JPH08317476A - Transmission terminal equipment - Google Patents

Transmission terminal equipment

Info

Publication number
JPH08317476A
JPH08317476A JP7123803A JP12380395A JPH08317476A JP H08317476 A JPH08317476 A JP H08317476A JP 7123803 A JP7123803 A JP 7123803A JP 12380395 A JP12380395 A JP 12380395A JP H08317476 A JPH08317476 A JP H08317476A
Authority
JP
Japan
Prior art keywords
rated value
phase
unit
calculation
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7123803A
Other languages
Japanese (ja)
Other versions
JP3634893B2 (en
Inventor
直大 ▲高▼鴨
Naohiro Takakamo
Satoko Gotou
聡子 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12380395A priority Critical patent/JP3634893B2/en
Publication of JPH08317476A publication Critical patent/JPH08317476A/en
Priority to JP2001377538A priority patent/JP2002199466A/en
Application granted granted Critical
Publication of JP3634893B2 publication Critical patent/JP3634893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Selective Calling Equipment (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE: To easily measure the electric quantities of the branch parts of a distribution system for respective branches. CONSTITUTION: This transmission terminal equipment 1 installed at the installation site of an electric circuit to be monitored is constituted of a selector 17 for selecting the current signals of more (than two sets of the electric circuits to be monitored at a prescribed timing, an analog/digital converter 19 for converting the selected current signal to a digital value, a storage means 26 for storing the converted digital value, a rated value setting part 22 for setting a rated value corresponding to the respective electric circuits to be monitored, a central processing unit 8 for performing arithmetic operations based on contents set by the rated value setting part 22 for the stored contents, a transmission part 24 for communicating the result of the arithmetic operation with a host device and a case body for integrally housing them in the inside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配電系統の諸電気量を現
場で計測して中央設置の上位装置に伝送する伝送端末装
置に係り、特に、配電系統の分岐(フィーダ)毎の電気
量を計測し上位装置に伝送するのに好適な伝送端末装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission terminal device for measuring various electric quantities of a distribution system on site and transmitting them to a centrally installed host device, and more particularly, to a quantity of electricity for each branch (feeder) of the distribution system. The present invention relates to a transmission terminal device suitable for measurement and transmission to a host device.

【0002】[0002]

【従来の技術】工場やビル等における受配電系統の諸電
気量の計測・監視は、電源の安定供給や、負荷状況把握
に必要である。例えば、特開昭60−186007号公
報には、変圧器の監視を行う従来技術が記載されてお
り、実開昭61−14854号公報には、最大需要電力
(デマンド)を監視する従来技術が記載されている。
2. Description of the Related Art Measurement and monitoring of various amounts of electricity in a power receiving and distribution system in factories, buildings, etc. are necessary for stable power supply and grasping load conditions. For example, Japanese Unexamined Patent Publication No. 60-186007 describes a conventional technique for monitoring a transformer, and Japanese Utility Model Laid-Open No. 61-14854 discloses a conventional technique for monitoring the maximum power demand. Has been described.

【0003】このような受配電系統の計測・監視を行う
設備や装置は、投資費用が高いため、上記従来技術の如
く、計測・監視対象が重要な場所に限られる。例えば、
配電系統の分岐部分を計測・監視する場合、分岐電路が
5本あったとしたら、その5本全部の各々について計測
・監視するのではなく、そのうちの重要な分岐電路のみ
を計測・監視するようにしている。何故ならば、各分岐
電路毎に電気量が異なるため、分岐電路に取り付ける計
器用変成器(CT)や計器用変圧器(VT),信号変換
用のトランスジューサは取付箇所に合わせた定格のもの
を使用せざるを得ないという問題があるからである。
Since the facility and apparatus for measuring and monitoring the power receiving and distributing system have a high investment cost, the object of measurement and monitoring is limited to an important place as in the above-mentioned prior art. For example,
When measuring and monitoring the branch part of the distribution system, if there are five branch circuits, do not measure and monitor each of all five of them, but measure and monitor only the important branch circuits. ing. Because the amount of electricity is different for each branch circuit, the instrument transformer (CT), the instrument transformer (VT), and the signal conversion transducer that are attached to the branch circuit must be rated according to the installation location. This is because there is a problem that it must be used.

【0004】また、計測したデータから電気量を演算し
て求める場合、計測器の定格に合わせた演算が必要とな
るため、多数箇所から夫々定格の異なる計器により取り
込んだデータを中央の計算機で一括して演算するのは容
易でないという問題がある。そこで従来は、例えば5本
の分岐電路のうち重要な2本の分岐電路について電気量
を計測・監視する場合、各分岐電路毎に当該分岐電路専
用の計測・監視装置(コントローラ)を設置している。
Further, when calculating the amount of electricity from the measured data, since the calculation according to the rating of the measuring instrument is required, the data collected by the instruments with different ratings from a large number of points are collectively collected by the central computer. Then, there is a problem that it is not easy to calculate. Therefore, conventionally, for example, when measuring and monitoring the electric quantity of two important branch electric lines of five branch electric lines, a measuring / monitoring device (controller) dedicated to the branch electric lines is installed for each branch electric line. There is.

【0005】[0005]

【発明が解決しようとする課題】近年では、ますます省
エネルギーが要求され、きめ細かな計測や監視が要求さ
れてきている。つまり、上記例でいえば、5本の分岐が
あった場合、5本全部の分岐電路の計測・監視を行う必
要が生じてきている。しかし、このようなきめ細かな計
測・監視を行う場合、従来の考え方の延長で計測・監視
を行うと、各分岐電路毎にトランスジューサやコントロ
ーラを設置する必要が生じ、設備費用が膨大となって現
実的でないという問題がある。即ち、 1)分岐毎のCTあるいはVTの定格に合わせてトラン
スデューサを選定する必要があり、仕様決めが容易でな
い。
[Problems to be Solved by the Invention] In recent years, more and more energy saving has been demanded, and detailed measurement and monitoring have been demanded. That is, in the above example, when there are five branches, it is necessary to measure and monitor all five branch circuits. However, when performing such fine-tuned measurement / monitoring, if the measurement / monitoring is performed by extension of the conventional way of thinking, it is necessary to install a transducer or controller for each branch electric line, and the equipment cost becomes huge. There is a problem that it is not appropriate. That is, 1) It is necessary to select a transducer according to the CT or VT rating for each branch, and it is not easy to determine the specifications.

【0006】2)分岐毎のCTに合わせてコントローラ
もしくは中央装置は計算処理を行う必要があり複雑であ
る。
2) The controller or the central unit needs to perform calculation processing in accordance with the CT for each branch, which is complicated.

【0007】3)CTの仕様が変わると、トランスデュ
ーサの変更や、コントローラもしくは中央装置の計算処
理を変更する必要がある。
3) When the CT specifications change, it is necessary to change the transducer and the calculation process of the controller or the central unit.

【0008】4)トランスデューサ、A/D変換部等の
配線作業工数が多い。
4) The number of man-hours for wiring the transducer, A / D converter, etc. is large.

【0009】5)トランスデューサ等を寄せ集めると据
付面積が大きい。
5) The installation area is large when the transducers and the like are gathered together.

【0010】6)投資費用が大である。6) The investment cost is high.

【0011】という問題がある。There is a problem.

【0012】本発明の目的は、上記した問題点を全て解
決し、配電系統の分岐部分のきめ細かな計測・監視を容
易に行うことのできる伝送端末装置、即ち、分岐部分で
必要性の最も高い分岐毎の“電流”の計測を主体として
“電圧”,“電力”,“電力量”の計測を小形の1台の
装置で実現できる伝送端末装置を提供することにある。
An object of the present invention is to solve all of the above-mentioned problems, and a transmission terminal device which can easily perform fine measurement / monitoring of a branch portion of a power distribution system, that is, a branch terminal has the highest need. An object of the present invention is to provide a transmission terminal device that can measure “voltage”, “power”, and “power amount” mainly by measuring “current” for each branch with one small device.

