JPH08316005A - Conductive composite material composition and conductive complex obtained by molding such composition - Google Patents

Conductive composite material composition and conductive complex obtained by molding such composition

Info

Publication number
JPH08316005A
JPH08316005A JP12202795A JP12202795A JPH08316005A JP H08316005 A JPH08316005 A JP H08316005A JP 12202795 A JP12202795 A JP 12202795A JP 12202795 A JP12202795 A JP 12202795A JP H08316005 A JPH08316005 A JP H08316005A
Authority
JP
Japan
Prior art keywords
conductive
conductive composite
composition
molding
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12202795A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamada
三男 山田
Yasuhiko Awano
康彦 阿波野
Kazumasa Miyata
一正 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12202795A priority Critical patent/JPH08316005A/en
Publication of JPH08316005A publication Critical patent/JPH08316005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE: To provide a conductive composite material composition, excellent in reproducibility, and a composite complex obtained by molding the composition. CONSTITUTION: A conductive composite material composition is composed of 100 pts.wt. of a polymer containing a thermoplastic elastomer, obtained by directly polymerizing a random copolymer of ethylene and propylene with homopolypropylene; and 20-1000 pts.wt. of a conductive material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性複合材料組成物
と該組成物を成形して得られる導電性複合体に関する。
TECHNICAL FIELD The present invention relates to a conductive composite material composition and a conductive composite obtained by molding the composition.

【0002】[0002]

【従来の技術】従来、重合体と導電性材料からなる導電
性複合体としてのスイッチング素子として、ポリエチレ
ン等のポリオレフィンとカーボンブラック等の導電性粒
子からなる複合体が知られている(米国特許第2,97
8,665号、特開昭54−16697号、特開昭55
−78406号)。
2. Description of the Related Art Heretofore, a composite composed of a polyolefin such as polyethylene and conductive particles such as carbon black has been known as a switching element as a conductive composite composed of a polymer and a conductive material (US Pat. 2,97
8,665, JP-A-54-16697, JP-A-55
-78406).

【0003】[0003]

【発明が解決しようとする課題】ポリエチレンとカーボ
ンブラック粒子の導電性複合体からなるスイッチング素
子は、80〜140℃にスイッチング温度(Ts)を持
ち(特開昭55−78406号)、実用上適当な温度で
あるが、ジュール熱による導通抵抗の経時変化(特開昭
55−78406号)や、導通抵抗とスイッチング素子
の抵抗の関係がヒステレシスを示す(特開平2−929
60号、特開平5−226113号)ために、再現性に
乏しくさらに改善することが必要である。
A switching element composed of a conductive composite of polyethylene and carbon black particles has a switching temperature (Ts) of 80 to 140 ° C. (JP-A-55-78406) and is suitable for practical use. However, the change in conduction resistance due to Joule heat over time (Japanese Patent Laid-Open No. 55-78406) and the relationship between the conduction resistance and the resistance of the switching element show hysteresis (Japanese Patent Laid-Open No. 2-929).
60, JP-A-5-226113), the reproducibility is poor and further improvement is required.

【0004】本発明の目的は、上記の欠点を改良した再
現性に優れる導電性複合材料組成物と、これを成形して
得られる導電性複合体を提供することにある。
An object of the present invention is to provide a conductive composite material composition which has improved the above-mentioned drawbacks and is excellent in reproducibility, and a conductive composite obtained by molding the same.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、エチ
レンとプロピレンのランダム共重合体とホモポリプロピ
レンとが直接重合して得られる熱可塑性エラストマーを
含む重合体と、導電性材料からなる導電性複合材料組成
物であって、該重合体100重量部に対して導電性材料
が20〜1000重量部含まれることを特徴とする導電
性複合材料組成物と該組成物を成形して得られる導電性
複合体に関する。
Means for Solving the Problems That is, the present invention provides a conductive composite composed of a polymer containing a thermoplastic elastomer obtained by directly polymerizing a random copolymer of ethylene and propylene and homopolypropylene, and a conductive material. A material composition, wherein the conductive material is contained in an amount of 20 to 1000 parts by weight with respect to 100 parts by weight of the polymer, and a conductive material obtained by molding the composition. Regarding the complex.

