JPH08318563A - Continuous production of hollow container - Google Patents

Continuous production of hollow container

Info

Publication number
JPH08318563A
JPH08318563A JP7126389A JP12638995A JPH08318563A JP H08318563 A JPH08318563 A JP H08318563A JP 7126389 A JP7126389 A JP 7126389A JP 12638995 A JP12638995 A JP 12638995A JP H08318563 A JPH08318563 A JP H08318563A
Authority
JP
Japan
Prior art keywords
hollow container
container
heating
shielding plate
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7126389A
Other languages
Japanese (ja)
Inventor
Norihiro Shimizu
紀弘 清水
Atsushi Takei
淳 武井
Koichi Kawachi
浩一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP7126389A priority Critical patent/JPH08318563A/en
Publication of JPH08318563A publication Critical patent/JPH08318563A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To continuously produce a hollow container made of a saturated polyester resin. CONSTITUTION: To the bottom part of a biaxially stretched blow molded hollow container molded by biaxially stretching blow molding, a shield plate 2A having the shape fitted to the bottom part of the hollow container and having a slit is arranged and, by heating the bottom part of the hollow container from below through the slit, the bottom part of the hollow container is crystallized and, next, the shield plate 2A is detached from the hollow container and the bottom part of a new hollow container is heated and crystallized in the same way. The shield plate is not cooled at the time of heating but cooled or allowed to stand to cool before the heating for crystallization of the hollow container succeeding to the completion of heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、飽和ポリエステル樹脂
製中空容器の連続的製造方法に関し、より詳細には内容
物の加熱殺菌時の耐圧及び耐熱性を高め、耐衝撃性にも
優れた耐圧耐熱性中空容器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a hollow container made of a saturated polyester resin, and more specifically, to a pressure resistance and heat resistance during heat sterilization of contents, which is excellent in impact resistance. The present invention relates to a method for manufacturing a heat resistant hollow container.

【0002】[0002]

【従来の技術】本発明者等は、これまで、耐圧耐熱性自
立型中空容器製造方法として、底部中心部の周りに複数
の脚部を放射状に膨出し、これらの脚部と脚部との間に
谷線部を形成した底部構造の場合、中空容器の内圧によ
る応力が集中する底部を結晶化することにより、容器の
加熱殺菌時に、底部がクリープ変形して、自立安定性を
失うことがなくなることを見いだした。しかしながら、
前記の底部結晶化については、生産性を上げるために結
晶化時間を短縮すると中空容器の底部が熱収縮を起こ
し、また、中空容器の底部の熱収縮を抑制すると結晶化
時間が長くなり生産性が上がらないという欠点があっ
た。
2. Description of the Related Art The inventors of the present invention have heretofore used a pressure- and heat-resistant self-standing hollow container manufacturing method, in which a plurality of legs are radially bulged around a center of a bottom portion, and the legs and the legs are joined together. In the case of a bottom structure with a valley line formed in between, by crystallizing the bottom where the stress due to the internal pressure of the hollow container concentrates, the bottom may creep deform during heat sterilization of the container and lose self-standing stability. I found it disappeared. However,
Regarding the above-mentioned bottom crystallization, when the crystallization time is shortened to increase productivity, the bottom of the hollow container causes heat shrinkage, and when the heat shrinkage of the bottom of the hollow container is suppressed, the crystallization time becomes longer and the productivity is improved. There was a drawback that it did not go up.

【0003】[0003]

【発明が解決しようとする課題】本発明の研究者等は鋭
意研究の結果、遮蔽板を使用し、この遮蔽板を常時冷却
せず、容器底部を加熱していない間に、容器底部付近の
熱収縮が抑制できる温度に遮蔽板の冷却を行い、容器底
部を加熱する間はこの冷却を行わず、容器底部を加熱す
る熱により遮蔽板の温度が上昇できるようにすること
で、容器底部付近が熱収縮を起こす温度にさらされる時
間を短縮して容器底部付近の熱収縮を抑制し、かつ、次
第に遮蔽板の温度が上昇することで容器底部の結晶化時
間も短縮できることを見いだし、本発明に到達した。
DISCLOSURE OF THE INVENTION As a result of earnest research, the researchers of the present invention have used a shield plate, and while the shield plate is not always cooled and the container bottom is not heated, the vicinity of the container bottom is kept. Cool the shield plate to a temperature at which heat contraction can be suppressed, and do not perform this cooling while heating the bottom of the container.By allowing the heat of the bottom of the container to raise the temperature of the shield, the vicinity of the bottom of the container The present invention has been found to reduce the time of exposure to a temperature at which heat shrinks to suppress heat shrinkage in the vicinity of the bottom of the container, and gradually increase the temperature of the shielding plate to shorten the crystallization time of the bottom of the container. Reached

【0004】すなわち、本発明は、二軸延伸ブロー中空
容器の底部と加熱装置との間に、特定部分が開口し、容
器底部と嵌合する形状を有する遮蔽板を設置し、容器底
部の特定部分から選ばれた部分を生産性を損なわずに加
熱し結晶化することにより、容器の加熱殺菌時に、底部
がクリープ変形して、自立安定性を失うことがなく、且
つ、耐薬品性にも優れた、耐圧耐熱性自立型中空容器の
製造方法を提供するものである。
That is, according to the present invention, a shielding plate having a shape in which a specific portion is opened and which fits with the bottom of the container is installed between the bottom of the biaxially stretched blow hollow container and the heating device, and the bottom of the container is specified. By heating and crystallizing the part selected from the parts without impairing the productivity, the bottom part does not deform by creep during heat sterilization of the container and the self-sustaining stability is not lost, and it also has chemical resistance. An excellent method for producing a pressure- and heat-resistant self-standing hollow container is provided.

【0005】[0005]

【課題を解決するための手段】本発明の第1の発明は、
二軸延伸ブロー成形によって成形された二軸延伸ブロー
中空容器の底部に、該中空容器の底部と嵌合する形状を
有し、且つ、スリットを有する遮蔽板を設置し、該スリ
ットの下方から中空容器の底部を加熱することにより中
空容器の底部を結晶化せしめ、次に、遮蔽板を中空容器
から脱着し、新しい中空容器に対し同様にして、加熱結
晶化せしめる方法であって、その加熱の際は遮蔽板を冷
却せず、加熱が終了した後、次に続く中空容器の該結晶
化のための加熱までの間に、遮蔽板を冷却または放冷す
る飽和ポリエステル樹脂製中空容器の連続的製造方法で
ある。
The first invention of the present invention is as follows:
At the bottom of the biaxially stretched blow hollow container molded by biaxially stretched blow molding, a shielding plate having a shape that fits the bottom of the hollow container and having a slit is installed, and a hollow is formed from below the slit. A method of crystallizing the bottom of the hollow container by heating the bottom of the container, then detaching the shield plate from the hollow container, and heating and crystallizing the new hollow container in the same manner. In this case, the shielding plate is not cooled, and after the heating is completed, until the heating for the subsequent crystallization of the hollow container, the shielding plate is cooled or allowed to cool. It is a manufacturing method.