【0013】[0013]

【課題を解決するための手段】上記目的は、被監視電路
の設置現場に設置される伝送端末装置を、2組以上の被
監視電路の電流信号を所定のタイミングで選択する選択
手段と、選択した前記電流信号をディジタル量に変換す
るアナログ/ディジタル変換手段と、変換したディジタ
ル量を記憶する記憶手段と、前記被監視電路の各々に対
応した定格値を設定する定格値設定手段と、前記記憶し
た内容について前記定格値設定手段により設定された内
容に基づいて演算する中央処理装置と、上位装置との間
で前記演算の結果を通信する伝送手段と、前記選択手段
及び前記アナログ/ディジタル変換手段及び前記記憶手
段及び前記定格値設定手段及び前記中央処理装置及び前
記伝送手段を内部に一体に収納する筐体とで構成するこ
とで、達成される。
Means for Solving the Problems The above-mentioned object is to select a transmission terminal device installed at a site where a monitored electric circuit is installed, and selecting means for selecting current signals of two or more sets of monitored electric circuits at a predetermined timing. Analog / digital converting means for converting the current signal into a digital quantity, storage means for storing the converted digital quantity, rated value setting means for setting a rated value corresponding to each of the monitored electric circuits, and the storage means. The central processing unit that calculates the contents based on the contents set by the rated value setting unit, the transmission unit that communicates the result of the calculation between the host device, the selecting unit, and the analog / digital converting unit. And the storage means, the rated value setting means, the central processing unit, and the transmission means are integrally housed in a housing.

【0014】上記目的はまた、被監視電路の設置現場に
設置される伝送端末装置を、2組以上の被監視電路の電
流信号と1組の被監視電路の電圧信号を所定ののタイミ
ングで選択する選択手段と、選択した前記電流信号及び
電圧信号をディジタル量に変換するアナログ/ディジタ
ル変換手段と、変換したディジタル量を記憶する記憶手
段と、前記被監視電路の各々に対応した定格値を設定す
る定格値設定手段と、前記記憶した内容について前記定
格値設定手段により設定された内容に基づいて演算する
中央処理装置と、上位装置との間で前記演算の結果を通
信する伝送手段と、前記選択手段及び前記アナログ/デ
ィジタル変換手段及び前記記憶手段及び前記定格値設定
手段及び前記中央処理装置及び前記伝送手段を内部に一
体に収納する筐体とで構成することにより、達成され
る。
The above-mentioned object is also to select a transmission terminal device installed at the installation site of the monitored electric circuit at a predetermined timing from current signals of two or more monitored electric circuits and voltage signals of one set of monitored electric circuits. Selecting means, an analog / digital converting means for converting the selected current signal and voltage signal into a digital quantity, storage means for storing the converted digital quantity, and setting a rated value corresponding to each of the monitored electric circuits. A rated value setting means, a central processing unit that calculates the stored content based on the content set by the rated value setting means, a transmission means that communicates the result of the calculation between a host device, and A housing for accommodating the selection means, the analog / digital conversion means, the storage means, the rated value setting means, the central processing unit, and the transmission means in an integrated manner. In By configuring it is accomplished.

【0015】上記目的はまた、被監視電路の設置現場に
設置される伝送端末装置を、2組以上の被監視電路の電
流信号と1組の被監視電路の電圧信号を所定のタイミン
グで選択する選択手段と、選択した前記電流信号及び電
圧信号をディジタル量に変換するアナログ/ディジタル
変換手段と、変換したディジタル量を記憶する記憶手段
と、前記被監視電路の各々に対応した定格値を設定する
定格値設定手段と、前記被監視電路の相線式を設定する
相線式設定手段と、前記記憶した内容について前記定格
値設定手段により設定された内容及び前記相線式設定手
段により設定された内容に基づいて演算する中央処理装
置と、上位装置との間で前記演算の結果を通信する伝送
手段と、前記選択手段及び前記アナログ/ディジタル変
換手段及び前記記憶手段及び前記定格値設定手段及び前
記中央処理装置及び前記伝送手段を内部に一体に収納す
る筐体とで構成することにより、達成される。
The above object is also to select a transmission terminal device installed on the installation site of the monitored electric circuit from a current signal of two or more sets of monitored electric circuits and a voltage signal of one set of monitored electric circuits at a predetermined timing. Selection means, analog / digital conversion means for converting the selected current signal and voltage signal into digital quantities, storage means for storing the converted digital quantities, and rated values corresponding to each of the monitored electric circuits are set. Rated value setting means, phase wire type setting means for setting the phase wire type of the monitored circuit, contents set by the rated value setting means for the stored contents and set by the phase wire type setting means A central processing unit that performs an operation based on the contents, a transmission unit that communicates the result of the operation between a higher-level device, the selection unit, the analog / digital conversion unit, and the storage unit. By configuring in a housing for accommodating the integral means and the nominal value setting means and said central processing unit and the transmission means therein, is achieved.

【0016】[0016]

【作用】分岐電路全ての電流値等を上記構成の1台の伝
送端末装置に取り込み、中央処理装置は、各電流値等の
定格に合わせた諸電気量を演算し、その演算結果を、上
位装置に伝送する。これにより、1つの1つの分岐電路
に異なる定格のトランスジューサを設置する必要がなく
なり、また、各定格に基づく諸電気量の演算は現場設置
の伝送端末装置で行い、中央設置の上位装置は諸電気量
の演算を行う必要はなくなる。
The current values of all the branch circuits are taken into one transmission terminal device having the above-mentioned configuration, and the central processing unit calculates various electric quantities according to the ratings of the respective current values and the calculated results are stored in the higher order. Transmit to device. This eliminates the need to install transducers of different ratings in one branch circuit, and the calculation of various amounts of electricity based on each rating is performed by the transmission terminal device installed in the field, while the host device installed in the center uses various electrical devices. It is not necessary to calculate the quantity.

【0017】[0017]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の第1実施例に係る伝送端末装
置のブロック構成図である。伝送端末装置1は、以下に
説明する部品,装置を1つの筐体内に備え一体ものとし
て構成される。この伝送端末装置1において、2は電圧
入力部、2a,2b,2cは伝送端末装置1に電源を供
給する端子、3は供給された電源を以下に説明する各部
に適した電圧に変換して各部に供給するための電源部で
あり、入力電圧85V〜264に対応するものである。
4は信号用変圧器、5は交流信号を所定の矩形波の直流
信号に変える比較器、16は波形を整形するICであ
る。7は上記整形された矩形波信号を伝える信号線で周
波数検出信号線である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a block configuration diagram of a transmission terminal device according to a first embodiment of the present invention. The transmission terminal device 1 is configured as an integrated unit by including the components and devices described below in one housing. In this transmission terminal device 1, 2 is a voltage input unit, 2a, 2b and 2c are terminals for supplying power to the transmission terminal device 1 and 3 is a circuit for converting the supplied power into a voltage suitable for each unit described below. A power supply unit for supplying each unit and corresponding to an input voltage of 85V to 264.
Reference numeral 4 is a signal transformer, 5 is a comparator for converting an alternating current signal into a predetermined rectangular wave direct current signal, and 16 is an IC for shaping a waveform. Reference numeral 7 is a signal line for transmitting the shaped rectangular wave signal, which is a frequency detection signal line.

【0018】8は、マイコン等の中央処理装置(以下、
CPUと称す。)であり、2組以上の被監視電路の電流
信号の演算処理を主要目的として、各部を統括制御す
る。9は上記の演算処理や統括制御の手順を記憶するR
OM(リードオンメモリ)、10は演算結果や途中経過
を記憶するRAM(ランダムアクセスメモリ)であり、
これらのROM9,RAM10は、CPU8に内蔵され
ている。
Reference numeral 8 denotes a central processing unit such as a microcomputer (hereinafter,
It is called a CPU. ) Is the main purpose of the calculation processing of the current signals of the two or more sets of monitored electric circuits, and each unit is integrally controlled. Reference numeral 9 denotes an R for storing the above-mentioned arithmetic processing and overall control procedure.
OM (Read-On Memory), 10 is a RAM (Random Access Memory) for storing calculation results and progress.
These ROM 9 and RAM 10 are built in the CPU 8.

【0019】11a,11b,…,11nは、各々1組
の被監視電路からの電流信号を取込む電流入力部で、1
2a,12b,12c,12dの4つの端子と、内部変
流器13、増幅器14およびサンプルホールド(保持)
回路15で構成されている。6はサンプルホールド回路
15に指示を与える保持指令信号線、17は上記複数の
入力部からの信号を所定のタイミングで択一的に選択を
行う選択部(マルチプレクサ)であり、このタイミング
や選択場所は制御線18により指示される。
Reference numerals 11a, 11b, ..., 11n each denote a current input portion for taking in a current signal from a pair of monitored electric circuits.
Four terminals 2a, 12b, 12c and 12d, an internal current transformer 13, an amplifier 14 and a sample hold.
It is composed of a circuit 15. Reference numeral 6 is a holding command signal line for giving an instruction to the sample hold circuit 15, and 17 is a selecting section (multiplexer) for selectively selecting signals from the plurality of input sections at a predetermined timing. Is indicated by control line 18.

【0020】19は、上記選択部17により選択された
信号(アナログ信号)をディジタル量(値)に変換する
A/D変換部(A/Dコンバータ)である。20,21
はA/D変換部19に変換指示を与えたり、変換終了を
検出するなどの制御線である。22b,22c,…,2
2nは、CT105a,…に対応して設けた設定部で、
CTの一次定格を設定するものである。また、22a
は、VTの一次定格を設定する設定部である。
Reference numeral 19 is an A / D converter (A / D converter) for converting the signal (analog signal) selected by the selector 17 into a digital amount (value). 20, 21
Is a control line for giving a conversion instruction to the A / D converter 19 and detecting the end of conversion. 22b, 22c, ..., 2
2n is a setting unit provided corresponding to CT 105a, ...
The primary rating of CT is set. Also, 22a
Is a setting unit for setting the primary rating of VT.

【0021】23は、伝送端末装置1の固有番地を設定
するアドレス設定部で、中央制御室等に設置されている
上位装置との間で通信を行う際に、この上位装置に接続
される複数の伝送端末装置の各々を番地付けするもので
ある。24は、上位装置と通信を行う伝送部で、端子2
5により後述する伝送線により上位装置と接続される。
27は、上記した増幅器14と同種の増幅器で、電圧信
号増幅用である。
Reference numeral 23 is an address setting unit for setting a unique address of the transmission terminal device 1, and a plurality of addresses are connected to the host device when communicating with the host device installed in the central control room or the like. Each of the transmission terminal devices is assigned an address. A transmission unit 24 communicates with a higher-level device and has a terminal 2
5, the transmission line, which will be described later, is connected to the host device.
Reference numeral 27 is an amplifier of the same kind as the above-mentioned amplifier 14 for amplifying a voltage signal.

【0022】図2は、図1に示す伝送端末装置1を配電
系統に適用したシステムの構成図である。102は変圧
器(TR)、103はヒューズ(F)104は計器用変
圧器(VT)105a〜105eは計器用変流器(C
T)である。106は二次変電所などの変圧器(T
R)、107a〜107eはCTである。108は、電
動機,照明機器,コンピュータ,空調機など各種の負荷
である。
FIG. 2 is a block diagram of a system in which the transmission terminal device 1 shown in FIG. 1 is applied to a power distribution system. 102 is a transformer (TR), 103 is a fuse (F) 104 is an instrument transformer (VT) 105a to 105e is an instrument current transformer (C)
T). 106 is a transformer such as a secondary substation (T
R) and 107a to 107e are CT. Reference numeral 108 denotes various loads such as an electric motor, a lighting device, a computer, and an air conditioner.

【0023】100は中央装置で、各現場に設置された
複数の伝送端末装置1が計測し演算した結果を集計して
監視するための計算機(汎用パソコン等)である。10
1は、各伝送端末装置1と中央装置100とを接続する
伝送線である。
Reference numeral 100 denotes a central device, which is a computer (general-purpose personal computer or the like) for collecting and monitoring the results of measurement and calculation by a plurality of transmission terminal devices 1 installed at each site. 10
Reference numeral 1 is a transmission line that connects each transmission terminal device 1 and the central device 100.

【0024】図3は、図1の単線図で示した配電系統の
被監視電路と伝送端末装置1の詳細な実体結線図であ
る。図3の実体結線図は、各種相線式のうち三相3線式
を示したもので、配電系統では最も一般的なものであ
る。図中のR,S,Tは配電線の相を示すもので、理解
し易いように、RはR相,SはS相,TはT相を示して
いる。従って、このような相線式での電流の計測・監視
は、1つの分岐に対し少なくとも2ヶ所必要であり、図
中ではCTを105aR,105aTなどと示してい
る。尚、単相3線式も同様である。
FIG. 3 is a detailed physical connection diagram of the monitored electric circuit of the distribution system and the transmission terminal device 1 shown in the single line diagram of FIG. The physical connection diagram of FIG. 3 shows a three-phase three-wire system among various phase wire systems, and is the most general one in a distribution system. In the figure, R, S, and T indicate the phases of the distribution line. For easy understanding, R indicates the R phase, S indicates the S phase, and T indicates the T phase. Therefore, at least two locations for current measurement / monitoring by such a phase wire system are required for one branch, and CT is shown as 105aR, 105aT in the figure. The same applies to the single-phase three-wire system.

【0025】図4は、図1における設定部22a及び2
2b〜22nの詳細回路と、VT,CTの一次定格に対
する設定部の対応を示している。220,221は電位
を確立させるための抵抗である。
FIG. 4 shows the setting units 22a and 2 in FIG.
The detailed circuits 2b to 22n and the correspondence of the setting unit to the primary ratings of VT and CT are shown. 220 and 221 are resistors for establishing a potential.

【0026】図5は、伝送端末装置1の正面図である。
符号で示す部品は、図1に対応している。なお、端子2
a〜2c,12a〜12d,25や各設定部は、カバー
223,224で覆うことができる。
FIG. 5 is a front view of the transmission terminal device 1.
Parts indicated by reference numerals correspond to those in FIG. In addition, terminal 2
The a to 2c, 12a to 12d, 25 and each setting unit can be covered with covers 223 and 224.

【0027】次に、上述した伝送端末装置1の動作を説
明する。図6は、交流信号を所定のタイミングでサンプ
リング(抽出)して計測値を求める基本的な方法を示し
たもので、本実施例では、交流の1周期を12回サンプ
リングしている。
Next, the operation of the above-mentioned transmission terminal device 1 will be described. FIG. 6 shows a basic method for obtaining a measurement value by sampling (extracting) an alternating current signal at a predetermined timing. In this embodiment, one cycle of alternating current is sampled 12 times.

【0028】電流の実行値Iは、図に示す計算式のよう
に、各サンプリング値(i1〜i12)を2乗して1周期
分を加算してからサンプリング数n(12)で除し、根
をとれば算出できる。電圧も同様である。また、本実施
例では、サンプリングの後の1周期で計算結果を求めて
いる。
The execution value I of the current is calculated by squaring each sampling value (i1 to i12), adding one cycle, and then dividing by the sampling number n (12) as shown in the equation. It can be calculated by taking the root. The same applies to voltage. Further, in this embodiment, the calculation result is obtained in one cycle after sampling.

