JP3658881B2 - Temperature sensitive resistor and manufacturing method thereof - Google Patents

Temperature sensitive resistor and manufacturing method thereof Download PDF

Info

Publication number
JP3658881B2
JP3658881B2 JP22905996A JP22905996A JP3658881B2 JP 3658881 B2 JP3658881 B2 JP 3658881B2 JP 22905996 A JP22905996 A JP 22905996A JP 22905996 A JP22905996 A JP 22905996A JP 3658881 B2 JP3658881 B2 JP 3658881B2
Authority
JP
Japan
Prior art keywords
temperature
sensitive resistor
ratio
imax
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22905996A
Other languages
Japanese (ja)
Other versions
JPH1074602A (en
Inventor
孝男 野田
仁 網田
正行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22905996A priority Critical patent/JP3658881B2/en
Publication of JPH1074602A publication Critical patent/JPH1074602A/en
Application granted granted Critical
Publication of JP3658881B2 publication Critical patent/JP3658881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過電流・過熱保護素子あるいは自己温度制御機能を有する発熱体などに好適に用いられる感温抵抗体及びその製造方法に関する。
【0002】
【従来の技術】
ポリエチレンやポリプロピレンなどの結晶性重合体に導電性粉末(例えば、カーボンブラック、金属粉末など)を配合した導電性樹脂組成物が、特定温度領域において電気抵抗値が温度の上昇と共に急激に増大する性質(以下「PTC特性」という)を有することが知られている。これらの樹脂組成物が、かかるPTC特性を有するのは、結晶性重合体がその融点付近になると、結晶質から非晶質に転移する際に起こるものであるので、温度変化に伴う抵抗変化の追随性が悪く、また、初期抵抗値を低くするために導電性粉末を多量に添加する必要があり、そのために機械的性質が低下するという問題があった。
かかる問題を改善する方法として、導電性粉末として気相法炭素繊維を使用する方法が提案されている(例えば、特開昭63−170902号公報、特開平2−92960号公報など)。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの方法では、過電流・過熱保護素子などに応用するには依然として初期抵抗値が高いという問題があった。
本発明は、かかる状況に鑑みてなされたものであり、初期抵抗値が低く、かつ優れたPTC特性を有する感温抵抗体を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、導電性フィラーを電流の流れ方向に一次元的に配向させることにより上記目的を達成しうることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は(A)合成樹脂及び(B)気相法炭素繊維からなる組成物であって、該炭素繊維が電流方向に一次元に配向していることを特徴とする感温抵抗体を提供するものである。
【0005】
【発明の実施の形態】
本発明における(A)合成樹脂としては、特に制限されるものはなく、フェノール系,ユリア系,エポキシ系,ウレタン系,不飽和ポリエステル系,シリコーン系などの熱硬化性樹脂、あるいは低密度ポリエチレン,高密度ポリエチレン,ポリプロピレン,エチレン−プロピレン共重合体などのポリオレフィン、オレフィン系共重合体、ポリアミド類、ポリエステル類、フッ素含有エチレン系重合体などの熱可塑性樹脂などが使用でき、これらの樹脂を単独または二種以上を組み合わせて用いることができる。これらの中でもPTC特性に優れるものとしては、結晶性重合体が好ましい。結晶化度としては5%以上が好ましく、特に15%以上が好適である。
【0006】
また、本発明における(B)気相法炭素繊維(以下「VGCF」という)は、例えば、炭化水素などを有機遷移金属化合物の存在下で熱分解して得られるウィスカー状の繊維である。VGCFの製造方法としては、例えば特開昭60−27700号公報に詳細な記載がある。VGCFは、一般に直径が0.05〜10μmで長さが1μm〜5mmであるが、本発明においては直径が0.05〜5μmで長さが1μm〜0.1mmのものが好ましく、とりわけ直径が0.05〜2μmで長さが1μm〜0.1mmのものが好適である。
さらに、本発明のVGCFとしては、処理温度が2000℃以上が好ましく、特に2500℃以上が好適である。
合成樹脂に対するVGCFの配合割合は、1〜50容量%が好ましく、とりわけ3〜30容量%が好適である。
使用するVGCFの体積抵抗値はできるだけ小さい方が好ましく、10-2Ω・cm以下が好ましい。
【0007】
本発明の感温抵抗体は、合成樹脂とVGCFとの組成物からなるものであるが、さらに、次の(a)および(b)を満足する必要がある。
(a)電流の流れる方向と垂直に0〜360度の角度からX線を照射し、グラファイトの(002)面と(100)面のX線回折のピーク強度比を測定したときの最大値(Imax)と最小値(Imin)との比(Imin/Imax)が0.6以上