【0006】本発明の第2の発明は、二軸延伸ブロー成
形によって成形され、底部の底部中心部の周りに複数の
脚部を放射状に膨出し、これらの脚部と脚部との間に谷
線部を形成した自立可能な構造で、かつ、下記の(a)
または(b)を有する二軸延伸ブロー中空容器の底部
に、該中空容器の底部と嵌合する形状を有し、かつ、ス
リットを有する遮蔽板を設置し、該スリットの下方から
中空容器の底部を加熱することにより中空容器の底部の
下記の(A)〜(E)の少なくとも1箇所を結晶化せし
め、次に、遮蔽板を中空容器から脱着し、新しい中空容
器に対し同様にして、加熱結晶化せしめる方法であっ
て、その加熱の際は遮蔽板を冷却せず、加熱が終了した
後、次に続く中空容器の該結晶化のための加熱までの間
に、遮蔽板を冷却または放冷する飽和ポリエステル樹脂
製中空容器の連続的製造方法である。
A second aspect of the present invention is formed by biaxial stretch blow molding, in which a plurality of legs are radially bulged around the bottom center of the bottom, and between the legs. It has a self-supporting structure with a valley line formed, and (a) below.
Alternatively, at the bottom of the biaxially stretched blow hollow container having (b), a shielding plate having a shape fitting with the bottom of the hollow container and having a slit is installed, and the bottom of the hollow container is provided from below the slit. At least one of the following (A) to (E) on the bottom of the hollow container is crystallized by heating, and then the shielding plate is detached from the hollow container and heated in the same manner for a new hollow container. A method of crystallizing, wherein the shielding plate is not cooled during its heating, and the shielding plate is cooled or released after the heating is completed and before the heating for the subsequent crystallization of the hollow container. It is a continuous production method of a hollow container made of a saturated polyester resin to be cooled.

【0007】(a)口頸部、サポートリングおよびサポ
ートリング下を結晶化したもの。 (b)口頸部または口頸部とサポートリングは、その内
周径が外周径に対して60〜80%であり、且つ、加熱
により応力・歪が緩和され、サポートリング下を結晶化
したもの。 (A)底部中心部。 (B)底部中心部の周辺部。 (C)谷線部の底部中心部に近い部分。 (D)脚部の底部中心部の周辺部の縁より接地部にいた
る部分。 (E)前記(C)と前記(D)の間の部分。
(A) The neck and neck, the support ring and the lower part of the support ring are crystallized. (B) The mouth and neck or the mouth and neck and the support ring have an inner diameter of 60 to 80% with respect to the outer diameter, and stress and strain are relaxed by heating, and the lower portion of the support ring is crystallized. thing. (A) Bottom center. (B) Peripheral area around the center of the bottom. (C) A portion near the center of the bottom of the valley line. (D) The part from the edge of the peripheral part of the bottom center part of the leg part to the ground contact part. (E) A portion between (C) and (D).

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】本発明の飽和ポリエステル樹脂製中空容器
に用いる樹脂は、主たる繰り返し単位がエチレンテレフ
タレートである飽和ポリエステル樹脂が好ましく、該飽
和ポリエステル樹脂とは、ポリエチレンテレフタレート
のホモポリマーを主たる成分とする。
The resin used for the hollow container made of the saturated polyester resin of the present invention is preferably a saturated polyester resin whose main repeating unit is ethylene terephthalate, and the saturated polyester resin contains a homopolymer of polyethylene terephthalate as a main component.

【0010】この飽和ポリエステル樹脂としては、テレ
フタル酸成分の一部を例えば、イソフタル酸、ナフタリ
ンジカルボン酸、ジフェニルジカルボン酸、ジフェノキ
シエタンジカルボン酸、ジフェニルエーテルジカルボン
酸、ジフェニルスルホンジカルボン酸等の芳香族ジカル
ボン酸;ヘキサヒドロテレフタル酸、ヘキサヒドロイソ
フタル酸等の脂環族ジカルボン酸;アジピン酸、セバチ
ン酸、アゼライン酸等の脂肪族ジカルボン酸;P−β−
ヒドロキシエトキシ安息香酸、ε−オキシカプロン酸等
のオキシ酸等の他の二官能性カルボン酸の1種以上を置
換して共重合したものが使用できる。
As the saturated polyester resin, a part of the terephthalic acid component is aromatic dicarboxylic acid such as isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid. Alicyclic dicarboxylic acids such as hexahydroterephthalic acid and hexahydroisophthalic acid; aliphatic dicarboxylic acids such as adipic acid, sebacic acid and azelaic acid; P-β-
A copolymer obtained by substituting at least one other difunctional carboxylic acid such as hydroxyethoxybenzoic acid and oxyacid such as ε-oxycaproic acid for copolymerization can be used.

【0011】また、飽和ポリエステル樹脂は、エチレン
グリコール成分の一部を例えば、トリメチレングリコー
ル、テトラメチレングリコール、ヘキサメチレングリコ
ール、デカメチレングリコール、ネオペンチレングリコ
ール、ジエチレングリコール、1,1−シクロヘキサン
ジメチロール、1,4−シクロヘキサンジメチロール、
2,2(4’−β−ヒドロキシエトキシフェニル)スル
ホン酸等の他のグリコール及びこれらの機能的誘導体の
多官能化合物の1種以上で置換して共重合した共重合体
でもよい。
In the saturated polyester resin, a part of the ethylene glycol component is, for example, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol, neopentylene glycol, diethylene glycol, 1,1-cyclohexanedimethylol, 1,4-cyclohexanedimethylol,
It may be a copolymer obtained by substituting one or more polyfunctional compounds of other glycols such as 2,2 (4′-β-hydroxyethoxyphenyl) sulfonic acid and their functional derivatives, and copolymerizing them.

【0012】また、本発明の容器に使用する飽和ポリエ
ステル樹脂は、固有粘度が0.7〜1.0が好ましく、
特に好ましくは0.75〜0.90である。
The saturated polyester resin used in the container of the present invention preferably has an intrinsic viscosity of 0.7 to 1.0,
It is particularly preferably 0.75 to 0.90.

【0013】更に、本発明に使用する飽和ポリエステル
樹脂には、着色剤、熱劣化防止剤、酸化防止剤、紫外線
吸収剤、帯電防止剤、抗菌剤、滑剤等の添加剤を適宜用
いることができる。
Further, the saturated polyester resin used in the present invention may appropriately contain additives such as colorants, heat deterioration inhibitors, antioxidants, ultraviolet absorbers, antistatic agents, antibacterial agents and lubricants. .

【0014】本発明において、加熱装置としては、熱を
発生する装置を用いることができ、具体的には、赤外線
ヒーター、熱風、赤外線ランプ、石英管ヒーター、高周
波加熱装置などを用いることができる。また、これ以外
の熱源を用いることができるのは、勿論のことである。
In the present invention, as the heating device, a device that generates heat can be used, and specifically, an infrared heater, hot air, an infrared lamp, a quartz tube heater, a high frequency heating device and the like can be used. Further, it goes without saying that a heat source other than this can be used.

【0015】また、本発明において、遮蔽板の材質とし
ては、アルミニウム、鉄、銅などの金属や耐熱性樹脂、
セラミック等を用いることができ、遮蔽板の表面は平滑
であることが好ましい。
In the present invention, the shielding plate is made of a metal such as aluminum, iron or copper or a heat resistant resin.
Ceramic or the like can be used, and the surface of the shielding plate is preferably smooth.

【0016】本発明は、二軸延伸ブロー中空容器の底部
に、スリットを有する遮蔽板を設置し、該スリットの下
方から中空容器の底部を加熱することにより中空容器の
底部を結晶化せしめ、次に、遮蔽板を中空容器から脱着
し、新しい中空容器に対し同様にして、加熱結晶化せし
める方法であって、その加熱の際は遮蔽板を冷却せず、
加熱が終了した後、次に続く中空容器の該結晶化のため
の加熱までの間に、遮蔽板を冷却または放冷する中空容
器の連続的製造方法である。遮蔽板の冷却または放冷
は、容器に用いる樹脂のガラス転移点温度を越えない温
度まで冷却または放冷することが好ましい。
In the present invention, a shielding plate having a slit is installed at the bottom of a biaxially stretched blow hollow container, and the bottom of the hollow container is heated from below the slit to crystallize the bottom of the hollow container. In, a method of desorbing the shield plate from the hollow container and heating and crystallizing it in the same manner for a new hollow container, without cooling the shield plate at the time of heating,
It is a continuous manufacturing method of a hollow container in which the shielding plate is cooled or allowed to cool after the heating is completed and before the subsequent heating for crystallization of the hollow container. The shielding plate is preferably cooled or allowed to cool to a temperature not exceeding the glass transition temperature of the resin used in the container.

【0017】本発明の遮蔽板は、二軸延伸ブロー中空容
器の底部の(A)底部中心部および/または、(B)底
部中心部の周辺部および/または、(C)谷線部の底部
中心部に近い部分および/または、(D)脚部の前記周
辺部の縁より接地部にいたる部分および/または、
(E)前記(C)と(D)の間の部分から選ばれた部分
に対応する部分が開口し、容器底部と嵌合する形状を有
するものである。前記(A)〜(E)の組み合わせの中
で、(B)及び(C)を含む組み合わせが特に好まし
く、(E)は、必要に応じて組み合わせることができ
る。遮蔽板は、容器底部と嵌合する形状を有するもので
あり、嵌合のための彫りこみは、脚部の膨出部分の60
%以上、好ましくは80%以上が入るものである。これ
により、加熱による熱収縮を防止でき、さらに、遮蔽板
の開口部に対応する部分のみを精度よく加熱、結晶化す
ることができる。
The shielding plate according to the present invention comprises (A) the center of the bottom of the bottom of the biaxially stretched blow hollow container and / or (B) the periphery of the center of the bottom and / or (C) the bottom of the valley. A portion close to the central portion and / or (D) a portion from the edge of the peripheral portion of the leg portion to the ground portion and / or
(E) A portion corresponding to a portion selected from the portion between (C) and (D) is opened and has a shape that fits with the bottom of the container. Among the combinations (A) to (E), the combination containing (B) and (C) is particularly preferable, and (E) can be combined as necessary. The shielding plate has a shape that fits with the bottom of the container, and the engraving for fitting is made up of 60 of the bulging portion of the leg.
% Or more, preferably 80% or more. As a result, heat shrinkage due to heating can be prevented, and only the portion corresponding to the opening of the shielding plate can be heated and crystallized with high accuracy.

【0018】一方、容器底部を加熱していない時に遮蔽
板を冷却することなく繰り返し使用すると、加熱時間の
経過と共に、いずれは、遮蔽板の温度が容器に用いる樹
脂のガラス転移点温度以上になり容器底部付近の著しい
熱収縮を起こす可能性が極度に高くなり、また仮に、遮
蔽板の温度が容器に用いる樹脂のガラス転移点温度以上
に上がらないとしても、遮蔽板の温度により容器底部の
結晶化状態にばらつきが生じ、容器底部の結晶化状態不
良の原因となる。そこで、遮蔽板をある一定の温度で温
調することが考えられる。例えば、遮蔽板を室温程度に
温調することが考えられるが、この場合、容器底部付近
の熱収縮はほとんど抑えられるが、底部の結晶化に要す
る時間はこの場合より高い温度で温調したときに比べ長
くなり、生産性が極端に悪くなる。また、遮蔽板を容器
に用いる樹脂のガラス転移点以下の温度内の高い温度に
温調することが考えられるが、この場合は、底部の結晶
化時間は短くなり生産性が向上するが、容器底部付近の
熱収縮が起こるという欠点がある。
On the other hand, when the shielding plate is repeatedly used without cooling when the bottom of the container is not heated, the temperature of the shielding plate eventually becomes equal to or higher than the glass transition temperature of the resin used in the container as the heating time elapses. The possibility of significant heat shrinkage near the bottom of the container is extremely high, and even if the temperature of the shielding plate does not rise above the glass transition temperature of the resin used for the container, the temperature of the shielding plate causes the crystals at the bottom of the container to crystallize. The crystallization state varies, which causes a poor crystallization state at the bottom of the container. Therefore, it is possible to control the temperature of the shielding plate at a certain temperature. For example, it is possible to control the temperature of the shield plate to about room temperature.In this case, the heat shrinkage near the bottom of the container is almost suppressed, but the time required for crystallization of the bottom is higher when the temperature is controlled at a higher temperature. It will be longer than that and productivity will be extremely poor. Further, it is possible to control the temperature of the shielding plate to a high temperature within the temperature below the glass transition point of the resin used for the container. In this case, the crystallization time at the bottom is shortened and the productivity is improved. There is a drawback that heat contraction occurs near the bottom.

【0019】よって、遮蔽板を常時一定温度に温調せ
ず、容器底部を加熱していないときのみ、容器底部付近
の熱収縮が抑制できる温度に遮蔽板の冷却を行い、容器
底部を加熱する間はこの冷却を行わず、容器底部を加熱
する熱により遮蔽板の温度が上昇できるようにすること
で、容器底部付近の熱収縮が起こる温度にさらされる時
間を短縮できるので、容器底部付近の熱収縮は抑制さ
れ、かつ、次第に遮蔽板の温度が上昇することで容器底
部の結晶化時間も短縮できる。
Therefore, the temperature of the shield plate is not constantly controlled to a constant temperature, and only when the container bottom is not heated, the shield plate is cooled to a temperature at which heat contraction near the container bottom can be suppressed and the container bottom is heated. By not performing this cooling during this period and allowing the temperature of the shielding plate to rise by the heat of heating the bottom of the container, it is possible to shorten the time exposed to the temperature at which heat contraction occurs near the bottom of the container. The heat shrinkage is suppressed, and the temperature of the shielding plate gradually rises, so that the crystallization time at the bottom of the container can be shortened.

【0020】本発明の製造装置の具体例として、図1で
示される装置がある。図1において、その基本構成は、
最下段に底板7、底板7上に加熱装置3を設置し、さら
に、その上方に遮蔽板2Aを設置したものである。この
遮蔽板は、二軸延伸ブロー中空容器1Aの底部の形状と
同じ彫り込みがあり二軸延伸ブロー中空容器の底部の
(A)底部中心部、(B)底部中心部の周辺部、(C)
谷線部の底部中心部に近い部分、(D)脚部の前記周辺
部の縁より接地部にいたる部分、(E)前記(C)と
(D)の間の部分から選ばれた少なくとも1箇所の部分
に対応する開口部を有したアルミニウム製の遮蔽板であ
る。
As a specific example of the manufacturing apparatus of the present invention, there is an apparatus shown in FIG. In FIG. 1, the basic configuration is
The bottom plate 7, the heating device 3 is installed on the bottom plate 7, and the shielding plate 2A is installed above the bottom plate 7. This shielding plate has the same engraving as the shape of the bottom of the biaxially stretched blow hollow container 1A, and the bottom of the biaxially stretched blow hollow container is (A) the center of the bottom, (B) the center of the bottom, and (C).
At least one selected from a portion near the center of the bottom of the valley line portion, (D) a portion from the peripheral edge of the leg portion to the ground contact portion, and (E) a portion between (C) and (D) It is a shield plate made of aluminum having an opening corresponding to a portion of the place.

【0021】遮蔽板は、冷却するために設けられた冷却
媒体配管につながる冷却媒体チューブ、遮蔽板を冷却す
るために遮蔽板内に設けられた冷却媒体配管を有する。
さらに、遮蔽板2Aを支持する遮蔽板支持板6、その上
方に設置した二軸延伸ブロー中空容器1Aをサポートリ
ング22Aで支持する容器支持板5、その上方に設置し
た上板4、上板4に支持されている容器昇降兼荷重用シ
リンダー8、容器昇降兼荷重用シリンダー8と容器支持
板5を接続する容器内圧負荷用キャップ押板兼容器支持
板10、および底板7と直立して立てられた、遮蔽板支
持板6、容器支持板5及び上板4を支える支柱9とから
構成されている。
The shielding plate has a cooling medium tube connected to the cooling medium pipe provided for cooling, and a cooling medium pipe provided inside the shielding plate for cooling the shielding plate.
Further, a shield plate support plate 6 that supports the shield plate 2A, a container support plate 5 that supports the biaxially stretched blow hollow container 1A installed above it with a support ring 22A, an upper plate 4 installed above it, and an upper plate 4 The container 8 for lifting and lowering and supporting the container, the container pressing plate and container supporting plate 10 for connecting the container lifting and loading cylinder 8 and the container supporting plate 5, and the bottom plate 7 stand upright. Further, it is composed of a shield plate support plate 6, a container support plate 5, and a column 9 that supports the upper plate 4.

【0022】遮蔽板2Aの下方に設置された加熱装置3
から発する熱は、遮蔽板の開口部から二軸延伸ブロー中
空容器の底部に伝わり、底部の特定部分を一定時間加熱
することにより、容器の底部の特定部分を結晶化するこ
とができる。この時、遮蔽板は、容器の底部の結晶化を
行おうとする特定部分以外を遮蔽しているため、上記開
口部以外の容器の底部には、加熱装置の発する熱が直接
伝わることがないので結晶化されることはない。この
時、遮蔽板の、二軸延伸ブロー中空容器に接する際の表
面の温度は、容器底部を加熱中は温調を行っていない遮
蔽板が、加熱装置の発する熱で次第に温度上昇した際
に、熱可塑性ポリエステル樹脂のTg以下の温度となる
ような温度であることが好ましい。本発明においては、
冷却媒体配管を容器の底部の側部に設置することが簡便
であり好ましいが、その他の部分にも設置可能である。
A heating device 3 installed below the shield plate 2A.
The heat generated from is transmitted to the bottom of the biaxially stretched blow hollow container through the opening of the shielding plate, and the specific portion of the bottom can be crystallized by heating the specific portion of the bottom for a certain period of time. At this time, since the shielding plate shields the bottom of the container other than the specific part to be crystallized, the heat generated by the heating device is not directly transferred to the bottom of the container other than the opening. It does not crystallize. At this time, the temperature of the surface of the shielding plate when it comes into contact with the biaxially stretched blow hollow container is such that when the temperature of the shielding plate is not adjusted while the container bottom is being heated, the temperature gradually rises due to the heat generated by the heating device. It is preferable that the temperature is not higher than the Tg of the thermoplastic polyester resin. In the present invention,
It is convenient and preferable to install the cooling medium pipe on the side of the bottom of the container, but it is also possible to install it on other parts.

【0023】遮蔽板2Aは、容器底部と嵌合する形状を
有するものである。嵌合する時、遮蔽板と容器底部は接
触することが好ましいが、所望の部分以外の部分が結晶
化されない程度ならば、空隙があってもよい。又、密着
度を向上するために、容器を押圧して製造する方法も用
いることができる。容器は、遮蔽板にある彫り込みとほ
ぼ一致するような位置で容器支持板に設置すると、遮蔽
板内に底部が挿入される際に、遮蔽板の形状に底部が合
うように容器は回転し、容器底部と遮蔽板は、うまく嵌
合することができる。
The shield plate 2A has a shape that fits with the bottom of the container. It is preferable that the shield plate and the container bottom are in contact with each other at the time of fitting, but there may be a gap as long as a portion other than a desired portion is not crystallized. In addition, in order to improve the adhesion, a method of manufacturing by pressing the container can be used. When the container is installed on the container support plate at a position substantially corresponding to the engraving on the shield plate, when the bottom part is inserted into the shield plate, the container rotates so that the bottom part matches the shape of the shield plate, The bottom of the container and the shield can be fitted well.

【0024】容器の底部を結晶化する際には、二軸延伸
ブロー中空容器には、内圧をかけても、かけなくてもよ
い。内圧をかけて製造する場合は、図2に示すとおり、
その装置は、容器の口頸部21に装着する容器内圧負荷
キャップ11と、容器に内圧を加える圧縮空気を送入す
る圧縮空気送入チューブ12、および容器に送入された
圧縮空気が口頸部21から漏れることを防止するパッキ
ン13で構成される。容器には、任意の圧力の圧縮空気
を圧縮空気送入チューブ12から送入して内圧をかける
ことができる。
When crystallizing the bottom of the container, the biaxially stretched blow hollow container may or may not be subjected to internal pressure. When manufacturing by applying internal pressure, as shown in FIG.
The apparatus includes a container inner pressure load cap 11 attached to a mouth / neck portion 21 of a container, a compressed air supply tube 12 for supplying compressed air for applying an internal pressure to the container, and a compressed air sent to the container. The packing 13 is configured to prevent leakage from the portion 21. Compressed air having an arbitrary pressure can be fed into the container from the compressed air feeding tube 12 to apply an internal pressure.

【0025】第2の発明における飽和ポリエステル樹脂
製中空容器は、底部が底部中心部の周りに複数の脚部を
放射状に膨出し、これらの脚部と脚部との間に谷線部を
形成した自立可能な構造を有する底部からなっており、
且つ、特定部分が結晶化し、かつ、該中空容器の底部の
加熱結晶化部分が、特定部分である飽和ポリエステル樹
脂製中空容器である。さらに詳しくは、第2の発明で得
られる中空容器は、下記の(a)または(b)を有する
耐圧耐熱性を有する中空容器である。 (a)口頸部、サポートリングおよびサポートリング下
を結晶化したもの。 (b)口頸部または口頸部とサポートリングは、その内
周径が外周径に対して60〜80%であり、且つ、加熱
により応力・歪が緩和され、サポートリング下を結晶化
したもの。
In the saturated polyester resin hollow container according to the second aspect of the present invention, the bottom portion radially bulges out a plurality of legs around the center of the bottom, and forms a valley line portion between these legs. It consists of a bottom with a self-supporting structure,
In addition, the specific portion is a crystallized portion, and the heated and crystallized portion at the bottom of the hollow container is the specific portion, which is a saturated polyester resin hollow container. More specifically, the hollow container obtained in the second invention is a hollow container having pressure resistance and heat resistance having the following (a) or (b). (A) Crystallized mouth / neck, support ring, and lower support ring. (B) The mouth and neck or the mouth and neck and the support ring have an inner diameter of 60 to 80% with respect to the outer diameter, and stress and strain are relaxed by heating, and the lower portion of the support ring is crystallized. thing.

【0026】第2の発明における飽和ポリエステル樹脂
製中空容器は、中空容器の加熱結晶化部分が、(A)〜
(E)の少なくとも1つを有するものであるが、この中
で、(A)+(B)+(C)、(A)+(B)+(C)
+(D)、(B)+(C)+(D)、及び(B)+
(C)の組み合わせが好ましく、特に好ましくは、
(A)+(B)+(C)、(A)+(B)+(C)+
(D)、(B)+(C)+(D)の組み合わせである。
In the hollow container made of the saturated polyester resin according to the second aspect of the present invention, the heat crystallization portion of the hollow container is (A) to
It has at least one of (E), among which (A) + (B) + (C), (A) + (B) + (C)
+ (D), (B) + (C) + (D), and (B) +
The combination of (C) is preferable, and particularly preferably,
(A) + (B) + (C), (A) + (B) + (C) +
It is a combination of (D) and (B) + (C) + (D).

【0027】本発明の製造方法で得られる特定部分を結
晶化させた中空容器は、充填工場のコンベア−ラインに
使用される潤滑剤に対する耐薬品性も向上し、ストレス
クラックの発生も抑制することができる。また、底部を
白化結晶化させたことで透明部分と白色部分とのコント
ラストが美観の向上につながる。
The hollow container obtained by the production method of the present invention, in which a specific portion is crystallized, has improved chemical resistance to a lubricant used in a conveyor line of a filling factory and also suppresses the occurrence of stress cracks. You can Further, by whitening and crystallizing the bottom portion, the contrast between the transparent portion and the white portion leads to an improvement in aesthetic appearance.

【0028】[0028]

【実施例】以下、実施例により本発明を詳細に説明す
る。 実施例1 ポリエチレンテレフタレート(IV=0.84)を射出
成形して樹脂量50.0gの有底筒状プリフォームを得
た。このプリフォームの(a)口頸部、サポートリング
およびサポートリング下を赤外線ヒーターにより加熱
し、結晶化した。この有底筒状プリフォームを再加熱し
た後、ブロー金型内に配置して、ストレッチロッドによ
り軸方向に延伸しながらエアーブローにより周方向に延
伸して、二軸延伸ブロー中空容器を得た。この時、金型
の胴部を120℃に加熱した状態で、約10秒間熱固定
を行い、続いてブロー容器内に常温のエアーを循環させ
て冷却し、二軸延伸ブロー中空容器を得た。
The present invention will be described in detail below with reference to examples. Example 1 Polyethylene terephthalate (IV = 0.84) was injection-molded to obtain a bottomed tubular preform having a resin amount of 50.0 g. The (a) mouth and neck of this preform, the support ring and the lower part of the support ring were heated by an infrared heater to be crystallized. After reheating this bottomed tubular preform, it was placed in a blow mold and stretched in the circumferential direction by air blow while being stretched in the axial direction by a stretch rod to obtain a biaxially stretched blow hollow container. . At this time, while the body of the mold was heated to 120 ° C., heat fixing was performed for about 10 seconds, and then air at room temperature was circulated in the blow container to cool it, thereby obtaining a biaxially stretched blow hollow container. .

【0029】次に、この二軸延伸ブロー中空容器の底部
と赤外線ヒーター(加熱装置)との間に、(A)底部中
心部、(B)底部中心部の周辺部、(C)谷線部の中心
部側、及び(D)脚部の前記周辺部の縁より接地部に至
る部分に対応した部分が開口し、容器底部と嵌合する形
状を有したアルミニウム製の遮蔽板(図4及び図5に示
す)で、予め遮蔽板の温度を40℃としたものを設置し
た。次に、容器底部を遮蔽板(加熱中は冷却をおこなわ
ず)と嵌合・密着し、前記(A)〜(D)の部分を、加
熱により結晶化し、図3に示す中空容器1B(全高30
9mm、胴径92mm)を得た。中空容器1Bの底部
は、図6に示すように5個の脚部が中心部の周りに放射
状に等間隔に膨出すると共に、この脚部の間に谷線部を
形成した自立型の構造を有しており、その(A)底部中
心部、(B)底部中心部の周辺部、(C)谷線部の底部
中心部に近い部分、及び(D)脚部の前記周辺部の縁よ
り接地部にいたる部分が結晶化されており、結晶化部分
の密度は、1.361〜1.376g/cm3 であっ
た。また、容器底部を結晶化するのに要する時間は20
0秒であり、中空容器1Bの口部天面までの満水充填容
量は1530ミリリットルであった。
Next, between the bottom of the biaxially stretched blow hollow container and the infrared heater (heating device), (A) the center of the bottom, (B) the center of the bottom, and (C) the valley line. Of the aluminum shield plate (FIG. 4 and FIG. 4 and FIG. (Shown in FIG. 5), a shield plate having a temperature of 40 ° C. was installed in advance. Next, the bottom of the container is fitted and adhered to a shielding plate (no cooling is performed during heating), the portions (A) to (D) are crystallized by heating, and the hollow container 1B shown in FIG. Thirty
9 mm, body diameter 92 mm) were obtained. As shown in FIG. 6, the bottom of the hollow container 1B is a self-supporting structure in which five legs swell radially around the center at equal intervals and valley lines are formed between the legs. And (A) the center of the bottom, (B) the periphery of the center of the bottom, (C) the portion near the center of the bottom of the valley line, and (D) the edge of the periphery of the leg. The portion further reaching the grounded portion was crystallized, and the density of the crystallized portion was 1.361 to 1.376 g / cm 3 . Also, the time required to crystallize the bottom of the container is 20
It was 0 seconds, and the filling capacity with full water up to the top surface of the mouth of the hollow container 1B was 1530 ml.

【0030】この中空容器1Bに、5℃において、2.
5ガスボリュームの炭酸水を充填して、キャッピングし
た後、炭酸水が室温に戻ってから、70℃の温水シャワ
ーを30分間かけた。その後、20℃の水により10分
間シャワーをかけ冷却し、ボトルの全高と胴径の変形率
を測定した。その結果、中空容器の全高は、307mm
であり、胴径の変形率は、0.9%であった。次に、こ
の充填した容器12本を直立状態で、2.0mの高さか
らコンクリート上に落下させたところ、全てについて容
器底部に破壊はなかった。
In this hollow container 1B, at 5 ° C., 2.
After filling with 5 gas volumes of carbonated water and capping, the carbonated water returned to room temperature, and then a hot water shower at 70 ° C. was applied for 30 minutes. Then, it was showered with water at 20 ° C. for 10 minutes to cool, and the total height of the bottle and the deformation rate of the body diameter were measured. As a result, the total height of the hollow container is 307 mm.
The deformation rate of the body diameter was 0.9%. Next, when 12 filled containers were placed upright on the concrete from a height of 2.0 m, the bottom of the container was not broken in all cases.

【0031】実施例2 実施例1おいて、プリフォームとして(b)口頸部とサ
ポートリングは、その内周径が外周径に対して60〜8
0%であり、且つ、加熱により応力・歪が緩和され、サ
ポートリング下を赤外線ヒーターにより加熱して結晶化
したものを用い、さらに、図7及び図8に示す遮蔽板を
用い、二軸延伸ブロー中空容器の(B)底部中心部の周
辺部、(C)谷線部の底部中心部に近い部分及び(D)
脚部の前記周辺部の縁より接地部にいたる部分を結晶化
した以外は同様に行った。得られた容器の底部は、図9
に示すとおり、5個の脚部が中心部の周りに放射状に等
間隔に膨出すると共に、この脚部の間に谷線部を形成し
た自立型の構造を有しており、(B)底部中心部の周辺
部、(C)谷線部の底部中心部に近い部分及び(D)脚
部の前記周辺部の縁より接地部にいたる部分が結晶化さ
れており、結晶化部分の密度は、1.361〜1.37
6g/cm3 であった。また、容器底部を結晶化するの
に要する時間は200秒であり、中空容器は、口部天面
までの満水充填容量は1530ml、全高309mm、
胴径92mmであった。
Example 2 In Example 1, (b) the mouth and neck as a preform and the support ring had an inner diameter of 60 to 8 with respect to an outer diameter.
It is 0%, stress and strain are relaxed by heating, and the one under the support ring is heated by an infrared heater to be crystallized, and further, the shielding plate shown in FIG. 7 and FIG. (B) Peripheral part of the bottom center of the blow hollow container, (C) A part near the bottom center of the valley line part, and (D)
The same procedure was performed except that the portion from the edge of the peripheral portion of the leg portion to the ground contact portion was crystallized. The bottom of the resulting container is shown in FIG.
As shown in Figure 5, it has a self-standing structure in which five legs swell radially around the center at equal intervals and valley lines are formed between the legs. The peripheral portion of the bottom center portion, (C) the portion near the bottom center portion of the valley line portion, and (D) the portion from the edge of the peripheral portion to the grounding portion are crystallized, and the density of the crystallized portion is Is 1.361 to 1.37
It was 6 g / cm 3 . The time required to crystallize the bottom of the container was 200 seconds, and the hollow container had a filling capacity of 1530 ml up to the top of the mouth, a total height of 309 mm,
The body diameter was 92 mm.

【0032】この中空容器に、5℃において、2.5ガ
スボリュームの炭酸水を充填して、キャッピングした
後、炭酸水が室温に戻ってから、70℃の温水シャワー
を30分間かけた。その後、20℃の水により10分間
シャワーをかけ冷却し、ボトルの全高と胴径の変形率を
測定した。その結果、中空容器の全高は、307mmで
あり、胴径の変形率は、0.9%であった。次に、この
充填した容器12本を直立状態で、2.0mの高さから
コンクリート上に落下させたところ、全てについて容器
底部に破壊はなかった。
This hollow container was filled with 2.5 gas volumes of carbonated water at 5 ° C., capped, and after the carbonated water returned to room temperature, a hot water shower at 70 ° C. was applied for 30 minutes. Then, it was showered with water at 20 ° C. for 10 minutes to cool, and the total height of the bottle and the deformation rate of the body diameter were measured. As a result, the total height of the hollow container was 307 mm, and the deformation rate of the body diameter was 0.9%. Next, when 12 filled containers were placed upright on the concrete from a height of 2.0 m, the bottom of the container was not broken in all cases.

【0033】比較例1 実施例1において、プリフォームの(a)口頸部、サポ
ートリングおよびサポートリング下を結晶化せず、か
つ、容器の底部の結晶化を行わない以外は、同様におこ
なった。中空容器は、口部天面までの満水充填容量は1
530ml、全高310mm、胴径92mmであった。
この中空容器に、5℃において、2.5ガスボリューム
の炭酸水を充填して、キャッピングした後、炭酸水が室
温に戻ってから、70℃の温水シャワーを30分間かけ
た。その後、20℃の水により10分間シャワーをかけ
冷却した。ボトルは、容器底部が突出し、自立安定性が
なかった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that (a) the neck and neck of the preform, the support ring and the lower part of the support ring were not crystallized, and the bottom of the container was not crystallized. It was The hollow container has a filling capacity of 1 up to the top of the mouth.
The total height was 530 ml, the total height was 310 mm, and the body diameter was 92 mm.
This hollow container was filled with 2.5 gas volume of carbonated water at 5 ° C., capped, and after the carbonated water returned to room temperature, a hot water shower at 70 ° C. was applied for 30 minutes. Then, it was cooled by showering with water at 20 ° C. for 10 minutes. The bottom of the container of the bottle was protruding, and there was no self-sustaining stability.

【0034】比較例2 実施例1において、遮蔽板を室温程度の温度に冷却し、
容器底部加熱時も循環を停止することなく遮蔽板の温度
を室温程度に保った。容器底部の結晶化部分の密度が、
1.361〜1.376g/cm3となるように結晶化
したが、遮蔽板によって、容器底部が冷却されるため、
結晶化温度に達するのに時間がかかり、結晶化に要する
時間は280秒と長く生産性が悪かった。
Comparative Example 2 In Example 1, the shielding plate was cooled to a temperature of about room temperature,
Even when the bottom of the container was heated, the temperature of the shielding plate was kept at about room temperature without stopping the circulation. The density of the crystallized part at the bottom of the container is
Although it was crystallized to have a weight of 1.361 to 1.376 g / cm 3 , the shielding plate cools the bottom of the container.
It took time to reach the crystallization temperature, and the time required for crystallization was as long as 280 seconds, resulting in poor productivity.

【0035】比較例3 実施例1において、遮蔽板の温度をポリエチレンテレフ
タレート樹脂のガラス転移点温度に近い65℃に制御
し、容器底部加熱時も循環を停止することなく遮蔽板温
度を制御した。容器底部の結晶化部分の密度が、1.3
61〜1.376g/cm3となるように結晶化するの
に要する時間が、120秒と短くなったが、中空容器底
部が熱収縮を起こし、満水充填容量は減少した。また、
熱収縮量を見越してボトルの容量を大きめにしても、熱
収縮量にばらつきがあるため、これに対応することは、
困難である。
Comparative Example 3 In Example 1, the temperature of the shielding plate was controlled to 65 ° C., which is close to the glass transition temperature of the polyethylene terephthalate resin, and the temperature of the shielding plate was controlled without stopping the circulation even when the bottom of the container was heated. The density of the crystallized portion at the bottom of the container is 1.3.
The time required for crystallization to be 61 to 1.376 g / cm 3 was shortened to 120 seconds, but the bottom of the hollow container caused thermal contraction and the full water filling capacity was decreased. Also,
Even if the volume of the bottle is increased in anticipation of the amount of heat shrinkage, there is variation in the amount of heat shrinkage.
Have difficulty.

【0036】[0036]

【発明の効果】以上のとおり、本発明によれば、容器底
部を加熱しないときのみ、容器底部付近の熱収縮が抑制
できる温度に遮蔽板の冷却を行い、容器底部を加熱する
間はこの冷却を行わず、容器底部を加熱する熱により遮
蔽板の温度が徐徐に上昇できるようにした特定形状の遮
蔽板を用いて、容器の底部の特定部分を結晶化すること
により、容器底部付近の熱収縮が抑制でき、かつ、結晶
化時間も短縮でき、また、内容物の加熱殺菌時の耐圧及
び耐熱性を高め、耐衝撃性が向上した耐圧耐熱性自立中
空容器を得ることができる。
As described above, according to the present invention, the shielding plate is cooled to a temperature at which heat contraction near the container bottom can be suppressed only when the container bottom is not heated, and this cooling is performed while the container bottom is heated. The heat of the bottom of the container is heated by heating the bottom of the container and gradually increasing the temperature of the shield by crystallizing a specific part of the bottom of the container. It is possible to obtain a pressure- and heat-resistant self-supporting hollow container which can suppress shrinkage, can shorten crystallization time, and also have improved pressure resistance and heat resistance during heat sterilization of contents, and improved impact resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の正面図である。FIG. 1 is a front view of the device of the present invention.

【図2】図1の要部(F部)付近の拡大図である。FIG. 2 is an enlarged view of the main part (F part) of FIG.

【図3】本発明の中空容器1Bの断面図である。FIG. 3 is a sectional view of a hollow container 1B of the present invention.

【図4】本発明の遮蔽板2Aの平面図である。FIG. 4 is a plan view of a shield plate 2A of the present invention.

【図5】本発明の遮蔽板2AのA−A’断面図である。FIG. 5 is a sectional view taken along the line A-A ′ of the shielding plate 2A of the present invention.

【図6】本発明の中空容器の底面図である。FIG. 6 is a bottom view of the hollow container of the present invention.

【図7】本発明の遮蔽板2Bの平面図である。FIG. 7 is a plan view of a shield plate 2B of the present invention.

【図8】本発明の遮蔽板2BのB−B’断面図である。FIG. 8 is a B-B ′ sectional view of the shielding plate 2B of the present invention.

【図9】本発明の中空容器の底面図である。FIG. 9 is a bottom view of the hollow container of the present invention.

【符号の説明】[Explanation of symbols]

1A 二軸延伸ブロー中空容器 1B 飽和ポリエステル樹脂製中空容器 2A、2B 遮蔽板 3 加熱装置 4 上板 5 容器支持板 6 遮蔽板支持板 7 底板 8 容器昇降兼荷重用シリンダー 9 支柱 10 容器内圧負荷キャップ押板兼容器支持板 11 容器内圧負荷キャップ 12 圧縮空気送入チューブ 13 パッキン 14 冷却水チューブ 15 冷却水配管 16 開口部 21 口頸部 22A サポートリング 22B サポートリング下 23 肩部 24 胴部 25 底部 31A 底部中心部 31B 底部中心部の周辺部 31C 谷線部の底部中心部に近い部分 31D 脚部の底部中心部の周辺部の縁より接地部にい
たる部分 31a 底部中心部に対応する開口部 31b 底部中心部の周辺部対応する開口部 31c 谷線部の底部中心部に近い部分対応する開口部 31d 脚部の底部中心部の周辺部の縁より接地部にい
たる部分対応する開口部 32 脚部 33 谷線部
1A Biaxially stretched blow hollow container 1B Saturated polyester resin hollow container 2A, 2B Shielding plate 3 Heating device 4 Upper plate 5 Container support plate 6 Shielding plate support plate 7 Bottom plate 8 Cylinder for lifting / loading container 9 Struts 10 Container pressure load cap Push plate / container support plate 11 Internal pressure load cap 12 Compressed air feed tube 13 Packing 14 Cooling water tube 15 Cooling water pipe 16 Opening 21 Mouth neck 22A Support ring 22B Support ring lower 23 Shoulder 24 Body 25 Bottom 31A Bottom center part 31B Bottom center part 31C Bottom part of valley line part Close to center part 31D Bottom part of leg part Center part from edge of peripheral part to ground contact part 31a Opening part corresponding to bottom center part 31b Bottom part Peripheral part of the central part Corresponding opening 31c Bottom of the valley line part Near the central part Corresponding opening 3 Portions corresponding openings 32 leg 33 valley portion reaching to the ground portion of the edge of the peripheral portion of the bottom center of the d legs

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二軸延伸ブロー成形によって成形された
二軸延伸ブロー中空容器の底部に、該中空容器の底部と
嵌合する形状を有し、且つ、スリットを有する遮蔽板を
設置し、該スリットの下方から中空容器の底部を加熱す
ることにより中空容器の底部を結晶化せしめ、次に、遮
蔽板を中空容器から脱着し、新しい中空容器に対し同様
にして、加熱結晶化せしめる方法であって、その加熱の
際は遮蔽板を冷却せず、加熱が終了した後、次に続く中
空容器の該結晶化のための加熱までの間に、遮蔽板を冷
却または放冷することを特徴とする飽和ポリエステル樹
脂製中空容器の連続的製造方法。
1. A biaxially stretched blow hollow container molded by biaxially stretched blow molding is provided at the bottom thereof with a shielding plate having a shape that fits with the bottom of the hollow container and having a slit. By heating the bottom of the hollow container from below the slit to crystallize the bottom of the hollow container, then remove the shield plate from the hollow container and heat crystallize the new hollow container in the same manner. The shielding plate is not cooled during the heating, and the shielding plate is cooled or allowed to cool after the heating is completed and before the heating for the subsequent crystallization of the hollow container. A method for continuously producing a hollow container made of a saturated polyester resin.
【請求項2】 二軸延伸ブロー成形によって成形され、
底部の底部中心部の周りに複数の脚部を放射状に膨出
し、これらの脚部と脚部との間に谷線部を形成した自立
可能な構造で、かつ、下記の(a)または(b)を有す
る二軸延伸ブロー中空容器の底部に、該中空容器の底部
と嵌合する形状を有し、かつ、スリットを有する遮蔽板
を設置し、該スリットの下方から中空容器の底部を加熱
することにより中空容器の底部の下記の(A)〜(E)
の少なくとも1箇所を結晶化せしめ、次に、遮蔽板を中
空容器から脱着し、新しい中空容器に対し同様にして、
加熱結晶化せしめる方法であって、その加熱の際は遮蔽
板を冷却せず、加熱が終了した後、次に続く中空容器の
該結晶化のための加熱までの間に、遮蔽板を冷却または
放冷することを特徴とする飽和ポリエステル樹脂製中空
容器の連続的製造方法。 (a)口頸部、サポートリングおよびサポートリング下
を結晶化したもの。 (b)口頸部または口頸部とサポートリングは、その内
周径が外周径に対して60〜80%であり、且つ、加熱
により応力・歪が緩和され、サポートリング下を結晶化
したもの。 (A)底部中心部。 (B)底部中心部の周辺部。 (C)谷線部の底部中心部に近い部分。 (D)脚部の底部中心部の周辺部の縁より接地部にいた
る部分。 (E)前記(C)と前記(D)の間の部分。
2. Molded by biaxial stretch blow molding,
A plurality of legs are radially bulged around the center of the bottom of the bottom, and a valley line portion is formed between these legs, and the structure is self-supporting, and (a) or ( In the bottom of the biaxially stretched blow hollow container having b), a shielding plate having a shape that fits with the bottom of the hollow container and having a slit is installed, and the bottom of the hollow container is heated from below the slit. By doing the following (A) ~ (E) of the bottom of the hollow container
Crystallize at least one part of the, then remove the shield plate from the hollow container, in the same manner for a new hollow container,
A method of crystallizing by heating, wherein the shielding plate is not cooled during the heating, and the shielding plate is cooled or cooled after the heating is finished and before the heating for crystallization of the subsequent hollow container. A method for continuously producing a hollow container made of a saturated polyester resin, which is characterized by allowing to cool. (A) Crystallized mouth / neck, support ring, and lower support ring. (B) The mouth and neck or the mouth and neck and the support ring have an inner diameter of 60 to 80% with respect to the outer diameter, and stress and strain are relaxed by heating, and the lower portion of the support ring is crystallized. thing. (A) Bottom center. (B) Peripheral area around the center of the bottom. (C) A portion near the center of the bottom of the valley line. (D) The part from the edge of the peripheral part of the bottom center part of the leg part to the ground contact part. (E) A portion between (C) and (D).
JP7126389A 1995-05-25 1995-05-25 Continuous production of hollow container Pending JPH08318563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126389A JPH08318563A (en) 1995-05-25 1995-05-25 Continuous production of hollow container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7126389A JPH08318563A (en) 1995-05-25 1995-05-25 Continuous production of hollow container

Publications (1)

Publication Number Publication Date
JPH08318563A true JPH08318563A (en) 1996-12-03

Family

ID=14933936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126389A Pending JPH08318563A (en) 1995-05-25 1995-05-25 Continuous production of hollow container

Country Status (1)

Country Link
JP (1) JPH08318563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054044A (en) * 2000-12-27 2002-07-06 이영일 Manufacturing method for biaxially stretch-blow-molded bottle
JP2013237484A (en) * 2012-05-17 2013-11-28 Suntory Holdings Ltd Container processing apparatus
EP3656533A4 (en) * 2017-07-20 2021-04-14 Toyo Seikan Co., Ltd. Polyester resin container, method for producing same, and blow mould

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054044A (en) * 2000-12-27 2002-07-06 이영일 Manufacturing method for biaxially stretch-blow-molded bottle
JP2013237484A (en) * 2012-05-17 2013-11-28 Suntory Holdings Ltd Container processing apparatus
EP3656533A4 (en) * 2017-07-20 2021-04-14 Toyo Seikan Co., Ltd. Polyester resin container, method for producing same, and blow mould

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
JP3612775B2 (en) Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
AU629805B2 (en) Hot fill container
US4927680A (en) Preform and method of forming container therefrom
JPH0740955A (en) Manufacture of biaxially oriented plastic bottle with excellent heat resistance and device therefor
JPH0351568B2 (en)
JPH0939934A (en) Heat-, pressure resistant self-supporting container
JPH09240650A (en) Self-supporting container excellent in heat resistance and pressure resistance
JP2876992B2 (en) Manufacturing method of biaxially stretched blow container
JPH08318563A (en) Continuous production of hollow container
JP2917851B2 (en) Method and apparatus for manufacturing a heat-resistant pressure-resistant self-standing container
JPH09118322A (en) Self-standing container excellent in heat-resistance/ pressure-resistance, and its manufacture
JPH07285527A (en) Heat resistant and pressure resistant self-standing container
JP3794305B2 (en) Manufacturing method of heat-resistant bottle
JPH0957840A (en) Manufacture of hollow container
JPH07314545A (en) Production of hollow container
JP3102457B2 (en) Method for producing a biaxially stretched blow container with reinforced bottom
JPH07314546A (en) Production of hollow container
JPH0958646A (en) Heat-resistant and pressure-resistant self-supporting container
JPH07314547A (en) Production of hollow resin container
JPH06143397A (en) Heat-fixation polyester molded container and manufacture thereof
JPH09295343A (en) Heat crystallization device for self-standing vessel
JP2002067129A (en) Biaxially stretched polyester bottle and its manufacturing method
JPH0740956A (en) Manufacture for heat resistant biaxially oriented plastic bottle and device therefor
JPH1034738A (en) Manufacture of self-standing container excellent in heat and pressure resistance