【0029】以下、分岐部分の分岐数が“8”の例につ
いて説明する。図7は、電源投入時処理手順を示すフロ
ーチャートである。まずS1で、内部の初期処理を行
う。S2では、図1の周波数検出信号線7の矩形波チェ
ックを行い、50Hzか60Hzであるかを判定し、判
定結果によりサンプリング間隔を決定する。即ち、50
Hzでは1周期が1/50秒であるためサンプリング間
隔は1/(50×12)秒であり、60Hzでは1/
(60×12)秒となる。
An example in which the number of branches in the branch portion is "8" will be described below. FIG. 7 is a flowchart showing a power-on process procedure. First, in S1, internal initial processing is performed. In S2, a rectangular wave check of the frequency detection signal line 7 of FIG. 1 is performed to determine whether the frequency is 50 Hz or 60 Hz, and the sampling interval is determined based on the determination result. That is, 50
In Hz, one cycle is 1/50 second, so the sampling interval is 1 / (50 × 12) second, and in 60 Hz, 1/50 second.
(60 × 12) seconds.

【0030】次のS3は、図6に示した計算処理が早く
終了した場合等を考慮したもので、次回のサンプリング
開始タイミング(例えば上記矩形波の立上り)をチェッ
クする。そしてS4で上記サンプリング間隔をCPU8
の内部タイマにセットし、所定のタイミングで割込処理
ができるようにする。次のS5では、上記割込処理が可
能なようにタイマ割込解除を行い、割込待ちとなる。
The next step S3 takes into consideration the case where the calculation process shown in FIG. 6 ends early, and the next sampling start timing (for example, the rising edge of the rectangular wave) is checked. Then, in S4, the sampling interval is set to the CPU8.
It is set in the internal timer of so that interrupt processing can be performed at a predetermined timing. In the next step S5, the timer interrupt is released so that the interrupt process can be performed, and the system waits for an interrupt.

【0031】図8は、タイマ割込処理手順を示すフロー
チャートである。この割込間隔の時間は、上記したサン
プリング間隔の時間である。まずS6で、前記した保持
指令信号線6を介してホールド(保持)指令を行ってか
らS7に処理が移る。S7では、まずS7aで選択部1
7の第1チャンネルを選択し(この場合被監視電路のR
相−S相間の電圧に相当)、次にS7bでA/D変換部
19に対し変換指令を行う。次にS7cで変換が終了し
たか否かを判断し、終了していなければ終了を待ち、終
了していればS7に移り変換されたディジタル量(値)
を読出してRAM10に記憶する。なお、記憶場所につ
いては図11で後述する。
FIG. 8 is a flowchart showing a timer interrupt processing procedure. The time of this interrupt interval is the time of the above-mentioned sampling interval. First, in S6, a hold command is issued via the hold command signal line 6 described above, and then the process proceeds to S7. In S7, first, in S7a, the selection unit 1
Select the first channel of 7 (in this case R of the monitored circuit)
(Corresponding to the voltage between the phase and the S phase), and then in S7b, a conversion command is issued to the A / D conversion unit 19. Next, in S7c, it is determined whether or not the conversion is completed. If it is not completed, the completion is waited, and if it is completed, the process proceeds to S7 and the converted digital amount (value)
Is read out and stored in the RAM 10. The storage location will be described later with reference to FIG.

【0032】次にS8では選択部17の第2チャンネル
を選択し(この場合被監視電路のS相−T相間の電圧に
相当)、上記S7と同様の処理を行う。次のS9では選
択部17の第3チャンネルを選択し(この場合被監視電
路のCTのR相に相当)、上記S7と同様の処理を行
う。S10では選択部17の第4チャンネルを選択し
(この場合被監視電路のCTのT相に相当)、上記S7
と同様の処理を行う。以下、同様にして他の分岐部分の
被監視電路のCTに対応する第18チャンネルまで処理
を次々に行う。この一連の処理が、図6に示すv1,i1
の位置に相当するタイミングである。
Next, in S8, the second channel of the selection unit 17 is selected (in this case, it corresponds to the voltage between the S phase and the T phase of the monitored circuit), and the same processing as in S7 is performed. In the next S9, the third channel of the selection unit 17 is selected (in this case, it corresponds to the R phase of CT of the monitored circuit), and the same processing as in S7 is performed. In S10, the fourth channel of the selection unit 17 is selected (in this case, it corresponds to the T phase of CT of the monitored circuit), and the above S7 is selected.
Perform the same processing as. Thereafter, in the same manner, processing is sequentially performed up to the 18th channel corresponding to the CT of the monitored electric circuit in the other branch portion. This series of processes corresponds to v1, i1 shown in FIG.
Is the timing corresponding to the position.

【0033】S12では、上記で説明した交流の1周期
分のサンプリング回数即ち本実施例例では12回が終了
したか否かをチェックし、終了していなければS13に
移り記憶場所を更新してS14で後述する受信割込みを
解除し、次のサンプリングタイミング(即ち図6のv
2,i2の位置)で割込みが発生するのを待つ。
In S12, it is checked whether or not the number of times of sampling of one cycle of the alternating current described above, that is, 12 times in the present embodiment, is completed, and if it is not completed, the process proceeds to S13 and the storage location is updated. In step S14, the reception interrupt described later is released, and the next sampling timing (ie, v in FIG. 6) is released.
Wait for the interrupt to occur at position 2 and i2).

【0034】このようにして1周期12回の一連の処理
が終了すると、S15に移りタイマ割込を禁止(即ちサ
ンプリング処理)し、S16では受信割込を解除し計算
処理S17に移る。計算処理は図10で後述する。次に
計算処理が終了するとS18に移り、S3と同様タイミ
ングチェックを行い、S19でタイマ割込を解除し、待
機状態即ち割込み待ち状態となる。
In this way, when a series of processes of 12 times in one cycle is completed, the process proceeds to S15, the timer interrupt is prohibited (that is, sampling process), the reception interrupt is canceled in S16, and the process proceeds to the calculation process S17. The calculation process will be described later with reference to FIG. Next, when the calculation process is completed, the process proceeds to S18, the timing check is performed as in S3, the timer interrupt is released in S19, and the standby state, that is, the interrupt waiting state is entered.

【0035】図9は、受信割込み処理手順を示すフロー
チャートである。この処理は、上位装置100との間で
通信を行うための処理である。受信割込みは、図8で説
明したタイマ割込み処理より優先度は低く、受信割込み
が解除されているとことろで処理が行われる。
FIG. 9 is a flow chart showing a reception interrupt processing procedure. This process is a process for communicating with the higher-level device 100. The reception interrupt has a lower priority than the timer interrupt processing described with reference to FIG. 8, and the processing is performed when the reception interrupt is released.

【0036】まず、S40で受信した内容について通信
上の障害有無のチェックを行い、次にS41で送信する
データ(図12に示す計算結果)の先頭アドレスをセッ
トし、S42で送信可能状態にあるかチェックし、送信
可能状態でなければ待ち、送信可能であればS43で上
記アドレスで示した場所のデータを読出しS44で送信
を行う。次のS45では、上記データのすべてが送信終
わったかをチェックし、終わってなければS46でデー
タアドレスの更新を行いS42に戻る。また、全データ
の送信が終了した場合は、元の処理すなわち、待機状態
の場所に戻る。あるいは、S17の演算処理の途中に戻
り処理を継続する。
First, the contents received in S40 are checked for a communication failure, and then in S41 the start address of the data to be transmitted (calculation result shown in FIG. 12) is set. In S42, the transmission is ready. If it is possible to transmit, the data at the location indicated by the above address is read out and transmission is performed at S44. In the next S45, it is checked whether or not all of the above data have been transmitted. If not, the data address is updated in S46 and the process returns to S42. When the transmission of all the data is completed, the original processing, that is, the standby state is returned. Alternatively, the processing is returned to the middle of the calculation processing of S17 and continued.

【0037】図10は、三相3線式,単相3線式におけ
る計算処理手順を示すフローチャートである。図11
は、図6及び図8で説明したところの所定のタイミング
でサンプリングを行い、A/Dコンバータ17でディジ
タル量に変換し、読み書き可能なRAM10に記憶した
ところを示す図である。また図12は、図10で示した
計算処理の結果を記憶した例を示す図である。
FIG. 10 is a flowchart showing the calculation processing procedure in the three-phase three-wire system and the single-phase three-wire system. Figure 11
FIG. 9 is a diagram showing sampling performed at a predetermined timing as described with reference to FIGS. 6 and 8, converted into a digital amount by the A / D converter 17, and stored in the readable / writable RAM 10. 12 is a diagram showing an example in which the result of the calculation process shown in FIG. 10 is stored.

【0038】まず、図11に示すサンプリングしたデー
タからS30でR相・S相間の線間電圧について計算を
行うが、計算の基本は図6に示した通りである。次にS
31でS相・T相間の線間電圧を同様に求め、S32で
はT相・R相間の線間電圧を計算する。尚、三相3線式
及び単相3線式におけるT相・R相間の線間電圧は、0
から減算すれば得られることは公知である。
First, the line voltage between the R phase and the S phase is calculated in S30 from the sampled data shown in FIG. 11, and the basic calculation is as shown in FIG. Then S
Similarly, the line voltage between the S and T phases is obtained at 31, and the line voltage between the T and R phases is calculated at S32. The line voltage between the T and R phases in the three-phase three-wire system and the single-phase three-wire system is 0
It is known that it can be obtained by subtracting from.

【0039】次にS33では、図1に示した入力部11
aに対応する電流について計算を行う。即ち、R相の電
流をS33aで、T相の電流をS33bで計算し、S相
は上記電圧と同様に、S33cに示すように、0から減
じれば結果が得られる。S34では、図1に示した入力
部11bに対応する電流について計算を行うが、これは
S33と同様である。
Next, in S33, the input unit 11 shown in FIG.
The calculation is performed for the current corresponding to a. That is, the R-phase current is calculated in S33a and the T-phase current is calculated in S33b, and the result of the S-phase is obtained by subtracting from 0 as shown in S33c, like the above voltage. In S34, the current corresponding to the input unit 11b shown in FIG. 1 is calculated, which is similar to S33.

【0040】以上のようにして、次々と電流計算を行な
い、本実施例では、8組分の電流について計算し、結果
を、図12に示すように、RAM10の各記憶領域に記
憶する。
As described above, the currents are calculated one after another, and in the present embodiment, the currents for eight sets are calculated, and the results are stored in each storage area of the RAM 10 as shown in FIG.

【0041】尚、上記実施例では1組の電圧の計算処理
も含めて説明したが、この計算処理を省略することは可
能である。また、図10で示したフローチャートでは、
図4に示すVT,CTの一次定格に対する換算計算及
び、図1に示す増幅器14,27,A/Dコンバータの
分解能に関する詳細説明を省略したが、各々の根を求め
る計算の後でまとめて計算することができるのは明白で
ある。
In the above embodiment, the calculation process of one set of voltages is included, but this calculation process can be omitted. Further, in the flowchart shown in FIG.
Although the detailed calculation regarding the conversion calculation for the primary rating of VT and CT shown in FIG. 4 and the resolution of the amplifiers 14, 27 and the A / D converter shown in FIG. 1 is omitted, the calculation is collectively performed after the calculation for obtaining each root. Obviously, you can.

【0042】以上の実施例によれば、三相3線式及び単
相3線式における分岐部分の複数の電流と電圧について
計測・監視が行なえる。
According to the above-described embodiment, it is possible to measure and monitor a plurality of currents and voltages in the branch portion in the three-phase three-wire system and the single-phase three-wire system.

【0043】次に、本発明の応用実施例について図13
〜図15を参照して説明する。図13は、単相2線式の
システムに上述した伝送端末装置1を接続した図であ
る。本実施例では、電源端子2bと2cは端子部で短絡
したもので、前記で説明したS相・T相間の電圧は
“0”になる。図14は単相2線式の計算フローチャー
トを示し、図11で示したサンプリングデータを基に計
算する。図14での計算処理において、前述した第1実
施例と異なる点は、電圧計算が1相分(R・S間)、電
流計算のS相分が無い点である。また図15に計算結果
の記憶例を示す。
Next, FIG. 13 shows an application example of the present invention.
~ It demonstrates with reference to FIG. FIG. 13 is a diagram in which the transmission terminal device 1 described above is connected to a single-phase two-wire system. In this embodiment, the power supply terminals 2b and 2c are short-circuited at the terminals, and the voltage between the S phase and the T phase described above is "0". FIG. 14 shows a calculation flowchart of a single-phase two-wire system, which is calculated based on the sampling data shown in FIG. 14 is different from the first embodiment described above in that voltage calculation is for one phase (between R and S) and current calculation is not for S phase. Further, FIG. 15 shows a storage example of the calculation result.

【0044】すなわち、本実施例では、三相3線式及び
単相3線式から余分な計算を省いているが、逆の発想か
らすれば、第1実施例の計算処理をそのまま用いても何
ら支障がないことを示すものである。
That is, in this embodiment, the extra calculation is omitted from the three-phase three-wire system and the single-phase three-wire system, but from the opposite idea, the calculation process of the first embodiment can be used as it is. This shows that there is no problem.

【0045】第1実施例では、三相3線式及び単相3線
式の分岐数8の電流計測を示したが、本実施例では、応
用の仕方によって、単相2線式の分岐数16の電流計測
が可能なことを意味しているわけである。
In the first embodiment, the current measurement of the three-phase three-wire type and the single-phase three-wire type with the number of branches of 8 was shown, but in the present embodiment, the number of branches of the single-phase, two-wire type is determined depending on the application. This means that 16 currents can be measured.

【0046】次に、本発明の第2実施例について、図1
6〜図18を参照して説明する。第2実施例の目的とす
るところは、分岐部分の2組以上の被監視電路の電流
と、電力及び電力量の計測を可能とするところにある。
三相3線式及び単相3線式の電流計測については上記第
1実施例について説明したので省略し、以下電力及び電
力量の計測について説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The purpose of the second embodiment is to enable measurement of the currents, electric powers, and electric energy of two or more sets of monitored electric circuits in the branch portion.
The current measurement of the three-phase three-wire system and the single-phase three-wire system has been described above in the first embodiment, and therefore omitted, and the measurement of power and power amount will be described below.

【0047】図16は、単相分の電力を表現したもの
で、交流の1周期の電流と電圧の積を平均したもの(図
の△P)が電力と定義されていることは公知の通りであ
る。従って、図6において説明した所定のタイミング毎
のサンプリングした電流iと電圧vの積を1周期分加算
し、サンプリング回数で除したものが電力となる。また
電力量は、電力に時間を乗じたものであり、図中に示す
△Pと△tを乗じ、結果を累積したものが積算電力量と
なる。
FIG. 16 shows the power for a single phase, and it is well known that the average of the products of the current and voltage for one cycle of alternating current (ΔP in the figure) is defined as the power. Is. Therefore, the product of the current i and the voltage v sampled at each predetermined timing described in FIG. 6 is added for one cycle and divided by the number of times of sampling to obtain the electric power. In addition, the electric energy is obtained by multiplying the electric power by time, and the accumulated electric energy is obtained by multiplying ΔP and Δt shown in the figure and accumulating the results.

【0048】次に、図17を用いて、計算の手順を説明
する。まず、図11で説明した電圧と電流のサンプリン
グデータをもとに、S60で入力部11aに対応した部
分の電力の計算を行うが、S60aではR相・S相間の
電力を求める。次にS60bで、S相・T相間の電力を
求める。次の60cでは、二電力計法により1分岐分の
電力を求める。同様にして他の電流入力部11b,…,
11n(本例では8分岐分)に対応して、S61,S6
2の順で計算を行う。
Next, the calculation procedure will be described with reference to FIG. First, based on the voltage and current sampling data described in FIG. 11, the power of the portion corresponding to the input unit 11a is calculated in S60. In S60a, the power between the R and S phases is obtained. Next, in S60b, the electric power between the S phase and the T phase is obtained. In the next step 60c, the electric power for one branch is obtained by the two-power meter method. Similarly, the other current input units 11b, ...,
Corresponding to 11n (8 branches in this example), S61 and S6
Calculation is performed in order of 2.

【0049】S63では、電力量を計算するが、図6で
説明したように、計算処理を次の周期で専有するので、
“2”を乗じ累積,結果を記憶する。このような処理を
S64,S65と次々に行い、結果を、図19に示すよ
うにRAM10に記憶する。この後で、図10に示した
電流計算を行う。図18は、上記電力及び電力量の計算
結果を記憶した例を示す図である。図中(△PRS),
(△PST)は各線間の電力を示す。
In S63, the amount of electric power is calculated. However, as explained in FIG. 6, since the calculation process is monopolized in the next cycle,
Multiply by “2”, accumulate and store the result. Such processing is sequentially performed in S64 and S65, and the result is stored in the RAM 10 as shown in FIG. After this, the current calculation shown in FIG. 10 is performed. FIG. 18 is a diagram showing an example in which the calculation results of the power and the power amount are stored. In the figure (△ PRS),
(ΔPST) indicates the power between each line.

【0050】なお、本実施例では、電力量の計算を全部
の電力の計算後に行ったが、各部分の電力計算直後に計
算しても良いことは当然である。また、図6で示した計
算処理の時間は1周期分で示したが、計算処理時間が長
く必要であれば次の周期まで延長して3倍すれば良いこ
とは言うまでもない。
In this embodiment, the calculation of the amount of electric power is performed after the calculation of the total amount of electric power, but it goes without saying that it may be calculated immediately after the calculation of the electric power of each part. Although the calculation processing time shown in FIG. 6 is shown as one cycle, it goes without saying that if the calculation processing time is long, it may be extended to the next cycle and tripled.

【0051】次に、第2実施例の応用例について、図1
9,図20を参照して説明する。図19は、単相2線式
における電力・電力量の計算フローチャートを示すもの
で、S70とS71は、図13に示す105aR,10
5aTに相当する電力の計算を行うステップであり、S
60aは図17と同じである。S71(60b´)は、
図17に示すS60bと少し異なり、電圧のサンプリン
グデータが、S60aと同じR・S間の電圧とT相の電
流の積になる点が異なるが、後は同じである。同様にし
て、S72,S73,S74の順に16点分の電力計算
を行う。そして、S75で電力量の計算を行い、S7
6,S77と順次16点分の電力量計算を行う。
Next, an application example of the second embodiment is shown in FIG.
9, referring to FIG. FIG. 19 shows a calculation flow chart of electric power and electric energy in the single-phase two-wire system. S70 and S71 are 105aR, 10a shown in FIG.
This is the step of calculating the power equivalent to 5aT, and S
60a is the same as in FIG. S71 (60b ') is
Unlike S60b shown in FIG. 17, the voltage sampling data is the same as the product of S60a, which is the product of the voltage between R and S and the current of the T phase, but the rest is the same. Similarly, power calculation for 16 points is performed in the order of S72, S73, and S74. Then, the electric energy is calculated in S75, and S7 is calculated.
6, S77 and the electric energy for 16 points are calculated sequentially.

【0052】また、これら計算した結果は、図20で示
すようにRAM10の所定位置に記憶する。ここで図中
の“−”は空きを示すが、図18と対比してみれば、こ
の意味は理解できるはずである。すなわち、三相3線式
及び単相3線式の考え方との思想統一である。しかしな
がら、計算処理手順においては、上記説明した通り電圧
について異なるため、処理手順を記憶するROM9は異
なる。
The results of these calculations are stored in a predetermined position in the RAM 10 as shown in FIG. Here, "-" in the figure indicates an empty space, but the meaning can be understood by comparing with FIG. That is, the idea is unified with the ideas of the three-phase three-wire system and the single-phase three-wire system. However, in the calculation processing procedure, since the voltage is different as described above, the ROM 9 storing the processing procedure is different.

【0053】図1の説明では、停電検出部28及び負不
揮発性記憶部26の説明を省いたので、以下これを説明
する。停電検出部28は、波形整形回路6の出力を受け
て動作をする。即ち、停電を検出し、これを停電検出信
号線29を介してCPU8にいち早く伝え、電力量の計
算結果を不揮発性記憶部26に記憶させる。
In the description of FIG. 1, the description of the power failure detection unit 28 and the negative non-volatile storage unit 26 is omitted, so that they will be described below. The power failure detection unit 28 operates by receiving the output of the waveform shaping circuit 6. That is, a power failure is detected, and this is promptly transmitted to the CPU 8 via the power failure detection signal line 29, and the calculation result of the power amount is stored in the non-volatile storage unit 26.

【0054】不揮発性記憶部26は、例えばEEPRO
M(Electrical・Erasable・Pro
grammable・Read・Only・Memmo
ry)で構成される。この素子は、電気的消去可能で書
き変え可能なメモリ素子であり、永久的に記憶ができ
る。
The non-volatile storage section 26 is, for example, EEPRO.
M (Electrical / Erasable / Pro)
grammable / Read / Only / Memmo
ry). This element is an electrically erasable and rewritable memory element that can be permanently stored.

【0055】復電した場合は、図7に示す電源投入時フ
ローチャートの初期処理で上記不揮発性記憶部26の内
容をRAM10の電力量計算結果の位置に転送し、これ
により継続して計算結果を累積することが可能となる。
When the power is restored, the contents of the non-volatile storage section 26 are transferred to the position of the power amount calculation result of the RAM 10 in the initial processing of the power-on flowchart shown in FIG. 7, and the calculation result is continuously obtained. It is possible to accumulate.

【0056】次に、本発明の第3実施例について、図4
及び図21を用いて説明する。上述した第2実施例で
は、三相3線式及び単相3線式と単相2線式とで電力計
算処理が異なるためROM9を各々専用としたが、製品
の標準化の見知で考えると好ましくない。そこで、本実
施例では、これを解決するために、図21に示す相線式
判断処理を行う。
Next, the third embodiment of the present invention will be described with reference to FIG.
21 and FIG. 21. In the above-described second embodiment, the ROM 9 is dedicated because the power calculation process is different between the three-phase three-wire system and the single-phase three-wire system and the single-phase two-wire system. However, considering the standardization of the product, Not preferable. Therefore, in the present embodiment, in order to solve this, the phase line type determination processing shown in FIG. 21 is performed.

【0057】そこで、図4に示すVT一次定格設定部2
2aのビットNo.4(222)を利用してCPUが相線
式を判断し、図21に示すフローチャートの計算処理を
行う。すなわち、計算処理に先立ち、S47で、単相2
線式(上記VT一次定格設定部のビットNo.4がオン)
か否かを判断し、単相2線式でなければS48で三相3
線式(単相3線式も同じ)の電力・電力量計算を行い、
S49でさらに電圧・電流の計算を行う。単相2線式で
あればS47からS50に進み、単相2線式の電力・電
力量計算を行った後、単相2線式の電圧・電流計算を行
う。計算処理の内容は、第1実施例,第2実施例で説明
した通りである。また、計算処理の手順は、ROM9に
記憶する。
Therefore, the VT primary rating setting unit 2 shown in FIG.
The CPU uses the bit No. 4 (222) of 2a to judge the phase wire system, and performs the calculation processing of the flowchart shown in FIG. That is, prior to the calculation processing, in S47, the single phase 2
Wire type (bit No. 4 of the VT primary rating setting section is on)
If it is not a single-phase two-wire system, it is determined in S48 that three-phase three
Wire-type (the same applies to single-phase 3-wire type)
In S49, the voltage / current is further calculated. In the case of the single-phase two-wire system, the process proceeds from S47 to S50, and the single-phase two-wire system voltage / current calculation is performed after the single-phase two-wire system power / power amount calculation. The content of the calculation process is as described in the first and second embodiments. The procedure of the calculation process is stored in the ROM 9.

【0058】以上のように、相線式の判断を行うことに
より、分岐部分の相線式に合わせて伝送端末装置1を用
いることができる。従って、製品の標準化がはかれ、ま
た、使用者は機種選定の煩わしさがなくなる。
As described above, the transmission line terminal 1 can be used according to the phase line type of the branching portion by performing the phase line type determination. Therefore, standardization of the product is achieved, and the user does not have to worry about model selection.

【0059】ところで、上記第2実施例及び第3実施例
での電気量計測は、電圧・電流,電力・電力量であった
が、電圧・電流のサンプリングデータがあれば、無効電
力,無効電力量を算出することができる。詳細説明は省
略するが、無効電力は位相差90°の電圧と電流の積で
求められることは公知の事実である。また、電力(有効
電力)と無効電力が得られると、力率を計算できること
は勿論である。
By the way, the electric quantity measurement in the second and third embodiments was voltage / current, electric power / electric energy, but if sampling data of voltage / current is available, reactive power, reactive power can be obtained. The amount can be calculated. Although detailed description is omitted, it is a known fact that the reactive power is obtained by the product of voltage and current having a phase difference of 90 °. Further, it is needless to say that the power factor can be calculated when the electric power (active power) and the reactive power are obtained.

【0060】[0060]

【発明の効果】本発明によれば、受配電系統における分
岐部分毎のCT一次定格や、VTの一次定格を気にする
ことなく仕様決めが1台の装置で容易に計測でき、中央
装置で集中した監視が可能となる。また、伝送端末装置
自身で各々の計算を行い上位装置に伝送するので、中央
装置の負担が軽減され、更に、CTやVTの変更があっ
ても伝送端末装置で対応できるのため、中央装置の計算
処理を変更する必要がないという効果もある。
According to the present invention, the specification can be easily measured by one device without worrying about the CT primary rating and the VT primary rating for each branch portion in the power distribution system, and the central device can be used. Concentrated monitoring is possible. Further, since the transmission terminal device itself performs each calculation and transmits it to the host device, the load on the central device is reduced, and further, even if the CT or VT is changed, the transmission terminal device can cope with it. There is also an effect that it is not necessary to change the calculation process.

【0061】また、配線作業工数の低減,設置面積の低
減など効果は大である。さらに、分岐部分の各分岐毎の
電力,電力量の計測を可能としたことは、負荷毎のきめ
細かなエネルギー使用状態を把握でき、省エネルギーの
施策に役立つ。更にまた、相線式を判断できることによ
り、配電系統の相線式に合わせた計測が1台で行える大
きな効果があり、投資費用の大きな低減と、配電系統の
安定した供給に絶大な効果をもたらす。
Further, the effect of reducing the number of wiring work steps and the installation area is great. Furthermore, the ability to measure the amount of electricity and the amount of electricity for each branch in the branch part allows the detailed energy usage state for each load to be grasped, which is useful for energy saving measures. Furthermore, by being able to judge the phase line type, there is a great effect that one unit can perform measurement according to the phase line type of the distribution system, which greatly reduces investment costs and has a great effect on the stable supply of the distribution system. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る伝送端末装置のブロッ
ク構成図である。
FIG. 1 is a block configuration diagram of a transmission terminal device according to an embodiment of the present invention.

【図2】図1に示す伝送端末装置を配電系統に配置した
システム構成図である。
FIG. 2 is a system configuration diagram in which the transmission terminal device shown in FIG. 1 is arranged in a power distribution system.

【図3】三相3線式(単相3線式も同様)における実体
結線図である。
FIG. 3 is a physical connection diagram in a three-phase three-wire system (similar to a single-phase three-wire system).

【図4】CT,VTの一次定格を設定する設定部の詳細
図と一次定格に対する設定部の設定対応内容を示す図で
ある。
FIG. 4 is a detailed view of a setting unit that sets the primary rating of CT and VT and a diagram showing the setting correspondence content of the setting unit for the primary rating.

【図5】伝送端末装置の正面図である。FIG. 5 is a front view of a transmission terminal device.

【図6】サンプリングと電流・電圧計算式を説明する図
である。
FIG. 6 is a diagram illustrating sampling and current / voltage calculation formulas.

【図7】電源投入時の処理手順を示すフローチャートで
ある。
FIG. 7 is a flowchart showing a processing procedure when the power is turned on.

【図8】タイマ割り込み処理手順を示すフローチャート
である。
FIG. 8 is a flowchart showing a timer interrupt processing procedure.

【図9】受信割り込み処理手順を示すフローチャートで
ある。
FIG. 9 is a flowchart showing a reception interrupt processing procedure.

【図10】三相3線式・単相3線式計算処理手順を示す
フローチャートである。
FIG. 10 is a flow chart showing a three-phase three-wire / single-phase three-wire calculation processing procedure.

【図11】サンプリングデータの記憶例を示す図であ
る。
FIG. 11 is a diagram showing an example of storage of sampling data.

【図12】三相3線式・単相3線式計算結果の記憶例を
示す図である。
FIG. 12 is a diagram showing a storage example of a three-phase three-wire / single-phase three-wire calculation result.

【図13】単相2線式の実体結線図である。FIG. 13 is a physical connection diagram of a single-phase two-wire system.

【図14】単相2線式における電流計算フローチャート
である。
FIG. 14 is a current calculation flowchart for a single-phase two-wire system.

【図15】単相2線式の計算結果の記憶例を示す図であ
る。
FIG. 15 is a diagram showing a storage example of a calculation result of a single-phase two-wire system.

【図16】電力計算を説明する図である。FIG. 16 is a diagram illustrating power calculation.

【図17】三相3線式(単相3線式も同じ)の電力・電
力量の計算フローチャートである。
FIG. 17 is a calculation flowchart of electric power and electric energy of a three-phase three-wire system (same for a single-phase three-wire system).

【図18】電力・電力量計算結果の記憶例を示す図であ
る。
FIG. 18 is a diagram showing an example of storage of power / power amount calculation results.

【図19】単相2線式の電力・電力量の計算フローチャ
ートである。
FIG. 19 is a single-phase two-wire type power / power amount calculation flowchart.

【図20】図19の結果の記憶例を示す図である。20 is a diagram showing a storage example of the result of FIG.

【図21】相線式を判断して処理を行うフローチャート
である。
FIG. 21 is a flowchart for performing processing by determining the phase line method.

【符号の説明】[Explanation of symbols]

1…伝送端末装置,2…電源端子11a,11b,11
n電流信号入力部,17…選択部,19…A/D変換
部,8…中央処理装置,22a…VT一次定格設定部,
22b,22c,22n…CT一次定格設定部,24…
伝送部222相線式判断ビット。
1 ... Transmission terminal device, 2 ... Power supply terminals 11a, 11b, 11
n current signal input unit, 17 ... selection unit, 19 ... A / D conversion unit, 8 ... central processing unit, 22a ... VT primary rating setting unit,
22b, 22c, 22n ... CT primary rating setting unit, 24 ...
Transmitter 222 Phase wire type judgment bit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2組以上の被監視電路の電流信号を所定
のタイミングで選択する選択手段と、選択した前記電流
信号をディジタル量に変換するアナログ/ディジタル変
換手段と、変換したディジタル量を記憶する記憶手段
と、前記被監視電路の各々に対応した定格値を設定する
定格値設定手段と、前記記憶した内容について前記定格
値設定手段により設定された内容に基づいて演算する中
央処理装置と、上位装置との間で前記演算の結果を通信
する伝送手段と、前記選択手段及び前記アナログ/ディ
ジタル変換手段及び前記記憶手段及び前記定格値設定手
段及び前記中央処理装置及び前記伝送手段を内部に一体
に収納する筐体とを備えて成り、前記被監視電路の設置
現場に設置されることを特徴とする伝送端末装置。
1. A selecting means for selecting current signals of two or more sets of monitored electric circuits at a predetermined timing, an analog / digital converting means for converting the selected current signals into a digital quantity, and storing the converted digital quantity. Storage means, a rated value setting means for setting a rated value corresponding to each of the monitored electric circuits, a central processing unit for calculating the stored contents based on the contents set by the rated value setting means, A transmission means for communicating the result of the calculation with a host device, the selection means, the analog / digital conversion means, the storage means, the rated value setting means, the central processing unit, and the transmission means are integrated inside. A transmission terminal device, comprising: a housing that is housed in the monitoring terminal, and is installed at a site where the monitored electric circuit is installed.
【請求項2】 2組以上の被監視電路の電流信号と1組
の被監視電路の電圧信号を所定ののタイミングで選択す
る選択手段と、選択した前記電流信号及び電圧信号をデ
ィジタル量に変換するアナログ/ディジタル変換手段
と、変換したディジタル量を記憶する記憶手段と、前記
被監視電路の各々に対応した定格値を設定する定格値設
定手段と、前記記憶した内容について前記定格値設定手
段により設定された内容に基づいて演算する中央処理装
置と、上位装置との間で前記演算の結果を通信する伝送
手段と、前記選択手段及び前記アナログ/ディジタル変
換手段及び前記記憶手段及び前記定格値設定手段及び前
記中央処理装置及び前記伝送手段を内部に一体に収納す
る筐体とを備えて成り、前記被監視電路の設置現場に設
置されることを特徴とする伝送端末装置。
2. A selecting means for selecting at least two sets of current signals of the monitored electric circuit and one set of voltage signals of the monitored electric circuit at a predetermined timing, and the selected current signal and voltage signal are converted into digital quantities. Analog / digital conversion means, storage means for storing the converted digital amount, rated value setting means for setting a rated value corresponding to each of the monitored electric circuits, and the rated value setting means for the stored contents. A central processing unit that performs an operation based on the set contents, a transmission unit that communicates the result of the operation between a host device, the selection unit, the analog / digital conversion unit, the storage unit, and the rated value setting. Means, the central processing unit, and a casing that integrally accommodates the transmission means therein, and is installed at the installation site of the monitored electric circuit. Transmission terminal equipment.
【請求項3】 2組以上の被監視電路の電流信号と1組
の被監視電路の電圧信号を所定のタイミングで選択する
選択手段と、選択した前記電流信号及び電圧信号をディ
ジタル量に変換するアナログ/ディジタル変換手段と、
変換したディジタル量を記憶する記憶手段と、前記被監
視電路の各々に対応した定格値を設定する定格値設定手
段と、前記被監視電路の相線式を設定する相線式設定手
段と、前記記憶した内容について前記定格値設定手段に
より設定された内容及び前記相線式設定手段により設定
された内容に基づいて演算する中央処理装置と、上位装
置との間で前記演算の結果を通信する伝送手段と、前記
選択手段及び前記アナログ/ディジタル変換手段及び前
記記憶手段及び前記定格値設定手段及び前記中央処理装
置及び前記伝送手段を内部に一体に収納する筐体とを備
えて成り、前記被監視電路の設置現場に設置されること
を特徴とする伝送端末装置。
3. Selection means for selecting at least two sets of current signals of the monitored electric circuit and one set of voltage signals of the monitored electric circuit at a predetermined timing, and converting the selected current signals and voltage signals into digital quantities. Analog / digital conversion means,
Storage means for storing the converted digital amount, rated value setting means for setting a rated value corresponding to each of the monitored electric circuits, phase line type setting means for setting a phase wire type of the monitored electric circuits, and Transmission for communicating the result of the calculation between a central processing unit that performs calculation based on the contents set by the rated value setting unit and the contents set by the phase wire setting unit for the stored contents, and a higher-level device Means, and a housing for accommodating the selection means, the analog / digital conversion means, the storage means, the rated value setting means, the central processing unit, and the transmission means in an integrated manner. A transmission terminal device, which is installed at a site where an electric circuit is installed.
JP12380395A 1995-05-23 1995-05-23 Transmission terminal device Expired - Fee Related JP3634893B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12380395A JP3634893B2 (en) 1995-05-23 1995-05-23 Transmission terminal device
JP2001377538A JP2002199466A (en) 1995-05-23 2001-12-11 Transmission terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12380395A JP3634893B2 (en) 1995-05-23 1995-05-23 Transmission terminal device
JP2001377538A JP2002199466A (en) 1995-05-23 2001-12-11 Transmission terminal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001377538A Division JP2002199466A (en) 1995-05-23 2001-12-11 Transmission terminal

Publications (2)

Publication Number Publication Date
JPH08317476A true JPH08317476A (en) 1996-11-29
JP3634893B2 JP3634893B2 (en) 2005-03-30

Family

ID=61558555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP12380395A Expired - Fee Related JP3634893B2 (en) 1995-05-23 1995-05-23 Transmission terminal device
JP2001377538A Pending JP2002199466A (en) 1995-05-23 2001-12-11 Transmission terminal

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2001377538A Pending JP2002199466A (en) 1995-05-23 2001-12-11 Transmission terminal

Country Status (1)

Country Link
JP (2) JP3634893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093401A1 (en) * 2000-05-31 2001-12-06 Abb Ab Power oscillation protection
WO2001093405A1 (en) * 2000-05-31 2001-12-06 Abb Ab System protection scheme
JP2010124553A (en) * 2008-11-17 2010-06-03 Chugoku Electric Power Co Inc:The Power factor improvement promoting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122424A (en) * 2011-12-12 2013-06-20 Hioki Ee Corp Voltage measuring instrument, current measuring instrument and power measuring instrument
KR101717661B1 (en) * 2016-02-02 2017-03-17 엘에스산전 주식회사 Temperature rising test apparatus of deverged circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093401A1 (en) * 2000-05-31 2001-12-06 Abb Ab Power oscillation protection
WO2001093405A1 (en) * 2000-05-31 2001-12-06 Abb Ab System protection scheme
JP2010124553A (en) * 2008-11-17 2010-06-03 Chugoku Electric Power Co Inc:The Power factor improvement promoting system

Also Published As

Publication number Publication date
JP3634893B2 (en) 2005-03-30
JP2002199466A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
US5315531A (en) Energy monitoring system for a plurality of local stations with snapshot polling from a central station
US5384712A (en) Energy monitoring system for a plurality of local stations with snapshot polling from a central station
US5247454A (en) Reconfigurable circuit monitoring system
KR20040071673A (en) Measurement method of resistance
US20140333294A1 (en) Method for determining a power consumption, supervision system and electric installation comprising application thereof
JP3330519B2 (en) Electronic watt-hour meter and its error adjustment method
CN211206604U (en) Mobile electrical equipment on-line monitoring device
US20100121586A1 (en) unbalance power of an electrical facility or system, along with the device for its calibration
JP2003222645A (en) Multicircuit power measuring device
JPH08317476A (en) Transmission terminal equipment
JP3686878B2 (en) Backpack unit communicating with PC computer system to monitor power consumption
EP0528634B1 (en) Energy monitoring system for a plurality of local stations with snapshot polling from a central station
JP2866615B2 (en) Power saving measurement device
AU695365B2 (en) Electrical apparatus with wide dynamic range for monitoring and protecting electric power systems
JPH02263170A (en) Imbalance monitoring apparatus for power line
JP2000249723A (en) Measuring terminal device
JP3448735B2 (en) Multi power meter
CN209911478U (en) Intelligent power distribution instrument
JP4488888B2 (en) Measuring method, measuring device and circuit breaker
JP2001298877A (en) Device for monitoring power of a plurality of loads
JP2005233879A (en) Single-phase three-wire system watt-hour meter equipped with line current monitoring function, and line current managing system thereof
KR102644478B1 (en) Quality Monitoring Device for Direct current and operating method thereof
RU2748936C1 (en) Device for monitoring consumption of electrical energy in low voltage network
CN211151618U (en) Intelligent capacitance and instrument expansion system of capacitance compensation cabinet
KR100490143B1 (en) System for measuring the harmonics of electric power in using internet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees