 parts by weight of cement, and was replaced by fine aggregate and volume. If the amount of cement admixture used was outside the target slump, the amount of water was adjusted to adjust the slump.

【0034】[0034]

【表1】 [Table 1]

【0035】<使用材料> セメント:電気化学工業(株)製、普通ポルトランドセ
メント(比重3.16) 砂 :新潟県姫川産川砂(比重2.65) 砂利 : 〃 砕石(比重2.68) 水 :地下水 減水剤 :高性能減水剤、電気化学工業(株)製商品名
「FT-500」(比重1.20)主分ナフタレンスルホン酸ホル
ムアルデヒド縮合物 II型無水セッコウ:新秋田化成(株)製、弗酸発生副生
セッコウ、ブレーン値6,000cm2/g(ポロシティ0.5)、比
重2.96 シリカ :シリカヒューム、日本重化学工業(株)製、
比重2.20 ケイソウ:ケイソウ土、昭和化学工業(株)製商品名
「ラヂオライトSPF 」、比重2.10
<Materials used> Cement: ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd. (specific gravity 3.16) Sand: Niigata Prefecture Himekawa produced river sand (specific gravity 2.65) Gravel: 〃 Crushed stone (specific gravity 2.68) Water: Groundwater water reducing agent: High Performance water reducing agent, trade name "FT-500" manufactured by Denki Kagaku Kogyo Co., Ltd. (specific gravity 1.20) Main component naphthalene sulfonic acid formaldehyde condensate type II anhydrous gypsum: manufactured by Shin-Akita Kasei Co., Ltd., hydrofluoric acid by-product gypsum, Blaine value 6,000 cm 2 / g (porosity 0.5), specific gravity 2.96 Silica: Silica fume, manufactured by Nippon Heavy Chemical Industry Co., Ltd.
Specific gravity 2.20 diatom: diatomaceous earth, product name "Radiolite SPF" manufactured by Showa Chemical Industry Co., Ltd., specific gravity 2.10

【0036】<試験方法> (1) 強度の測定 圧縮強度はφ10×20cmの振動詰めの円柱供試体を用
いて、JIS A 1108に準じて、材令1日で測定を行った。 (2) 耐塩性の測定 φ10×20cmの円柱供試体を材令1日で脱型し、その
後20±3℃、RH60±5%にコントロールした養生箱
で28日間養生してから、3%NaCl水溶液に浸漬し、材
令6か月で取り出し、供試体中央部をφ10×1cmの寸
法で切り出し、300℃で24時間乾燥したものを全量
粉砕して、蛍光X線分析によって浸透した塩素イオン量
を測定した。 (3) 作業性の測定 コンクリート混練直後に、JIS A 1101に準じ、スランプ
を測定し、20分後に、再び、同様にスランプを測定し
た。
<Test Method> (1) Measurement of Strength The compressive strength was measured using a vibration-filled cylindrical test piece of φ10 × 20 cm in accordance with JIS A 1108, and was measured for one day. (2) Measurement of salt resistance A cylindrical specimen of φ10 × 20 cm was demolded in 1 day of age, then cured in a curing box controlled at 20 ± 3 ° C and RH60 ± 5% for 28 days, and then 3% NaCl. Immerse in the aqueous solution, take out after 6 months of age, cut out the central part of the sample with a size of φ 10 × 1 cm, dry it at 300 ° C for 24 hours, crush all the amount, and infiltrate by fluorescent X-ray analysis Was measured. (3) Measurement of workability Immediately after concrete mixing, slump was measured according to JIS A 1101, and 20 minutes later, slump was measured again in the same manner.

【0037】[0037]

【表2】 [Table 2]

【0038】表2から明らかなように、II型無水セッコ
ウと、シリカヒュームやケイソウ土のポゾラン物を適量
使用した実施例は、浸透した塩素イオンの量が大幅に減
少しており、耐塩性を改善する効果が認められる。ま
た、使用量が適当でないと、耐塩性は向上せず、スラン
プドロップなどの作業性が悪くなる。
As is clear from Table 2, the examples in which an appropriate amount of type II anhydrous gypsum and a pozzolanic substance of silica fume or diatomaceous earth were used, the amount of permeated chlorine ions was significantly reduced, and salt resistance was improved. The improving effect is recognized. If the amount used is not proper, salt resistance will not be improved and workability such as slump drop will be deteriorated.

【0039】実施例2 実施例1、実験No.1−11に示す配合のコンクリー
トに、高炉スラグ粉を表3のように併用し、実施例1と
同様に供試体を作成し、各種試験とコンクリート硬化体
中のポルトランダイトの測定を行った。結果を表3に併
記する。なお、実験No.2−1と2−2配合の単位水
量は140kg/m3 、それ以外は145kg/m3 前後で同程
度のスランプが得られた。
Example 2 Example 1, Experiment No. Blast furnace slag powder was used in combination with concrete having the composition shown in 1-11 as shown in Table 3, and a test piece was prepared in the same manner as in Example 1, and various tests and measurements of portlandite in the hardened concrete were performed. . The results are also shown in Table 3. In addition, the experiment No. A similar amount of slump was obtained at a unit water amount of 140 kg / m 3 in the 2-1 and 2-2 blends and around 145 kg / m 3 in other cases.

【0040】 <使用材料> スラグ粉a:高炉スラグ粉、川鉄リバーメント社製、二水セッコウなし、粉砕・ 分級品ブレーン6,000 cm2/g 〃 b: 〃 10,500 cm2/g <試験方法> (4) ポルトランダイトの測定 φ10×20cmの円柱供試体を材令1日で脱型し、供試
体中央部をφ10×1cmの寸法で切り出し、300℃で
24時間乾燥したものを全量粉砕して、化学分析を行っ
た。なお、ポルトランダイトはf-CaOに換算して示し
た。
<Materials used> Slag powder a: blast furnace slag powder, manufactured by Kawatetsu Riverment Co., without gypsum dihydrate, crushed / classified product Brain 6,000 cm 2 / g 〃 b: 〃 10,500 cm 2 / g <Test method> ( 4) Measurement of portlandite A cylindrical specimen of φ10 × 20 cm was demolded in 1 day of age, a central portion of the specimen was cut out with a dimension of φ10 × 1 cm, and dried at 300 ° C. for 24 hours. , Chemical analysis was performed. The portlandite was converted to f-CaO.

【0041】[0041]

【表3】 [Table 3]

【0042】表3から明らかなように、II型無水セッコ
ウとポゾラン物に高炉スラグ粉を併用すると、強度や耐
塩性が著しく向上する。高炉スラグ粉が2重量部未満で
は添加効果が小さく、15重量部を越えて併用しても、
強度や耐塩性の伸びが小さく、コンクリート硬化体中の
ポルトランダイトが少なくなり、鉄筋の発錆などが懸念
される。
As is clear from Table 3, when the type II anhydrous gypsum and the pozzolanic substance are used in combination with blast furnace slag powder, the strength and salt resistance are remarkably improved. If the amount of blast furnace slag powder is less than 2 parts by weight, the effect of addition is small.
The strength and salt resistance are low, the amount of portlandite in the hardened concrete is small, and there is concern that the reinforcing bars will rust.

【0043】実施例3 表1に示す配合記号A〜Fのコンクリート配合を用い、
表4に示すように、セメント混和材を添加して、コンク
リートのポールを製造した。ポールは、長さ13m、未
口径190mm、設計ひびわれ荷重350kgf のA型ポー
ルで、常法により遠心成型し、実施例1と同様の条件で
蒸気養生を行った後、翌日脱型してプレストレスを導入
し、そのまま屋外養生を行った。その後、材令21日で
曲げ強さ試験を行い、初ひびわれ荷重と破壊荷重(設計
値700kgf)を測定した。なお、PC鋼棒は高周波熱練
(株)製を用い、配筋は緊張用のPC鋼棒φ7.4mm×8
本と補強鋼棒φ7.4mm×4本(ストレート筋)、らせ
ん筋はφ3mmの鉄線を10cm間隔で配置し、PC鋼棒の初
期緊張応力度は10,150kgf/cm2 となるようにし
た。また、ポール製造時に採集したコンクリートで、圧
縮強度と浸透した塩素イオン量測定用として、φ20×
厚さ5×長さ30cmの供試体と、耐候性の試験用として
φ10×20cmの供試体を、ポールと同様に遠心成型し
て作成した。結果を表4に併記する。圧縮強度は材令2
1日で測定し、塩素イオンの浸透量は、材令21日で、
中空部に3%NaCl水溶液が入らないように、両端を塩ビ
板で接着し、該水溶液に浸漬し、材令6か月で1cmの厚
さで輪切りにして、実施例1と同様に測定した。
Example 3 Using concrete mixes of mix symbols A to F shown in Table 1,
As shown in Table 4, cement admixtures were added to produce concrete poles. The pole is an A-type pole having a length of 13 m, an uncaliber of 190 mm, and a designed crack load of 350 kgf, which is centrifugally molded by a conventional method, steam-cured under the same conditions as in Example 1, and then demolded the next day to be prestressed. Was introduced and the outdoor curing was performed as it was. After that, a bending strength test was performed on the 21st day of the material age, and the initial crack load and the breaking load (design value 700 kgf) were measured. The PC steel rod used was manufactured by Induction Heat Kneading Co., Ltd., and the reinforcing bar was a PC steel rod φ7.4 mm x 8 for tensioning.
Books and reinforced steel rods φ7.4 mm × 4 (straight muscle), spiral wires were φ3 mm iron wires arranged at 10 cm intervals, and the initial tensile stress level of the PC steel rod was set to 10,150 kgf / cm 2 . In addition, the concrete collected at the time of pole production is φ20 x for measuring compressive strength and the amount of permeated chlorine ions.
A specimen having a thickness of 5 cm and a length of 30 cm and a specimen having a diameter of 10 cm for a weather resistance test were prepared by centrifugal molding in the same manner as the pole. The results are also shown in Table 4. Compressive strength is age 2
The permeation amount of chloride ion is 21 days after the measurement.
Both ends were adhered with a vinyl chloride plate so as not to allow the 3% NaCl aqueous solution to enter the hollow portion, dipped in the aqueous solution, and sliced into 1 cm-thick sections for 6 months, and the same measurement as in Example 1 was performed. .

【0044】<試験方法> (5) 耐候性 φ10×20cmの供試体を脱型後屋外曝露養生を行い、
1年後のひびわれを観察した。
<Test Method> (5) Weather resistance A test piece of φ10 × 20 cm was subjected to outdoor exposure curing after demolding,
I observed the crack one year later.

【0045】[0045]

【表4】 [Table 4]

【0046】表4から明らかなように、本発明のセメン
ト混和材を使用した、単位セメント量250〜450kg
/m3 のコンクリートのポールは、強度も、耐塩性や耐候
性に対する効果も顕著に改善される。
As is clear from Table 4, the unit cement amount using the cement admixture of the present invention is 250 to 450 kg.
A concrete pole of / m 3 has a markedly improved effect on strength, salt resistance and weather resistance.

【0047】[0047]

【発明の効果】以上のように、本発明のセメント混和材
で作製された耐塩性ポールは、高強度で、耐候性の良
い、耐塩性の高いものである。
Industrial Applicability As described above, the salt-resistant pole made of the cement admixture of the present invention has high strength, good weather resistance, and high salt resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 II型無水セッコウ100重量部と、ポゾ
ラン物40重量部を越え、500重量部以下及び高炉ス
ラグ2〜15重量部を主成分とするセメント混和材。
1. A cement admixture mainly comprising 100 parts by weight of type II anhydrous gypsum, more than 40 parts by weight of pozzolanic material and not more than 500 parts by weight, and 2 to 15 parts by weight of blast furnace slag.
【請求項2】 セメント100重量部と、請求項1記載
のセメント混和材8〜45重量部とを主成分とするセメ
ント組成物。
2. A cement composition comprising 100 parts by weight of cement and 8 to 45 parts by weight of the cement admixture according to claim 1 as a main component.
JP7244096A 1996-03-27 1996-03-27 Highly durable cement composition Expired - Lifetime JP2853989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7244096A JP2853989B2 (en) 1996-03-27 1996-03-27 Highly durable cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7244096A JP2853989B2 (en) 1996-03-27 1996-03-27 Highly durable cement composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22437289A Division JP2612071B2 (en) 1989-09-01 1989-09-01 How to make salt-tolerant poles

Publications (2)

Publication Number Publication Date
JPH08319143A true JPH08319143A (en) 1996-12-03
JP2853989B2 JP2853989B2 (en) 1999-02-03

Family

ID=13489362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7244096A Expired - Lifetime JP2853989B2 (en) 1996-03-27 1996-03-27 Highly durable cement composition

Country Status (1)

Country Link
JP (1) JP2853989B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039759A (en) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk Low environmental load type high strength concrete
JP2001039760A (en) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk Low environmental load type high strength concrete
JP2009167042A (en) * 2008-01-15 2009-07-30 Denki Kagaku Kogyo Kk Rapid-hardening cement for sea water resistant cement asphalt mortar and sea water resistant cement asphalt mortar using the same
CN102173700A (en) * 2010-12-31 2011-09-07 四川嘉华企业(集团)股份有限公司 Minimum inflation low heat silicate cement
WO2014196682A1 (en) * 2013-06-04 2014-12-11 코오롱글로벌 주식회사 Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283248A (en) * 1988-09-19 1990-03-23 Daiichi Cement Kk High-strength-low-exothermic cement composition
JPH0393659A (en) * 1989-09-01 1991-04-18 Denki Kagaku Kogyo Kk Production of salt-resistant pole
JPH0648790A (en) * 1992-07-31 1994-02-22 Sumitomo Cement Co Ltd High tensile-strength type ultralow exotherm cement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283248A (en) * 1988-09-19 1990-03-23 Daiichi Cement Kk High-strength-low-exothermic cement composition
JPH0393659A (en) * 1989-09-01 1991-04-18 Denki Kagaku Kogyo Kk Production of salt-resistant pole
JPH0648790A (en) * 1992-07-31 1994-02-22 Sumitomo Cement Co Ltd High tensile-strength type ultralow exotherm cement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039759A (en) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk Low environmental load type high strength concrete
JP2001039760A (en) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk Low environmental load type high strength concrete
JP2009167042A (en) * 2008-01-15 2009-07-30 Denki Kagaku Kogyo Kk Rapid-hardening cement for sea water resistant cement asphalt mortar and sea water resistant cement asphalt mortar using the same
CN102173700A (en) * 2010-12-31 2011-09-07 四川嘉华企业(集团)股份有限公司 Minimum inflation low heat silicate cement
WO2014196682A1 (en) * 2013-06-04 2014-12-11 코오롱글로벌 주식회사 Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same
KR101501552B1 (en) * 2013-06-04 2015-03-11 코오롱글로벌 주식회사 Grout composition and construction method for offshore wind power generation facility using the same
US9435321B2 (en) 2013-06-04 2016-09-06 Kolon Global Corporation Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same

Also Published As

Publication number Publication date
JP2853989B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
Sathyan et al. Influence of superplasticizer family on the durability characteristics of fly ash incorporated cement concrete
Karakurt et al. Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete
JP3816036B2 (en) Cement admixture, cement composition and mortar or concrete using the same
Afolayan Experimental investigation of the effect of partial replacement of cement with eggshell ash on the rheological properties of concrete
Abd Elaty et al. Performance of Portland cement mixes containing silica fume and mixed with lime-water
Mansour et al. The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review
Kannan et al. Strength and water absorption properties of ternary blended cement mortar using rice husk ash and metakaolin
JP2581803B2 (en) Cement admixture and cement composition
Al-Swaidani et al. Improvement of the early-age compressive strength, water permeability, and sulfuric acid resistance of scoria-based mortars/concrete using limestone filler
JPH0680456A (en) Fluid hydraulic composition
JP2853989B2 (en) Highly durable cement composition
JP2612071B2 (en) How to make salt-tolerant poles
KR100196702B1 (en) Method for preparing concrete
JP2515397B2 (en) Cement admixture and cement composition
JP2003277111A (en) Hardening accelerator and cement composition
JP2622287B2 (en) Cement admixture and cement composition
Breesem et al. Influence of magnesium sulfate on self-compacting alum sludge concrete incorporating with pozzolanic materials
Guneyisi et al. Laboratory investigation of chloride permeability for high performance concrete containing fly ash and silica fume
Meziane et al. Effect of limestone fines on the mechanical properties and durability of mortar made with crushed sand
JP4522815B2 (en) High-strength cement admixture for strength compensation and cement composition using the same
JP2003321262A (en) Cement admixture and cement composition using the same
JP2530720B2 (en) Cement admixture and cement composition
Bhuvaneswari et al. Microstructural study on high performance concrete made with m sand
Boukhelkhal et al. Some engineering properties of sustainable self-compacting mortar made with ceramic and glass powders.
RU2781876C1 (en) Concrete mix

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11