(b)電流の流れる方向からX線を照射し、グラファイトの(002)面と(100)面のX線回折のピーク強度比を測定したときの強度比(Ie)とImaxとの比(Imax/Ie)が1.5以上
電流が流れる方向と垂直な方向におけるグラファイトの(002)面のX線回折強度が大きく、かつ角度による変化が少ないほど合成樹脂中でのVGCFの一次元配向性に優れているということができる。
上記Imin/Imaxは0.8以上が好ましく、特に0.9以上が好適である。Imin/Imaxが0.6未満では初期抵抗値が高くなるので好ましくない。
また、Imax/Ieは3.0以上が好ましく、特に5.0以上が好適である。Imax/Ieが1.5未満ではPTC特性に劣るので好ましくない。
【0008】
本発明における組成物を架橋剤及び/または架橋助剤を添加したり、放射線あるいは電子線照射により架橋してもよい。また、所望により当該技術分野において慣用の各種添加剤、例えば安定剤、難燃剤、着色剤等を本発明の特長を損なわない程度に配合することもできる。
本発明の感温抵抗体に使用する電極の材質については、特に制限されるものはないが、耐酸化性の面からNiが好ましい。また、電極形成方法についても特に制約はないが、熱融着、真空蒸着、スパッタリング、メッキなどの方法を適宜採用できる。
【0009】
本発明の感温抵抗体は、以上の各成分を公知の混練装置、例えばロールミキサー、バンバリーミキサー、一軸押出機、二軸押出機等を用いて混練する。その後、先端に絞りノズルを設けた公知の押出成形機を用いてノズルの形状により糸、丸棒、板、シート、フィルム等の形状に成形することができる。絞りノズルの形状はテーパー状に絞られているのが好ましい。また、ノズルの入口断面積(S1)と出口断面積(S2)との比(S2/S1)(以下「絞り比率」という)は0.2以下が好ましく、特に0.1以下が好適である。成形速度は遅いほうが配向にとっては好ましい。
得られた成形体を樹脂の押出流れ方向と垂直に切断し、その両面に電極を形成することにより感温抵抗体が得られる。
合成樹脂として熱硬化性樹脂を用いる場合は、上記の方法で成形した後、硬化させればよい。以後は上記の方法により抵抗体を作製する。
【0010】
【実施例】
以下、本発明を実施例によりさらに詳しく説明する。
合成樹脂として、高密度ポリエチレン(日本ポリオレフィン社製、ジェイレックス6080)(以下「PE」という)、ポリプロピレン(日本ポリオレフン社製、ジェイアロマーSMA−410)(以下「PP」という)及びエポキシ樹脂(シェル化学社製、エピコート)(以下「EPX」という)を用いた。VGCFとして、ベンゼンを原料にフェロセン触媒で合成し、温度3000℃で熱処理して得られた以下のものを用いた。
VF1:直径0.2μm、長さ15μm、体積抵抗値4×10-3Ω・cm
VF2:直径1.0μm、長さ80μm、体積抵抗値7×10-3Ω・cm
VF3:直径2.0μm、長さ0.1mm、体積抵抗値5×10-3Ω・cm
VF4:直径1.5μm、長さ30μm、体積抵抗値1×10-2Ω・cm
【0011】
なお、X線回折はリガク社製X線回折装置RTP300を使用し、以下の条件で測定した。
X線源:CuKα線
スキャン速度:5°/min
スリット幅:1°(DS)、1°(SS)、0.3mm(RS)
モノクロ:グラファイト
PTC特性は、デジタルマルチメーター(AVANTEST社製、R6871E)を用いてPEについては23〜135℃、PP及びEPXについては23〜200℃の範囲を測定した。抵抗変化率は23℃における体積抵抗値(ρ1)とシッチング温度における体積抵抗値(ρmax)との比(ρmax/ρ1)で示した。なお、スイッチング温度とは抵抗値が急激に立ち上がる部分の両側にある実質的に直線である線を延長して得られる交点に対応する温度のことをいう。
VGCFの体積抵抗値は、三菱化学製粉体抵抗測定装置を用いて圧密度と体積抵抗との関係を測定し、真密度における値を求めた。
【0012】
実施例1〜5
表1に種類および配合量が示されている合成樹脂とVGCFをラボプラストミルで混練し、得られた組成物を絞り比率0.045の2mmφノズルを装着したメルトインデクサー(TAKARA KOGYO社製、L201型)を用いて丸棒に押出成形した。得られた丸棒を厚さ1mmに切断して、両断面に白金を真空蒸着し、銀ペーストにてリード線を固定して感温抵抗体を得た。得られた抵抗体のX線回折及びPTC特性を測定した。
実施例1で得られた抵抗体のPTC特性曲線を図1に示す。
【0013】
実施例6
絞り比率0.18の4mmφノズルを用いた以外は実施例1と同様に行った。
実施例7
絞り比率0.01の2mmφノズルを用いた以外は実施例1と同様に行った。
実施例8
連続押出機で混練し、絞り比率0.005の2mmφノズルを用いた以外は、実施例1と同様に行った。
実施例9
VGCFの熱処理を2500℃で行った以外は実施例と同様にして行った。
実施例10
切断サンプルの厚さが10mmである以外は実施例1と同様にして行った。
実施例11
VGCFの熱処理を2100℃で行った以外は実施例と同様にして行った。
実施例12
絞り比率0.01で5mm×30mmの板状に押出成形した以外は実施例1と同様に行った。
実施例13
EPXとVGCFを混合後、硬化剤を添加して混合し、さらにメルトインデクサーに投入し、常温で内径2mmの銅製の筒に押し出した。筒を120℃に加熱し硬化させた。以降は実施例1のとおりに行った。
【0014】
比較例1
表1の組成物を厚さ1mmに熱プレス成形し、短冊状に打ち抜いた。得られた成形体の相対する2つのプレス面に白金を蒸着し、以降は実施例1と同様に行った。
比較例2
成形体のプレス面以外の面を電極にした以外は比較例1と同様に行った。
以上の結果を表1に示す。
【0015】
【表1】

Figure 0003658881
【0016】
【発明の効果】
本発明の感温抵抗体は、初期抵抗値が低く、かつPTC特性に優れるので、特に過電流・過熱保護素子として有用である。
【図面の簡単な説明】