【0006】以下本発明を詳細に説明する。本発明にお
けるエチレンとプロピレンのランダム共重合体とホモポ
リプロピレン(以下、ホモPPと記載する)とが直接重
合して得られる熱可塑性エラストマーとは、ホモPP部
分が1〜60重量%で、エチレン成分は10〜40重量
%の範囲の重合体であるが、特に限定するものではな
い。また、該重合体の主な特性としてMFR(Melt Flo
w Rate) 、軟化点等が挙げられる。このうち、MFR
(JISK7210) は0.2〜50g/10分で、好ましくは1.
0〜20g/10分である。一方、融点(DSC法)は、一
般的には135〜170℃の範囲であり、好ましくは1
40〜155℃である。
Hereinafter, the present invention will be described in detail. The thermoplastic elastomer obtained by directly polymerizing a random copolymer of ethylene and propylene in the present invention and homopolypropylene (hereinafter referred to as homoPP) has a homoPP portion of 1 to 60% by weight and an ethylene component. Is a polymer in the range of 10 to 40% by weight, but is not particularly limited. The main characteristic of the polymer is MFR (Melt Flo
w Rate), softening point and the like. Of these, MFR
(JISK7210) is 0.2 to 50 g / 10 minutes, preferably 1.
It is 0-20g / 10 minutes. On the other hand, the melting point (DSC method) is generally in the range of 135 to 170 ° C., preferably 1
40-155 degreeC.

【0007】本発明においては、上記熱可塑性エラスト
マーに他の重合体を混合することができる。例えばポリ
エチレン(LDPE,MDPE,HDPE,LLDP
E)、α−オレフィンと極性モノマーとの共重合体(E
VA,EA,EEA)などを挙げることができる。
In the present invention, the thermoplastic elastomer may be mixed with another polymer. For example, polyethylene (LDPE, MDPE, HDPE, LLDP
E), a copolymer of α-olefin and a polar monomer (E
VA, EA, EEA) and the like.

【0008】本発明における熱可塑性エラストマーと他
の重合体の混合比は、特に限定するもではないが、熱可
塑性エラストマーが10〜80重量部で、他の重合体が
90〜20重量部である。以上の重合体を用いることに
より、本発明では導通抵抗が大きく変わる温度(スイッ
チング温度,Ts)が、組成物中の重合体の融点近傍で
認められる。
The mixing ratio of the thermoplastic elastomer to the other polymer in the present invention is not particularly limited, but the thermoplastic elastomer is 10 to 80 parts by weight and the other polymer is 90 to 20 parts by weight. . By using the above polymer, the temperature (switching temperature, Ts) at which the conduction resistance greatly changes in the present invention is recognized near the melting point of the polymer in the composition.

【0009】本発明における導電性材料は、ファーネス
ブラック、ケッチェンブラックなどのカーボンブラッ
ク、これらの極性モノマーによるグラフト物、金属メッ
キカーボンブラック、グラファイトなどを挙げることが
できるが、さらにニッケル、コバルト、銀、銅などの金
属やこれらに代表される金属の合金を用いることができ
る。以上の材料の形態は特に限定するものではないが、
一般的には粒状体が用いられ、例えばカーボンブラック
の場合には、10〜100nmの径の粒状物が用いられ
る。本発明における導電性材料の重合体に対する添加量
は導電性材料の種類にもよるが、一般的には20〜10
00重量部であり、好ましくは100〜800重量部で
ある。
Examples of the conductive material in the present invention include carbon black such as furnace black and Ketjen black, graft products of these polar monomers, metal plated carbon black, graphite and the like, and further nickel, cobalt and silver. Metals such as copper and copper, and alloys of metals represented by these metals can be used. The form of the above materials is not particularly limited,
Generally, a granular material is used. For example, in the case of carbon black, a granular material having a diameter of 10 to 100 nm is used. The amount of the conductive material added to the polymer in the present invention depends on the type of the conductive material, but is generally 20 to 10.
The amount is 00 parts by weight, preferably 100 to 800 parts by weight.

【0010】本発明においては、導電性材料の他に、他
の添加剤、例えば無機充填材、酸化防止剤、帯電防止
剤、シランカップリング剤等を添加することができる。
In the present invention, in addition to the conductive material, other additives such as an inorganic filler, an antioxidant, an antistatic agent, a silane coupling agent and the like can be added.

【0011】本発明における重合体、導電性材料等の組
成物の混合は、ロール、バンバリーミキサー、ヘンシェ
ルミキサー、ブラベンダープラストグラフ、押出機(単
軸、多軸)等の混練装置を用いて行うことができる。さ
らに本発明においては、通常、圧縮成形、押出成形、射
出成形等の成形法を用いて、プレート、シート、フィル
ム状の導電性複合体を作製することができる。
Mixing of the composition such as the polymer and the conductive material in the present invention is carried out by using a kneading device such as a roll, a Banbury mixer, a Henschel mixer, a Brabender plastograph, an extruder (single-screw or multi-screw). be able to. Furthermore, in the present invention, a plate, sheet, or film-shaped conductive composite can be usually produced by using a molding method such as compression molding, extrusion molding, or injection molding.

【0012】本発明における導電性複合体中の重合体
は、一般的には架橋されるが、t−ブチルクミルパーオ
キサイド、2,5ジメチル−ジ(t−ブチルパーオキ
シ)ヘキサン、2,5−ジメチル−ジ(t−ブチルパー
オキシ)ヘキシン−3等を有機過酸化物を用いる化学架
橋法、ポリオレフィンにビニルシランをグラフトした
後、水分の存在下でシロキサン縮合反応による架橋を行
うシラン架橋法、さらには、電子線などを用いる放射線
架橋法のいずれの方法も用いることができる。
The polymer in the conductive composite of the present invention is generally crosslinked, but t-butylcumyl peroxide, 2,5 dimethyl-di (t-butylperoxy) hexane, 2,5 -Chemical cross-linking method using dimethyl-di (t-butylperoxy) hexyne-3 or the like with an organic peroxide, silane cross-linking method in which vinyl silane is grafted onto polyolefin and then cross-linked by siloxane condensation reaction in the presence of water, Furthermore, any method of radiation crosslinking using an electron beam or the like can be used.

【0013】本発明において、導電性複合体はニッケ
ル、銅等の電極材を熱圧着等の方法により接続される
が、さらに、成形歪の緩和、内部構造の安定化の目的の
ために熱処理を施すのが一般的である。なお、この熱処
理は導電性複合体と電極材の接続前、接続中または接続
後に行っても良い。
In the present invention, the conductive composite is connected to an electrode material such as nickel or copper by a method such as thermocompression bonding. Further, heat treatment is performed for the purpose of relaxing molding strain and stabilizing the internal structure. It is generally applied. Note that this heat treatment may be performed before, during, or after the connection between the conductive composite and the electrode material.

【0014】[0014]

【作用】本発明は、重合体と導電性材料からなる組成物
において、重合体がホモPPと、エチレンとプロピレン
のランダム共重合体が直接重合して得られる熱可塑性エ
ラストマーの少なくとも架橋物を主体とするために、こ
れを成形して得られる導電性複合体のTsは、ポリエチ
レン系樹脂の場合とほぼ同等で、温度と導通抵抗の関係
でヒステレシスが少なく再現性に優れた導電性複合体を
得ることができる。この理由としては推論の域を出ない
が、ホモPP部分が一種の固定点の役割をすることによ
り、エチレン/プロピレン共重合体部の熱膨張に伴う導
電性材料間の間隔変化の再現性が良くなり、その結果、
従来のポリエチレン系樹脂マトリックスの場合とTsは
概ね同等でありながら、より再現性に優れた特性を示し
たものと考えられる。
The present invention mainly comprises at least a crosslinked product of a thermoplastic elastomer obtained by directly polymerizing a homo-PP and a random copolymer of ethylene and propylene in a composition comprising a polymer and a conductive material. Therefore, the Ts of the conductive composite obtained by molding this is almost the same as that of the polyethylene resin, and a conductive composite having less hysteresis due to the relationship between temperature and conduction resistance and excellent in reproducibility is obtained. Obtainable. The reason for this is beyond speculation, but because the homo PP part plays a role of a kind of fixed point, the reproducibility of the spacing change between the conductive materials due to the thermal expansion of the ethylene / propylene copolymer part is improved. And as a result,
It is considered that the Ts was almost the same as that of the conventional polyethylene resin matrix, but exhibited a more excellent reproducibility.

【0015】[0015]

【実施例】【Example】

実施例1 表1に示す配合組成物を、8インチロールを用いて16
0℃で10分間混練後、160℃、5分間プレスし(1
50kg/cm2)、厚み約0.8mmのシート(10mm×10
mm)を成形した。
Example 1 The compounding composition shown in Table 1 was used for 16
After kneading at 0 ° C for 10 minutes, press at 160 ° C for 5 minutes (1
50kg / cm 2 ), 0.8mm thick sheet (10mm × 10)
mm) was molded.

【0016】[0016]

【表1】 配 合 ──────────────────────────────── 材 料 添加量(重量部) ──────────────────────────────── 熱可塑性エラストマー (トクヤマ,P.E.R:MI;8,融点;143℃, 比重;0.88) 60 ポリエチレン (住友化学;MI;10, 融点;125℃, 比重;0.935) 40 導電性材料 (ファーネスフ゛ラック:平均粒径,50nm) 100 架橋助剤(トリメチロールフ゜ロハ゜ントリアクリレート) 1.0 酸化防止剤(Irganox1010) 0.5 ────────────────────────────────[Table 1] Allocation ──────────────────────────────── Material addition amount (parts by weight) ──── ──────────────────────────── Thermoplastic elastomer (TOKUYAMA, PER: MI; 8, melting point; 143 ℃, specific gravity; 0.88) 60 Polyethylene (Sumitomo Chemical; MI; 10, melting point; 125 ° C, specific gravity; 0.935) 40 Conductive material (furnace black: average particle size, 50 nm) 100 Cross-linking aid (trimethylol propane triacrylate) 1.0 Antioxidant (Irganox 1010) 0.5 ─────────────────────────────────

【0017】該方法により得られた導電性複合体に5Mr
adの電子線照射を行った後、5mm×10mmの大きさに切
り出し、両面に金属電極(ニッケル箔、厚み;300n
m)を165℃で熱圧着し、該電極からリード線をはん
だ接続して取り出し温度と導通抵抗の関係を測定した。
また、降温後の復帰性を確認するために、室温での導通
抵抗を再測定した。結果を表2に示す。
The conductive composite obtained by the method contains 5Mr
After irradiating the electron beam of ad, it is cut into a size of 5mm x 10mm, and metal electrodes (nickel foil, thickness; 300n) on both sides
m) was thermocompression bonded at 165 ° C., a lead wire was soldered from the electrode, and the relationship between the temperature and the conduction resistance was measured.
Further, the conduction resistance at room temperature was measured again in order to confirm the recoverability after cooling. Table 2 shows the results.

【0018】[0018]

【表2】 導 通 抵 抗 測 定 結 果 ───────────────────────────────── 項 目 実施例1 実施例2 実施例3 比較例 ───────────────────────────────── R25 0.040 0.030 0.035 0.050 R110 1.2M 1.1M 1.5M 1.2M R110/R25 3.0×10 3.7×10 4.3×10 2.4×10 R25 * 0.042 0.034 0.037 0.10 Ts(℃) 130 131 129 120 ───────────────────────────────── R25 :25℃での導通抵抗(Ω) R110:110℃での導通抵抗(Ω) R25*:25℃に降温後での導通抵抗(Ω)[Table 2] General resistance measurement result ───────────────────────────────── Item Item Example 1 Example 2 Example 3 Comparative example ───────────────────────────────── R25 0.040 0.030 0.035 0.050 R110 1.2M 1.1 M 1.5M 1.2M R110 / R25 3.0 × 10 3.7 × 10 4.3 × 10 2.4 × 10 R25 * 0.042 0.034 0.037 0.10 Ts (℃) 130 131 129 120 ──────────────── ───────────────── R25: Conduction resistance at 25 ℃ (Ω) R110: Conduction resistance at 110 ℃ (Ω) R25 *: Conduction after cooling to 25 ℃ Resistance (Ω)

【0019】実施例2 導電性材料をニッケル粒子(約8〜10ミクロン)と
し、720重量部加えた以外、実施例1と同様にして温
度−導通抵抗の関係を測定した。結果を表2に併記し
た。
Example 2 The temperature-conduction resistance relationship was measured in the same manner as in Example 1 except that nickel particles (about 8 to 10 microns) were used as the conductive material and 720 parts by weight was added. The results are also shown in Table 2.

【0020】実施例3 導電性材料として、ポリスチレン粒子に金メッキをした
粒子(約100nm)を用いた(300重量部)以外、重
量部2と同様にして、温度−導通抵抗の関係を測定し
た。結果を表2に併記した。
Example 3 The temperature-conduction resistance relationship was measured in the same manner as in the weight part 2 except that polystyrene particles were plated with gold (about 100 nm) (300 parts by weight) as the conductive material. The results are also shown in Table 2.

【0021】比較例 表3に示す配合を用いて、実施例1と同様にして5mm×
10mmの導電性複合体試料を作製し、温度と導通抵抗の
関係を測定した。結果を表2に併記した。
Comparative Example 5 mm × in the same manner as in Example 1 except that the formulations shown in Table 3 were used.
A 10 mm conductive composite sample was prepared and the relationship between temperature and conduction resistance was measured. The results are also shown in Table 2.

【0022】[0022]

【表3】 配 合 ─────────────────────────────────── 材 料 添加量(重量部) ─────────────────────────────────── ポリエチレン(住友化学;MI;10, 融点;125℃, 比重;0.935) 100 導電性材料 (ファーネスフ゛ラック:平均粒径,50nm) 100 酸化防止剤(Irganox1010) 0.5 ───────────────────────────────────[Table 3] Allocation ─────────────────────────────────── Material addition amount (parts by weight) ─ ────────────────────────────────── Polyethylene (Sumitomo Chemical; MI; 10, melting point; 125 ℃, specific gravity; 0.935) 100 Conductive material (furnace black: average particle size, 50 nm) 100 Antioxidant (Irganox1010) 0.5 ─────────────────────────── ─────────

【0023】[0023]

【発明の効果】本発明によれば、ホモポリプロピレン
と、エチレンとプロピレンのランダム共重合体が直接重
合して得られる熱可塑性エラストマーの架橋物を含む組
成物を用いることにより、スイッチング温度はポリエチ
レンの例とほぼ同じで、導通抵抗の自己復帰性に優れる
特性を持った導電性複合体を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, by using a composition containing a homopolypropylene and a crosslinked product of a thermoplastic elastomer obtained by directly polymerizing a random copolymer of ethylene and propylene, the switching temperature of polyethylene is Almost the same as the example, it is possible to obtain a conductive composite having excellent characteristics of self-recovery of conduction resistance.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月27日[Submission date] March 27, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】[0018]

【表2】 導 通 抵 抗 測 定 結 果 ───────────────────────────────── 項 目 実施例1 実施例2 実施例3 比較例 ───────────────────────────────── R25 0.040 0.030 0.035 0.050 R110 1.2M 1.1M 1.5M 1.2M R110/R25 3.0×107 3.7×107 4.3×107 2.4×107 R25 * 0.042 0.034 0.037 0.10 Ts(℃) 130 131 129 120 ───────────────────────────────── R25 :25℃での導通抵抗(Ω) R110:110℃での導通抵抗(Ω) R25*:25℃に降温後での導通抵抗(Ω)[Table 2] General resistance measurement results ───────────────────────────────── Item Item Example 1 Example 2 Example 3 Comparative example ───────────────────────────────── R25 0.040 0.030 0.035 0.050 R110 1.2M 1.1 M 1.5M 1.2M R110 / R25 3.0 × 10 7 3.7 × 10 7 4.3 × 10 7 2.4 × 10 7 R25 * 0.042 0.034 0.037 0.10 Ts (℃) 130 131 129 120 ───────────── ───────────────────── R25: Conductive resistance at 25 ° C (Ω) R110: Conductive resistance at 110 ° C (Ω) R25 *: Temperature drop to 25 ° C Lateral conduction resistance (Ω)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エチレンとプロピレンのランダム共重合
体とホモポリプロピレンとが直接重合して得られる熱可
塑性エラストマーを含む重合体と、導電性材料からなる
導電性複合材料組成物において、前記重合体100重量
部に対して導電性材料が20〜1000重量部含まれる
こと特徴とする導電性複合材料組成物。
1. A conductive composite material composition comprising a conductive elastomer and a polymer containing a thermoplastic elastomer obtained by directly polymerizing a random copolymer of ethylene and propylene and homopolypropylene, wherein the polymer 100 is used. A conductive composite material composition, wherein the conductive material is contained in an amount of 20 to 1000 parts by weight with respect to parts by weight.
【請求項2】 請求項1記載の導電性複合材料組成物を
成形してなる導電性複合体。
2. A conductive composite body obtained by molding the conductive composite material composition according to claim 1.
【請求項3】 導電性複合材体が、少なくとも1個のス
イッチング温度(Ts)を有することを特徴とする請求
項2記載の導電性複合体。
3. The conductive composite body according to claim 2, wherein the conductive composite body has at least one switching temperature (Ts).
JP12202795A 1995-05-22 1995-05-22 Conductive composite material composition and conductive complex obtained by molding such composition Pending JPH08316005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12202795A JPH08316005A (en) 1995-05-22 1995-05-22 Conductive composite material composition and conductive complex obtained by molding such composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12202795A JPH08316005A (en) 1995-05-22 1995-05-22 Conductive composite material composition and conductive complex obtained by molding such composition

Publications (1)

Publication Number Publication Date
JPH08316005A true JPH08316005A (en) 1996-11-29

Family

ID=14825786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12202795A Pending JPH08316005A (en) 1995-05-22 1995-05-22 Conductive composite material composition and conductive complex obtained by molding such composition

Country Status (1)

Country Link
JP (1) JPH08316005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607679B2 (en) 2001-01-12 2003-08-19 Tdk Corporation Organic PTC thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607679B2 (en) 2001-01-12 2003-08-19 Tdk Corporation Organic PTC thermistor

Similar Documents

Publication Publication Date Title
JP4079575B2 (en) Cable semi-conductive shielding
US5164133A (en) Process for the production of molded article having positive temperature coefficient characteristics
CN101842439B (en) Silane-functionalised polyolefin compositions, products thereof and preparation processes thereof for wire and cable applications
EP1342247B1 (en) Power cable
JPH08316005A (en) Conductive composite material composition and conductive complex obtained by molding such composition
TW201942234A (en) Composite of non-polar organic polymer, polar organic polymer, and ultra-low-wettability carbon black
JPH0645105A (en) Ptc composition
US10790074B1 (en) PTC circuit protection device
JP5025050B2 (en) Crosslinkable semiconductive resin composition and power cable using the same
JPH09265834A (en) Conductive compound material composition and conductive complex molded from the composition
JP2631117B2 (en) Manufacturing method of heating element with positive temperature characteristic
JPH08138439A (en) Conductive composite material composition and conductive composite material to mold its composition
JP3408623B2 (en) Forming method of conductive sheet
JPS6215963B2 (en)
JPH0215508A (en) Composition for forming semiconductive layer
JPS59199739A (en) Composition resistant to thermal aging
JP2002109970A (en) Power cable
JPH09115702A (en) Manufacture of conductive composite material element
JPH03143938A (en) Conductive resin composition and use thereof
JPS5810801B2 (en) Semiconductive resin composition with improved peelability
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
JP2649165B2 (en) Positive temperature characteristic heating element
KR100551322B1 (en) Conductive polymer composition containing ozone-treated carbon black and ptc device prepared therefrom
JPS6112738A (en) Mixture for semiconductive layer
JP3658881B2 (en) Temperature sensitive resistor and manufacturing method thereof