【図1】本発明の実施例1で得られた抵抗体のPTC特性曲線を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature-sensitive resistor suitably used for an overcurrent / overheat protection element or a heating element having a self-temperature control function, and a method for manufacturing the same.
[0002]
[Prior art]
Conductive resin composition in which conductive powder (for example, carbon black, metal powder, etc.) is blended with crystalline polymer such as polyethylene or polypropylene, has the property that electrical resistance value increases rapidly with increasing temperature in a specific temperature range (Hereinafter referred to as “PTC characteristics”). The reason why these resin compositions have such PTC characteristics is that when the crystalline polymer is in the vicinity of its melting point, it occurs at the time of transition from crystalline to amorphous. The followability is poor, and it is necessary to add a large amount of conductive powder in order to lower the initial resistance value, which causes a problem that the mechanical properties are lowered.
As a method for improving such a problem, a method of using vapor grown carbon fiber as a conductive powder has been proposed (for example, JP-A-63-170902, JP-A-2-92960, etc.).
[0003]
[Problems to be solved by the invention]
However, these methods still have a problem that the initial resistance value is still high for application to an overcurrent / overheat protection element.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a temperature-sensitive resistor having a low initial resistance value and excellent PTC characteristics.
[0004]
[Means for Solving the Problems]
As a result of extensive research, the present inventors have found that the above object can be achieved by orienting the conductive filler in a one-dimensional direction in the direction of current flow, and the present invention is completed based on this finding. It came to.
That is, the present invention is a composition comprising (A) a synthetic resin and (B) vapor grown carbon fiber, wherein the carbon fiber is one-dimensionally oriented in the current direction. Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The (A) synthetic resin in the present invention is not particularly limited, and is a thermosetting resin such as phenol, urea, epoxy, urethane, unsaturated polyester, silicone, or low density polyethylene, High-density polyethylene, polypropylene, polyolefins such as ethylene-propylene copolymer, olefin copolymers, polyamides, polyesters, thermoplastic resins such as fluorine-containing ethylene polymers, etc. can be used. Two or more kinds can be used in combination. Among these, a crystalline polymer is preferable as one having excellent PTC characteristics. The crystallinity is preferably 5% or more, particularly preferably 15% or more.
[0006]
The (B) vapor grown carbon fiber (hereinafter referred to as “VGCF”) in the present invention is, for example, a whisker-like fiber obtained by thermally decomposing hydrocarbon or the like in the presence of an organic transition metal compound. As a method for producing VGCF, for example, JP-A-60-27700 has a detailed description. The VGCF generally has a diameter of 0.05 to 10 μm and a length of 1 μm to 5 mm. In the present invention, a VGCF having a diameter of 0.05 to 5 μm and a length of 1 μm to 0.1 mm is preferable. A film having a length of 0.05 to 2 μm and a length of 1 μm to 0.1 mm is suitable.
Furthermore, as VGCF of this invention, processing temperature is preferable 2000 degreeC or more, and 2500 degreeC or more is especially suitable.
The blending ratio of VGCF to the synthetic resin is preferably 1 to 50% by volume, particularly 3 to 30% by volume.
The volume resistance value of the VGCF to be used is preferably as small as possible, and is preferably 10 −2 Ω · cm or less.
[0007]
The temperature-sensitive resistor of the present invention is composed of a composition of a synthetic resin and VGCF, and further needs to satisfy the following (a) and (b).
(A) Maximum value when X-ray diffraction peak intensity ratio between (002) plane and (100) plane of graphite is measured by irradiating X-rays at an angle of 0 to 360 degrees perpendicular to the direction of current flow ( The ratio (Imin / Imax) of Imax) to the minimum value (Imin) is 0.6 or more. (B) X-ray diffraction from the (002) plane and the (100) plane of graphite by irradiating X-rays from the direction of current flow. The ratio of the intensity ratio (Ie) to Imax (Imax / Ie) when the peak intensity ratio is measured is 1.5 or more. The X-ray diffraction intensity of the (002) plane of graphite in the direction perpendicular to the direction of current flow is It can be said that the larger the change due to the angle, the better the one-dimensional orientation of VGCF in the synthetic resin.
The Imin / Imax is preferably 0.8 or more, and particularly preferably 0.9 or more. If Imin / Imax is less than 0.6, the initial resistance value is increased, which is not preferable.
Further, Imax / Ie is preferably 3.0 or more, and particularly preferably 5.0 or more. If Imax / Ie is less than 1.5, the PTC characteristics are inferior.
[0008]
The composition in the present invention may be cross-linked by adding a cross-linking agent and / or a cross-linking aid, or by radiation or electron beam irradiation. Moreover, if desired, various additives commonly used in the technical field, such as stabilizers, flame retardants, colorants, and the like can be blended to such an extent that the features of the present invention are not impaired.
The material of the electrode used for the temperature sensitive resistor of the present invention is not particularly limited, but Ni is preferable from the viewpoint of oxidation resistance. Moreover, although there is no restriction | limiting in particular also about the electrode formation method, Methods, such as heat sealing | fusion, vacuum evaporation, sputtering, and plating, can be employ | adopted suitably.
[0009]
The temperature-sensitive resistor of the present invention kneads the above components using a known kneading apparatus such as a roll mixer, a Banbury mixer, a single screw extruder, a twin screw extruder or the like. Then, it can shape | mold into shapes, such as a thread | yarn, a round bar, a board, a sheet | seat, a film, by the shape of a nozzle using the well-known extrusion molding machine which provided the aperture nozzle at the front-end | tip. The shape of the aperture nozzle is preferably limited to a tapered shape. Further, the ratio (S2 / S1) (hereinafter referred to as “throttle ratio”) of the inlet sectional area (S1) and the outlet sectional area (S2) of the nozzle is preferably 0.2 or less, and particularly preferably 0.1 or less. . A lower molding speed is preferable for orientation.
The obtained molded body is cut perpendicularly to the direction of extrusion flow of the resin, and electrodes are formed on both surfaces of the molded body to obtain a temperature sensitive resistor.
When a thermosetting resin is used as the synthetic resin, it may be cured after being molded by the above method. Thereafter, the resistor is produced by the above method.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
As synthetic resins, high density polyethylene (manufactured by Nippon Polyolefin Co., Ltd., J-Rex 6080) (hereinafter referred to as “PE”), polypropylene (manufactured by Nippon Polyolefin Co., Ltd., J-Aroma SMA-410) (hereinafter referred to as “PP”), and epoxy resin (shell) Chemical Co., Epicoat) (hereinafter referred to as “EPX”) was used. As VGCF, the following was obtained by synthesizing benzene as a raw material with a ferrocene catalyst and heat-treating at a temperature of 3000 ° C.
VF1: diameter 0.2 μm, length 15 μm, volume resistivity 4 × 10 −3 Ω · cm
VF2: diameter 1.0 μm, length 80 μm, volume resistivity 7 × 10 −3 Ω · cm
VF3: diameter 2.0 μm, length 0.1 mm, volume resistivity 5 × 10 −3 Ω · cm
VF4: diameter 1.5 μm, length 30 μm, volume resistivity 1 × 10 −2 Ω · cm
[0011]
X-ray diffraction was measured using the Rigaku X-ray diffractometer RTP300 under the following conditions.
X-ray source: CuKα ray scan speed: 5 ° / min
Slit width: 1 ° (DS), 1 ° (SS), 0.3 mm (RS)
Monochrome: Graphite PTC characteristics were measured in the range of 23 to 135 ° C. for PE and 23 to 200 ° C. for PP and EPX using a digital multimeter (manufactured by AVANTEST, R6871E). The rate of change in resistance was indicated by the ratio (ρmax / ρ1) between the volume resistance value (ρ1) at 23 ° C. and the volume resistance value (ρmax) at the switching temperature. Note that the switching temperature refers to a temperature corresponding to an intersection obtained by extending a substantially straight line on both sides of a portion where the resistance value suddenly rises.
The volume resistance value of VGCF was obtained by measuring the relationship between the pressure density and the volume resistance using a powder resistance measuring device manufactured by Mitsubishi Chemical, and obtaining the value at the true density.
[0012]
Examples 1-5
A melt indexer (manufactured by TAKARA KOGYO Co., Ltd.) equipped with a 2 mmφ nozzle with a squeezing ratio of 0.045 was prepared by kneading the synthetic resin and VGCF whose types and blending amounts are shown in Table 1 with a lab plast mill. L201 type) was extruded into a round bar. The obtained round bar was cut into a thickness of 1 mm, platinum was vacuum-deposited on both cross sections, and the lead wire was fixed with a silver paste to obtain a temperature sensitive resistor. X-ray diffraction and PTC characteristics of the obtained resistor were measured.
A PTC characteristic curve of the resistor obtained in Example 1 is shown in FIG.
[0013]
Example 6
The same operation as in Example 1 was performed except that a 4 mmφ nozzle having a drawing ratio of 0.18 was used.
Example 7
The same operation as in Example 1 was performed except that a 2 mmφ nozzle having a drawing ratio of 0.01 was used.
Example 8
The same procedure as in Example 1 was performed except that kneading was performed using a continuous extruder and a 2 mmφ nozzle having a drawing ratio of 0.005 was used.
Example 9
The VGCF was heat treated at 2500 ° C. in the same manner as in Example.
Example 10
The same procedure as in Example 1 was performed except that the thickness of the cut sample was 10 mm.
Example 11
VGCF was heat-treated at 2100 ° C. in the same manner as in Example.
Example 12
The same procedure as in Example 1 was performed except that the plate was extruded into a 5 mm × 30 mm plate at a drawing ratio of 0.01.
Example 13
After mixing EPX and VGCF, a curing agent was added and mixed, and the mixture was added to a melt indexer and extruded into a copper tube having an inner diameter of 2 mm at room temperature. The tube was heated to 120 ° C. and cured. Thereafter, the same procedure as in Example 1 was performed.
[0014]
Comparative Example 1
The compositions in Table 1 were hot press molded to a thickness of 1 mm and punched into strips. Platinum was vapor-deposited on the two pressing surfaces facing each other of the obtained molded body, and thereafter the same operation as in Example 1 was performed.
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that the surface other than the pressed surface of the molded body was an electrode.
The results are shown in Table 1.
[0015]
[Table 1]
Figure 0003658881
[0016]
【The invention's effect】
The temperature-sensitive resistor of the present invention is particularly useful as an overcurrent / overheat protection element because of its low initial resistance and excellent PTC characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing a PTC characteristic curve of a resistor obtained in Example 1 of the present invention.

Claims (6)

(A)合成樹脂及び(B)気相法炭素繊維からなる組成物であって、該炭素繊維のX線回折ピーク強度比が下記(a)及び(b)を満たす、電流方向に一次元に配向していることを特徴とする感温抵抗体。
(a)電流の流れる方向と垂直に0〜360度の角度からX線を照射し、グラファイトの(002)面と(100)面のX線回折のピーク強度比を測定したときの最大値(Imax)と最小値(Imin)との比(Imin/Imax)が0.6以上
(b)電流の流れる方向からX線を照射し、グラファイトの(002)面と(100)面のX線回折のピーク強度比を測定したときの強度比(Ie)とImaxとの比(Imax/Ie)が1.5以上
A composition comprising (A) a synthetic resin and (B) vapor grown carbon fiber, wherein the X-ray diffraction peak intensity ratio of the carbon fiber satisfies the following (a) and (b), one-dimensionally in the current direction A temperature-sensitive resistor characterized by being oriented.
(A) Maximum value when X-ray diffraction peak intensity ratio between (002) plane and (100) plane of graphite is measured by irradiating X-rays at an angle of 0 to 360 degrees perpendicular to the direction of current flow ( The ratio (Imin / Imax) of Imax) to the minimum value (Imin) is 0.6 or more. (B) X-ray diffraction from the (002) plane and the (100) plane of graphite by irradiating X-rays from the direction of current flow. The ratio of the intensity ratio (Ie) to Imax (Imax / Ie) when measuring the peak intensity ratio is 1.5 or more
(B)気相法炭素繊維は、直径が0.05〜5μmで長さが1μm〜0.1mmである請求項1記載の感温抵抗体。The temperature sensitive resistor according to claim 1, wherein the vapor grown carbon fiber (B) has a diameter of 0.05 to 5 µm and a length of 1 µm to 0.1 mm. 23℃における初期体積抵抗値が3Ω・cm以下であり、かつ抵抗変化率が104以上である請求項1または請求項2記載の感温抵抗体。The temperature-sensitive resistor according to claim 1 or 2, wherein an initial volume resistance value at 23 ° C is 3 Ω · cm or less and a resistance change rate is 10 4 or more. 絞り比率が0.2以下の絞りノズルを用いて押出し成形することを特徴とする請求項1記載の感温抵抗体の製造方法。2. The method of manufacturing a temperature-sensitive resistor according to claim 1, wherein extrusion molding is performed using a drawing nozzle having a drawing ratio of 0.2 or less. 請求項1乃至3のいずれかひとつに記載の感温抵抗体を用いた過電流・過熱保護素子。An overcurrent / overheat protection element using the temperature-sensitive resistor according to any one of claims 1 to 3. 請求項1乃至3のいずれかひとつに記載の感温抵抗体を用いた発熱体。A heating element using the temperature-sensitive resistor according to any one of claims 1 to 3.
JP22905996A 1996-08-29 1996-08-29 Temperature sensitive resistor and manufacturing method thereof Expired - Fee Related JP3658881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22905996A JP3658881B2 (en) 1996-08-29 1996-08-29 Temperature sensitive resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22905996A JP3658881B2 (en) 1996-08-29 1996-08-29 Temperature sensitive resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1074602A JPH1074602A (en) 1998-03-17
JP3658881B2 true JP3658881B2 (en) 2005-06-08

Family

ID=16886102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22905996A Expired - Fee Related JP3658881B2 (en) 1996-08-29 1996-08-29 Temperature sensitive resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3658881B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587632B2 (en) * 2002-02-07 2010-11-24 三菱鉛筆株式会社 Fuel cell separator and method for producing the same

Also Published As

Publication number Publication date
JPH1074602A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
US4514620A (en) Conductive polymers exhibiting PTC characteristics
US4859836A (en) Melt-shapeable fluoropolymer compositions
US4237441A (en) Low resistivity PTC compositions
US4624990A (en) Melt-shapeable fluoropolymer compositions
US5164133A (en) Process for the production of molded article having positive temperature coefficient characteristics
US5140297A (en) PTC conductive polymer compositions
US5195013A (en) PTC conductive polymer compositions
US4845838A (en) Method of making a PTC conductive polymer electrical device
US5227946A (en) Electrical device comprising a PTC conductive polymer
US4591700A (en) PTC compositions
US4955267A (en) Method of making a PTC conductive polymer electrical device
EP0038718B1 (en) Conductive polymer compositions containing fillers
GB2185989A (en) Positive temperature coefficient composite materials
US5250226A (en) Electrical devices comprising conductive polymers
JPH0474383B2 (en)
US4951382A (en) Method of making a PTC conductive polymer electrical device
US4318881A (en) Method for annealing PTC compositions
US4951384A (en) Method of making a PTC conductive polymer electrical device
US6114433A (en) PTC conductive polymer composition
CA1330698C (en) Method of making a conductive polymer sheet
CA1168433A (en) Ptc conductive polymers and devices comprising them
JP3658881B2 (en) Temperature sensitive resistor and manufacturing method thereof
WO1998005503A1 (en) Method of making a laminate comprising a conductive polymer composition
JP3408623B2 (en) Forming method of conductive sheet
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees