JPH08314405A - Driving method for ac type pdp - Google Patents

Driving method for ac type pdp

Info

Publication number
JPH08314405A
JPH08314405A JP11858595A JP11858595A JPH08314405A JP H08314405 A JPH08314405 A JP H08314405A JP 11858595 A JP11858595 A JP 11858595A JP 11858595 A JP11858595 A JP 11858595A JP H08314405 A JPH08314405 A JP H08314405A
Authority
JP
Japan
Prior art keywords
discharge
voltage
period
energization
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11858595A
Other languages
Japanese (ja)
Other versions
JP3454969B2 (en
Inventor
Tan Niyan Guen
タン ニヤン グェン
Hiroyuki Nakahara
裕之 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11858595A priority Critical patent/JP3454969B2/en
Publication of JPH08314405A publication Critical patent/JPH08314405A/en
Application granted granted Critical
Publication of JP3454969B2 publication Critical patent/JP3454969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

PURPOSE: To improve brightness without increasing the number of times of applying discharge holding voltage. CONSTITUTION: When discharge holding voltage Vs being lower than discharge start voltage Vf is alternately applied to a pair of display electrodes X and Y coated by a dielectric layer, and discharge is periodically caused by utilizing wall voltage Vwall by accumulated electric charges of the dielectric layer, immediately after of a conduction period TS1 in which discharge holding voltage Vs is applied, a conduction suspension period TS2 in which potentials of both display electrodes X and Y are made a ground potential is provided, the dielectric layer is electrified so that the wall voltage Vwall becomes more than discharge start voltage Vf in the conduction period TS1, and self-discharge is caused by wall voltage Vwall in the conduction suspension period TS2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、AC型のPDP(Plas
ma Display Panel:プラズマディスプレイパネル)の駆
動方法に関する。
The present invention relates to an AC type PDP (Plas
ma Display Panel: a method for driving a plasma display panel.

【0002】PDPは、視認性に優れた自己発光型の表
示デバイスであり、ハイビジョン用の大画面表示手段と
して注目されている。このような状況の中で、いっそう
の高輝度化に適した駆動方法が望まれている。
A PDP is a self-luminous display device having excellent visibility, and is attracting attention as a large screen display means for high definition. Under such circumstances, a driving method suitable for higher brightness is desired.

【0003】[0003]

【従来の技術】AC型PDPは、表示電極を放電空間に
対して被覆する誘電体層を有したPDPである。
2. Description of the Related Art An AC PDP is a PDP having a dielectric layer that covers a display electrode with respect to a discharge space.

【0004】周知のように、AC型PDPでは、放電セ
ルを画定する一対の表示電極間で放電が生じると、放電
ガスの電離で生じた荷電粒子(電子又はイオン)が表示
電極に引き寄せられ、各表示電極の電位極性と反対の極
性の壁電荷が誘電体層に蓄積する。誘電体層の帯電にと
もなって、壁電荷による表示電極間の電圧(壁電圧)が
上昇する。このとき、壁電圧は表示電極に印加する駆動
電圧と反対の極性であるので、駆動電圧と壁電圧とを合
わせた実効電圧(セル電圧ともいう)が低くなって放電
が停止する。次に以前と反対の極性の駆動電圧を印加す
ると、今度は駆動電圧と壁電圧とが互いに同一の極性で
あるので、実効電圧が放電開始電圧(Vf)を越えて再
び放電が生じる。
As is well known, in an AC type PDP, when a discharge is generated between a pair of display electrodes that define a discharge cell, charged particles (electrons or ions) generated by ionization of discharge gas are attracted to the display electrode. Wall charges having a polarity opposite to the potential polarity of each display electrode are accumulated in the dielectric layer. Along with the charging of the dielectric layer, the voltage between the display electrodes (wall voltage) due to the wall charges increases. At this time, since the wall voltage has the opposite polarity to the drive voltage applied to the display electrode, the effective voltage (also referred to as cell voltage), which is the sum of the drive voltage and the wall voltage, becomes low and the discharge is stopped. Next, when a drive voltage having the opposite polarity to the previous one is applied, since the drive voltage and the wall voltage have the same polarity this time, the effective voltage exceeds the discharge start voltage (Vf) and the discharge is generated again.

【0005】つまり、AC型PDPでは、一対の表示電
極に対して、それらの電位極性が交互に入れ代わるよう
に駆動電圧を印加することにより、壁電荷を利用して放
電開始電圧(例えば200V)より低い駆動電圧(例え
ば180V)で放電を発生させることができる。そし
て、駆動電圧の極性反転周期を短くすれば、視覚の上で
連続した発光状態を得ることができる。
In other words, in the AC type PDP, a drive voltage is applied to a pair of display electrodes so that their potential polarities alternate with each other, so that the wall charges are utilized to generate a discharge start voltage (for example, 200 V). Discharge can be generated with a low driving voltage (for example, 180 V). Then, if the polarity inversion cycle of the drive voltage is shortened, it is possible to obtain a visually continuous light emission state.

【0006】さて、多数の放電セルが縦横に配置された
マトリクス表示方式のAC型PDPにおいては、1画面
の表示期間がアドレス期間とそれに続くサステイン期間
とに分かれる。
In a matrix display type AC PDP in which a large number of discharge cells are arranged vertically and horizontally, the display period of one screen is divided into an address period and a sustain period that follows.

【0007】アドレス期間は表示内容を設定する期間で
あり、サステイン期間は表示内容を維持する期間であ
る。すなわち、アドレス期間では、書込みアドレス法又
は消去アドレス法によって、1ラインずつ順に点灯(発
光)すべき放電セルのみに壁電荷を蓄積させる。そし
て、サステイン期間では、本発明の実施例を示す図3
(A)のように、全てのラインについて、第1及び第2
の表示電極X,Yに対して交互にサステインパルスPs
を印加する。このとき、サステインパルスPsの波高値
(放電維持電圧Vs)を放電開始電圧Vfより低い値に
選定する。サステインパルスPsの印加毎に表示電極
X,Y間の相対電位関係が反転し、各サステインパルス
Psの立上がり時点で、あらかじめ壁電荷が蓄積された
放電セルのみにおいて放電が生じる。
The address period is a period for setting the display content, and the sustain period is a period for maintaining the display content. That is, in the address period, the wall charges are accumulated only in the discharge cells to be sequentially lighted (light emission) line by line by the write address method or the erase address method. Then, in the sustain period, FIG.
As in (A), for all lines, the first and second lines
Sustain electrodes Ps are alternately applied to the display electrodes X and Y of
Is applied. At this time, the peak value of the sustain pulse Ps (discharge sustaining voltage Vs) is selected to be lower than the discharge starting voltage Vf. Each time the sustain pulse Ps is applied, the relative potential relationship between the display electrodes X and Y is inverted, and at the rise of each sustain pulse Ps, discharge is generated only in the discharge cells in which the wall charges have been accumulated in advance.

【0008】[0008]

【発明が解決しようとする課題】従来では、サステイン
期間中の発光回数(放電回数)がサステインパルスPs
の数、すなわち放電維持電圧Vsの印加回数と同数であ
った。そのため、輝度を高めるために単位時間当たりの
発光回数を増大させようとすると、それに応じて駆動周
波数を高くする必要があった。
Conventionally, the number of times of light emission (the number of discharges) during the sustain period depends on the sustain pulse Ps.
, That is, the same as the number of times the discharge sustaining voltage Vs was applied. Therefore, if the number of times of light emission per unit time is increased in order to increase the brightness, it is necessary to increase the driving frequency accordingly.

【0009】駆動周波数を高くして発光回数を増大させ
ると、放電によるイオン衝撃の発生回数も増大するの
で、寿命が短くなってしまう。また、駆動回路の負担が
増し、発熱量も増えてしまう。
When the driving frequency is increased and the number of times of light emission is increased, the number of times of ion bombardment due to discharge also increases, so that the life is shortened. In addition, the load on the drive circuit increases, and the amount of heat generated also increases.

【0010】本発明は、上述の問題に鑑みてなされたも
ので、放電維持電圧の印加回数を増大させることなく輝
度の向上を図ることを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to improve the brightness without increasing the number of times the discharge sustaining voltage is applied.

【0011】[0011]

【課題を解決するための手段】請求項1の発明の方法
は、誘電体層によって被覆された一対の表示電極に対し
て、放電開始電圧より低い放電維持電圧を交互に印加
し、前記誘電体層の蓄積電荷による壁電圧を利用して周
期的に放電を生じさせるAC型PDPの駆動方法であっ
て、前記放電維持電圧を印加する通電期間の直後に、両
方の前記表示電極の電位を接地電位とする通電休止期間
を設け、前記通電期間中に前記壁電圧が前記放電開始電
圧以上となるように前記誘電体層を帯電させておき、前
記通電休止期間に前記壁電圧による自己放電を生じさせ
る方法である。
According to a first aspect of the present invention, a discharge sustaining voltage lower than a discharge starting voltage is alternately applied to a pair of display electrodes covered with a dielectric layer, and the dielectric material is used. A driving method of an AC PDP that periodically generates a discharge by using a wall voltage due to accumulated charges in a layer, wherein the potentials of both display electrodes are grounded immediately after an energization period in which the discharge sustaining voltage is applied. An energization pause period having a potential is provided, and the dielectric layer is charged so that the wall voltage becomes equal to or higher than the discharge start voltage during the energization period, and self-discharge due to the wall voltage occurs during the energization pause period. It is a method to let.

【0012】請求項2の発明の方法は、前記通電期間の
長さを選択的に短縮し、当該通電期間の終了時の前記壁
電圧を前記放電開始電圧より低くすることによって、前
記自己放電の生じない前記通電休止期間を選択的に設け
るものである。
According to a second aspect of the present invention, the length of the energization period is selectively shortened, and the wall voltage at the end of the energization period is made lower than the discharge start voltage, whereby the self-discharge is completed. The energization suspension period that does not occur is selectively provided.

【0013】請求項3の発明の方法は、前記通電期間に
おける前記放電維持電圧を選択的に低くし、当該通電期
間の終了時の前記壁電圧を前記放電開始電圧より低くす
ることによって、前記自己放電の生じない前記通電休止
期間を選択的に設けるものである。
According to a third aspect of the present invention, the self-sustaining voltage is selectively lowered during the energization period, and the wall voltage at the end of the energization period is set lower than the discharge start voltage, whereby The energization suspension period during which no discharge occurs is selectively provided.

【0014】請求項4の発明の方法は、表示の階調レベ
ルに応じて、前記自己放電の生じる前記通電休止期間の
総数と、前記自己放電の生じない前記通電休止期間の総
数との比率を設定するものである。
According to a fourth aspect of the present invention, the ratio of the total number of energization suspension periods in which the self-discharge occurs and the total number of energization suspension periods in which the self-discharge does not occur is determined according to the gradation level of display. It is something to set.

【0015】[0015]

【作用】通電期間において、一対の表示電極間には、放
電維持電圧と壁電圧とを合わせた電圧(以下、実効電圧
という)が加わる。
In the energization period, a voltage (hereinafter referred to as an effective voltage), which is a combination of the discharge sustaining voltage and the wall voltage, is applied between the pair of display electrodes.

【0016】通電期間の開始時点では、放電維持電圧と
壁電圧とが同一極性であって、実効電圧が放電開始電圧
を越えて放電が生じる。放電によって壁電圧が一旦消失
した後、直ちに放電維持電圧による誘電体層の帯電が始
まり、以前と反対の極性の壁電圧が生じる。この壁電圧
が上昇して実効電圧が所定値まで降下した時点で放電が
停止する。ただし、放電が停止した後も、通電期間中は
表示電極に放電維持電圧が印加されているので、放電空
間内の浮遊電荷が表示電極に引き付けられて誘電体層の
帯電が進み、壁電圧の上昇が続く。
At the start of the energization period, the discharge sustaining voltage and the wall voltage have the same polarity, and the effective voltage exceeds the discharge starting voltage to cause discharge. After the wall voltage once disappears due to the discharge, the dielectric layer is immediately charged by the discharge sustaining voltage, and the wall voltage having the opposite polarity to that before is generated. The discharge is stopped when the wall voltage rises and the effective voltage drops to a predetermined value. However, even after the discharge is stopped, the discharge sustaining voltage is applied to the display electrode during the energization period, so that the floating charges in the discharge space are attracted to the display electrode and the dielectric layer is charged, and the wall voltage The rise continues.

【0017】ここで、放電維持電圧の大きさ及び通電期
間の長さを適切に設定することによって、すなわち放電
の強度及び放電後の帯電時間の選定によって、通電期間
中に壁電圧を放電開始電圧以上の電圧まで上昇させるこ
とができる。
Here, by appropriately setting the magnitude of the discharge sustaining voltage and the length of the energization period, that is, by selecting the intensity of the discharge and the charging time after the discharge, the wall voltage is changed to the discharge start voltage during the energization period. The voltage can be increased to the above voltage.

【0018】通電期間が終了して通電休止期間になる
と、両方の表示電極の電位が接地電位となる。つまり、
通電休止期間では、直前の通電期間中の帯電によって生
じた壁電圧が実効電圧となる。壁電圧は放電開始電圧以
上であるので、壁電圧による自己放電が生じ、誘電体層
の蓄積電荷(壁電荷)の一部が放電空間で中和して消失
する。自己放電は壁電圧が所定値(>0)まで降下した
時点で停止し、誘電体層には次の放電に必要な電荷が残
る。自己放電では、外部からの電圧の印加による放電と
違って、表示電極に荷電粒子が引き寄せられないので、
イオン衝撃が起こらない。
When the energization period ends and the energization stop period comes, the potentials of both display electrodes become the ground potential. That is,
During the energization suspension period, the wall voltage generated by charging during the immediately preceding energization period becomes the effective voltage. Since the wall voltage is equal to or higher than the discharge start voltage, self-discharge due to the wall voltage occurs, and a part of the charges (wall charges) accumulated in the dielectric layer are neutralized and disappear in the discharge space. The self-discharge is stopped when the wall voltage drops to a predetermined value (> 0), and charges necessary for the next discharge remain in the dielectric layer. In the self-discharge, unlike the discharge by applying the voltage from the outside, the charged particles cannot be attracted to the display electrode.
Ion bomb does not occur.

【0019】次の通電期間では、自己放電後の壁電圧が
放電に利用され、以前の通電期間と同様に新たに放電開
始電圧以上の壁電圧が発生する。以降においては、通電
期間と通電休止期間との繰り返しによって、通常の放電
と自己放電とが交互に発生する。つまり、放電回数(発
光回数)は放電維持電圧の印加回数の2倍になる。
In the next energization period, the wall voltage after self-discharging is used for discharge, and a wall voltage higher than the discharge start voltage is newly generated as in the previous energization period. After that, the normal discharge and the self-discharge are alternately generated by repeating the energization period and the energization suspension period. That is, the number of discharges (the number of times of light emission) is twice the number of times the sustaining voltage is applied.

【0020】[0020]

【実施例】図1は本発明に係るPDP1の分解斜視図で
あり、1つの画素(ピクセル)EGに対応する部分の基
本的な構造を示している。
1 is an exploded perspective view of a PDP 1 according to the present invention, showing a basic structure of a portion corresponding to one pixel (pixel) EG.

【0021】PDP1は、マトリクス表示の単位発光領
域EUに一対の表示電極X,Yとアドレス電極Aとが対
応する3電極構造の面放電型PDPであり、蛍光体の配
置形態による分類の上で反射型と呼称されている。
The PDP 1 is a surface discharge type PDP having a three-electrode structure in which a pair of display electrodes X and Y and an address electrode A correspond to a unit light emitting region EU of matrix display, and is classified according to the arrangement form of phosphors. It is called a reflective type.

【0022】面放電のための表示電極X,Yは、表示面
H側のガラス基板11上に設けられ、低融点ガラスから
なる厚さ20μm程度の誘電体層17によって放電空間
30に対して被覆されている。すなわち、表示電極X,
Yは、AC駆動における放電維持電極対12を構成す
る。誘電体層17の表面には、保護膜として数千Å程度
の厚さのMgO膜18が設けられている。なお、表示電
極X,Yは、放電空間30の前面側に配置されることか
ら、面放電を広範囲とし且つ表示光の遮光を最小限とす
るため、ネサ膜などの幅の広い透明導電膜41とその導
電性を補うための幅の狭い金属膜(バス電極)42とか
ら構成されている。
The display electrodes X and Y for surface discharge are provided on the glass substrate 11 on the display surface H side, and cover the discharge space 30 with a dielectric layer 17 made of low melting glass and having a thickness of about 20 μm. Has been done. That is, the display electrodes X,
Y constitutes the discharge sustaining electrode pair 12 in AC driving. On the surface of the dielectric layer 17, a MgO film 18 having a thickness of about several thousand Å is provided as a protective film. Since the display electrodes X and Y are arranged on the front surface side of the discharge space 30, a wide transparent conductive film 41 such as a nesa film is provided in order to widen the surface discharge and minimize the shielding of the display light. And a narrow metal film (bus electrode) 42 for compensating for its conductivity.

【0023】また、アドレス電極Aは単位発光領域(サ
ブピクセル)EUを選択的に発光させるための電極であ
って、背面側のガラス基板21上に表示電極X,Yと直
交するように一定ピッチで配列されている。
The address electrode A is an electrode for selectively emitting light in the unit light emitting region (sub-pixel) EU, and has a constant pitch on the glass substrate 21 on the back side so as to be orthogonal to the display electrodes X and Y. Are arranged in.

【0024】各アドレス電極Aの間には、150μm程
度の高さを有したストライプ状の隔壁29が設けられ、
これによって放電空間30がライン方向(表示電極X,
Yの延長方向)に単位発光領域EU毎に区画され、且つ
放電空間30の間隙寸法が規定されている。画素EGの
大きさは660μm×660μmであり、単位発光領域
EUの大きさは660μm×220μmである。
A stripe-shaped partition 29 having a height of about 150 μm is provided between each address electrode A.
As a result, the discharge space 30 moves in the line direction (display electrodes X,
The unit light emitting area EU is partitioned in the Y extension direction), and the gap size of the discharge space 30 is defined. The size of the pixel EG is 660 μm × 660 μm, and the size of the unit light emitting region EU is 660 μm × 220 μm.

【0025】ガラス基板21には、アドレス電極Aの上
面及び隔壁29の側面を含めて背面側の内面を被覆する
ように、フルカラー表示用のR(赤),G(緑),B
(青)の3原色の蛍光体28が設けられている。各色の
蛍光体28は、面放電時に放電空間30内の放電ガスが
放つ紫外線によって励起されて発光する。PDP1で
は、放電ガスとして、ネオンにキセノン(1〜15%モ
ル程度)を混合したペニングガスが500Torr程度
の圧力で封入されている。
The glass substrate 21 covers R (red), G (green), and B for full-color display so as to cover the inner surface on the back side including the upper surface of the address electrode A and the side surface of the partition wall 29.
A phosphor 28 of three primary colors (blue) is provided. The phosphors 28 of the respective colors are excited by the ultraviolet rays emitted by the discharge gas in the discharge space 30 during surface discharge to emit light. In the PDP 1, a Penning gas, which is a mixture of neon and xenon (about 1 to 15% mol), is charged as a discharge gas at a pressure of about 500 Torr.

【0026】図2は図1のPDP1の電極構成を模式的
に示す平面図である。PDP1は、マトリクス表示のラ
インL毎に、放電維持電極対12を構成する表示電極
X,Yを有している。表示電極X,Yは、各ラインLに
おいて50μm程度の放電間隙(面放電ギャップ)gを
隔てて隣接するように配列されている。
FIG. 2 is a plan view schematically showing the electrode structure of the PDP 1 shown in FIG. The PDP 1 has the display electrodes X and Y forming the discharge sustaining electrode pair 12 for each matrix display line L. The display electrodes X and Y are arranged adjacent to each other with a discharge gap (surface discharge gap) g of about 50 μm in each line L.

【0027】このように配列された表示電極X,Yの
内、一方の表示電極Xは、駆動回路の簡単化のために複
数のラインL間で電気的に共通化されており、使用に際
して図2(B)のように駆動回路DXに一括に接続され
る。これに対して、他方の表示電極Yは、ライン順次の
画面走査を可能とするために、1ラインずつ独立した個
別電極とされており、使用に際して個別の駆動回路DY
に接続される。
Of the display electrodes X and Y arranged in this way, one display electrode X is electrically shared by a plurality of lines L for the sake of simplification of the drive circuit. 2 (B), they are collectively connected to the drive circuit DX. On the other hand, the other display electrode Y is an individual electrode that is independent for each line in order to enable line-sequential screen scanning, and when used, an individual drive circuit DY is used.
Connected to.

【0028】各ラインLでは、表示電極X,Yによって
単位発光領域EU毎に面放電セルCが画定される。そし
て、表示電極Yとアドレス電極Aとによって各面放電セ
ルCの点灯又は非点灯の選択(アドレス)が行われる。
In each line L, the surface discharge cells C are defined by the display electrodes X and Y for each unit light emitting region EU. Then, the display electrode Y and the address electrode A select (address) whether each surface discharge cell C is turned on or off.

【0029】図3は本発明の駆動方法を示す電圧波形図
である。なお、図3(D)は発光の有無を示している。
PDP1による表示に際しては、まず、従来と同様にア
ドレス期間TAにおいて、ライン順次の画面走査によっ
て選択的に壁電荷を蓄積させる。このとき、前回の表示
の影響を受けないように、画面走査に先立って全ライン
Lの壁電荷を一様に消去するための全面消去放電を生じ
させる。アドレス期間TAの終了時点において、点灯さ
せるべき面放電セルCには所定量の壁電荷が存在する。
FIG. 3 is a voltage waveform diagram showing the driving method of the present invention. Note that FIG. 3D shows the presence or absence of light emission.
In the display by the PDP 1, first, as in the conventional case, in the address period TA, wall charges are selectively accumulated by line-sequential screen scanning. At this time, a full erase discharge for uniformly erasing the wall charges of all lines L is generated prior to screen scanning so as not to be affected by the previous display. At the end of the address period TA, the surface discharge cells C to be lighted have a predetermined amount of wall charges.

【0030】次に、図3(A)のように、サステイン期
間TSにおいて、全てのラインLについて、表示電極X
と表示電極Yとに対して同一極性のサステインパルスP
s(波高値Vs)を交互に且つ一定の時間間隔を設けて
印加する。
Next, as shown in FIG. 3A, in all the lines L in the sustain period TS, the display electrodes X are provided.
And a sustain pulse P of the same polarity with respect to the display electrode Y
s (peak value Vs) is applied alternately and at fixed time intervals.

【0031】つまり、サステインパルスPsのパルス幅
に相当する通電期間TS1の直後に通電休止期間TS2
を設ける。通電期間TS1では、一方の表示電極X(又
はY)の電位が接地電位よりVsだけ高い電位に保持さ
れ、通電休止期間TS2では、両方の表示電極X,Yの
電位が実質的に接地電位(0V)に保持される。通電休
止期間TS2は1〜1.5μs程度でよい。
That is, the energization suspension period TS2 is immediately after the energization period TS1 corresponding to the pulse width of the sustain pulse Ps.
To provide. In the energization period TS1, the potential of one of the display electrodes X (or Y) is maintained at a potential higher than the ground potential by Vs, and in the energization suspension period TS2, the potentials of both the display electrodes X and Y are substantially the ground potential ( Held at 0V). The power supply suspension period TS2 may be about 1 to 1.5 μs.

【0032】表示電極X,Yに対して交互にサステイン
パルスPsを印加することにより、図3(B)に破線で
示すように、表示電極X,Y間の駆動電圧Vxyの極性
が周期的に反転する。
By alternately applying the sustain pulse Ps to the display electrodes X and Y, the polarity of the drive voltage Vxy between the display electrodes X and Y is periodically changed as shown by the broken line in FIG. Invert.

【0033】サステインパルスPsの波高値Vsは、放
電開始電圧Vf(厳密には後述の通電休止期間TS2の
放電開始電圧Vf)より低く且つ誤動作が起こらない範
囲内の最も放電開始電圧Vfに近い値に選定する。例え
ば放電開始電圧Vfが200Vの場合には195V程度
とする。
The peak value Vs of the sustain pulse Ps is lower than the discharge start voltage Vf (strictly speaking, the discharge start voltage Vf of the energization pause period TS2 described later) and is the closest value to the discharge start voltage Vf within the range where no malfunction occurs. To be selected. For example, when the discharge start voltage Vf is 200V, it is set to about 195V.

【0034】さて、図3(B)のように、サステイン期
間TSの開始時点において、点灯すべき面放電セルCに
は放電開始電圧Vfより低い所定レベルの壁電圧Vwa
llが発生している。したがって、サステインパルスP
sを印加すると、図3(C)のように実効電圧Veff
が放電開始電圧Vfを越えて放電が生じ、その結果とし
て当該セルに対応した蛍光体28が図3(D)のように
所定色の発光L1を呈する。
Now, as shown in FIG. 3B, at the start of the sustain period TS, the surface discharge cell C to be lit has a wall voltage Vwa of a predetermined level lower than the discharge start voltage Vf.
11 has occurred. Therefore, the sustain pulse P
When s is applied, the effective voltage Veff is changed as shown in FIG.
Discharge exceeds the discharge start voltage Vf, and as a result, the phosphor 28 corresponding to the cell emits light L1 of a predetermined color as shown in FIG. 3D.

【0035】放電によって誘電体層17に以前と反対の
極性の壁電荷が蓄積する。それにともなって実効電圧V
effが降下して放電が停止する。放電が停止した後
も、通電期間TS1中は壁電荷の蓄積が続き、壁電圧V
wallが緩やかに上昇する。
Due to the discharge, wall charges of the opposite polarity to those before are accumulated in the dielectric layer 17. Along with that, effective voltage V
eff drops and the discharge stops. Even after the discharge is stopped, the wall charges continue to be accumulated during the energization period TS1 and the wall voltage V
Wall gradually rises.

【0036】通電期間TS1を例えば3〜4μs程度に
選定すれば、図3(B)のように、壁電圧Vwallが
通電期間TS1中に放電開始電圧Vfを越える。サステ
インパルスPsが急激に立ち下がって両方の表示電極
X,Yの電位が接地電位になると、すなわち通電期間T
S1から通電休止期間TS2に移ると、壁電圧Vwal
lがそのまま実効電圧Veffとなる。このとき、壁電
圧Vwallはプライミング効果を加味したその時点の
放電開始電圧Vfを越えているので、外部からの電圧印
加によらない自己放電が生じ、当該セルに対応した蛍光
体28が図3(D)のように所定色の発光L2を呈す
る。自己放電によって壁電荷の一部が消失する。ただ
し、次の放電に必要な壁電圧Vwallは確保される。
自己放電では、表示電極X,Yに荷電粒子が引き寄せら
れないので、イオン衝撃の心配がない。また、駆動電流
が流れないので、表示電極X,Y及び駆動系の発熱が軽
減される。
If the energization period TS1 is selected to be, for example, about 3 to 4 μs, the wall voltage Vwall exceeds the discharge start voltage Vf during the energization period TS1 as shown in FIG. 3B. When the sustain pulse Ps suddenly falls and the potentials of both display electrodes X and Y reach the ground potential, that is, the energization period T
When shifting from S1 to the energization suspension period TS2, the wall voltage Vwall
l becomes the effective voltage Veff as it is. At this time, since the wall voltage Vwall exceeds the discharge start voltage Vf at that time in which the priming effect is added, self-discharge occurs due to no external voltage application, and the phosphor 28 corresponding to the cell in FIG. The light emission L2 of a predetermined color is exhibited as in D). Part of the wall charge disappears due to self-discharge. However, the wall voltage Vwall required for the next discharge is secured.
In self-discharge, charged particles are not attracted to the display electrodes X and Y, so there is no concern about ion bombardment. Further, since the drive current does not flow, heat generation of the display electrodes X, Y and the drive system is reduced.

【0037】このように自己放電を生じさせることによ
り、サステイン期間TS中の放電回数(発光回数)がサ
ステインパルスPsの印加回数の2倍になり、駆動の高
周波化によらずに輝度を高めることができる。
By causing the self-discharge in this way, the number of discharges (the number of times of light emission) during the sustain period TS becomes twice as many as the number of times the sustain pulse Ps is applied, so that the luminance is increased regardless of the driving frequency. You can

【0038】図4は本発明による階調表示の一例を示す
図である。PDP1によってフルカラー表示を行う場合
には、1画面の表示期間であるフレームFMを例えば7
つのサブフィールドf1〜7に分割する。そして、各サ
ブフィールドf1〜7における輝度の相対比率が1:
2:4:8:16:32:64となるように、各サブフ
ィールドf1〜7のサステイン期間TSにおける発光回
数を設定する。なお、以下の説明では、便宜的に自己放
電時の発光L2(図3参照)の強度が、通常の放電時の
発光L1と同一であって、自己放電と通常の放電との間
に輝度の差がないものとする。
FIG. 4 is a diagram showing an example of gradation display according to the present invention. When full color display is performed by the PDP 1, the frame FM which is a display period of one screen is set to, for example, 7
It is divided into two subfields f1-7. Then, the relative ratio of the luminance in each of the subfields f1 to 7 is 1:
The number of times of light emission in the sustain period TS of each subfield f1 to 7 is set so as to be 2: 4: 8: 16: 32: 64. In the following description, for convenience, the intensity of the light emission L2 (see FIG. 3) during self-discharge is the same as that of the light emission L1 during normal discharge, and there is no difference in luminance between self-discharge and normal discharge. There is no difference.

【0039】表示色に応じて適当に選択したサブフィー
ルドにおいて面放電セルCを点灯させる場合、R,G,
Bの各色の階調数は128(=27 )となり、原理的に
は約200(1283 )色の表示が可能である。なお、
1秒間の画面数が「60」であれば、フレームFMは約
16.7msである。
When the surface discharge cell C is lit in a subfield appropriately selected according to the display color, R, G,
The gradation number of each color of B is 128 (= 2 7 ), and in principle, about 200 (128 3 ) colors can be displayed. In addition,
If the number of screens per second is “60”, the frame FM is about 16.7 ms.

【0040】さて、7つのサブフィールドf1〜7の
内、比較的に必要な発光回数が多い3つのサブフィール
ドf5〜7おいては、通電期間TS1の長さをその終了
時点で壁電圧Vwallが放電開始電圧Vfを越えるよ
うに設定し、通電休止期間TS2中に自己放電を生じさ
せる。すなわち、1つのサステインパルスPsで2回の
発光を生じさせる。したがって、サブフィールドf5〜
7におけるサステインパルスPsの印加回数は、必要な
発光回数(放電回数)の半分になる。
Now, in the three subfields f5 to f7 among the seven subfields f1 to 7 that require a relatively large number of times of light emission, the wall voltage Vwall is set to the length of the energization period TS1 at the end thereof. The voltage is set to exceed the discharge start voltage Vf to cause self-discharge during the energization suspension period TS2. That is, one sustain pulse Ps causes light emission twice. Therefore, subfields f5 to
The number of times the sustain pulse Ps is applied in 7 is half the required number of times of light emission (number of times of discharge).

【0041】これに対して、サブフィールドf1〜4に
おいては、通電期間TS1aの長さを短くし、放電が停
止した後の帯電を早期に終了させる。それによって、通
電期間TS1aの終了時点の壁電圧Vwallを放電開
始電圧Vfより低いレベルに抑え、後の通電休止期間T
S2a中に自己放電が生じないようにする。
On the other hand, in the subfields f1 to f4, the length of the energization period TS1a is shortened, and the charging after the discharge is stopped is terminated early. As a result, the wall voltage Vwall at the end of the energization period TS1a is suppressed to a level lower than the discharge start voltage Vf, and the energization suspension period T later
Prevent self-discharge during S2a.

【0042】つまり、図4の例では、サステインパルス
Ps,Psaのパルス幅を切り換えることによって、自
己放電の有無が設定される。各サブフィールドf1〜7
におけるパルス数の相対比率は、1:2:4:8:8:
16:32である。
That is, in the example of FIG. 4, the presence or absence of self-discharge is set by switching the pulse widths of the sustain pulses Ps and Psa. Each subfield f1-7
The relative ratio of the number of pulses at 1: 2: 4: 8: 8:
It is 16:32.

【0043】なお、サブフィールドf1〜4の通電休止
期間TS2aをサブフィールドf5〜7の通電休止期間
TS2と同じ長さとすると、通電期間TS1aが短い分
だけサブフィールドf1〜4の所要時間を短縮すること
ができ、サブフィールド数の増加による階調数の増大、
又はフレームFM自体の短縮による表示の高速化を図る
ことができる。その場合、サブフィールドf1〜4の駆
動周波数がサブフィールドf5〜7より高くなるが、放
電回数が比較的に少ないので、イオン衝撃や発熱などの
影響は小さい。
When the energization suspension period TS2a of the subfields f1 to 4 has the same length as the energization suspension period TS2 of the subfields f5 to 7, the required time of the subfields f1 to 4 is shortened by the shorter energization period TS1a. It is possible to increase the number of gradations by increasing the number of subfields,
Alternatively, the display speed can be increased by shortening the frame FM itself. In that case, the driving frequency of the sub-fields f1 to 4 is higher than that of the sub-fields f5 to 7, but the number of discharges is relatively small, so the influence of ion bombardment, heat generation, etc. is small.

【0044】図5は本発明による階調表示の他の例を示
す図である。サステインパルスPsbの波高値である放
電維持電圧Vs2と放電開始電圧Vfとの差を大きくす
ると、通常の放電時における放電電流が小さくなって壁
電荷の蓄積量が減る。そのため、通電期間TS1bの終
了時に壁電圧Vwallが放電開始電圧Vfより低くな
るので、通電期間TS1bの直後の通電休止期間TS2
bでは自己放電が生じない。すなわち、放電維持電圧V
s,Vs2の切り換えによって、各サブフィールドf1
〜7における自己放電の有無を設定することができる。
FIG. 5 is a diagram showing another example of gradation display according to the present invention. When the difference between the discharge sustaining voltage Vs2, which is the peak value of the sustain pulse Psb, and the discharge starting voltage Vf is increased, the discharge current at the time of normal discharge is reduced and the amount of accumulated wall charges is reduced. Therefore, since the wall voltage Vwall becomes lower than the discharge start voltage Vf at the end of the energization period TS1b, the energization suspension period TS2 immediately after the energization period TS1b.
No self-discharge occurs in b. That is, the discharge sustaining voltage V
By switching between s and Vs2, each subfield f1
It is possible to set the presence / absence of self-discharge in 7 to 7.

【0045】上述の実施例においては、3電極構造の面
放電形式のPDP1に適用するものとして説明したが、
本発明は、AC型PDPであれば、他の電極構造の面放
電形式のPDP及び対向放電形式のPDPにも適用する
ことができる。
In the above-mentioned embodiments, the description has been made on the assumption that it is applied to the surface discharge type PDP 1 having the three-electrode structure.
The present invention can be applied to a surface discharge type PDP having another electrode structure and a counter discharge type PDP as long as it is an AC type PDP.

【0046】放電維持電圧Vsを低くし、且つ通電期間
TS1を短くすることによって自己放電を生じさせない
ようにしてもよい。
The self-discharge may be prevented by lowering the discharge sustaining voltage Vs and shortening the energization period TS1.

【0047】[0047]

【発明の効果】請求項1乃至請求項4の発明によれば、
放電維持電圧の印加回数を増大させることなく輝度の向
上を図ることができる。
According to the inventions of claims 1 to 4,
It is possible to improve the brightness without increasing the number of times the discharge sustaining voltage is applied.

【0048】請求項2及び請求項3の発明によれば、容
易に階調表示を行うことができる。請求項4の発明によ
れば、多階調の表示を行うことができる。
According to the second and third aspects of the invention, gradation display can be easily performed. According to the invention of claim 4, multi-gradation display can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るPDPの分解斜視図である。FIG. 1 is an exploded perspective view of a PDP according to the present invention.

【図2】図1のPDPの電極構成を模式的に示す平面図
である。
FIG. 2 is a plan view schematically showing an electrode configuration of the PDP shown in FIG.

【図3】本発明の駆動方法を示す電圧波形図である。FIG. 3 is a voltage waveform diagram showing a driving method of the present invention.

【図4】本発明による階調表示の一例を示す図である。FIG. 4 is a diagram showing an example of gradation display according to the present invention.

【図5】本発明による階調表示の他の例を示す図であ
る。
FIG. 5 is a diagram showing another example of gradation display according to the present invention.

【符号の説明】[Explanation of symbols]

1 PDP(AC型PDP) 17 誘電体層 18 MgO膜(誘電体層) X,Y 表示電極 Vf 放電開始電圧 Vs,Vs2 放電維持電圧 Vwall 壁電圧 TS1 通電期間 TS1a,TS1b 通電期間 TS2 通電休止期間 TS2a,TS2b 通電休止期間(自己放電の生じな
い通電休止期間)
1 PDP (AC type PDP) 17 Dielectric layer 18 MgO film (dielectric layer) X, Y Display electrode Vf Discharge start voltage Vs, Vs2 Discharge sustaining voltage Vwall wall voltage TS1 energization period TS1a, TS1b Energization period TS2 Energization rest period TS2a , TS2b de-energization period (de-energization period without self-discharge)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】誘電体層によって被覆された一対の表示電
極に対して、放電開始電圧より低い放電維持電圧を交互
に印加し、前記誘電体層の蓄積電荷による壁電圧を利用
して周期的に放電を生じさせるAC型PDPの駆動方法
であって、 前記放電維持電圧を印加する通電期間の直後に、両方の
前記表示電極の電位を接地電位とする通電休止期間を設
け、 前記通電期間中に前記壁電圧が前記放電開始電圧以上と
なるように前記誘電体層を帯電させておき、前記通電休
止期間に前記壁電圧による自己放電を生じさせることを
特徴とするAC型PDPの駆動方法。
1. A pair of display electrodes covered with a dielectric layer are alternately applied with a discharge sustaining voltage lower than a discharge start voltage, and the wall voltage generated by the charges accumulated in the dielectric layer is used to periodically. A method of driving an AC PDP that causes a discharge to occur immediately after a current-carrying period in which the discharge sustaining voltage is applied, and a current-supply pause period in which the potentials of both of the display electrodes are set to the ground potential is provided during the current-carrying period. A method of driving an AC PDP, wherein the dielectric layer is charged so that the wall voltage is equal to or higher than the discharge start voltage, and self-discharge is caused by the wall voltage during the energization suspension period.
【請求項2】前記通電期間の長さを選択的に短縮し、当
該通電期間の終了時の前記壁電圧を前記放電開始電圧よ
り低くすることによって、前記自己放電の生じない前記
通電休止期間を選択的に設ける請求項1記載のAC型P
DPの駆動方法。
2. The length of the energization period is selectively shortened, and the wall voltage at the end of the energization period is made lower than the discharge start voltage, whereby the energization pause period in which the self-discharge does not occur. The AC type P according to claim 1, which is selectively provided.
DP driving method.
【請求項3】前記通電期間における前記放電維持電圧を
選択的に低くし、当該通電期間の終了時の前記壁電圧を
前記放電開始電圧より低くすることによって、前記自己
放電の生じない前記通電休止期間を選択的に設ける請求
項1又は請求項2記載のAC型PDPの駆動方法。
3. The energization pause in which the self-discharge does not occur by selectively lowering the discharge sustaining voltage during the energization period and lowering the wall voltage at the end of the energization period below the discharge start voltage. 3. The method for driving an AC PDP according to claim 1, wherein the period is selectively provided.
【請求項4】表示の階調レベルに応じて、前記自己放電
の生じる前記通電休止期間の総数と、前記自己放電の生
じない前記通電休止期間の総数との比率を設定する請求
項2又は請求項3記載のAC型PDPの駆動方法。
4. The ratio between the total number of energization suspension periods in which the self-discharge occurs and the total number of energization suspension periods in which the self-discharge does not occur is set according to the gradation level of display. Item 4. A method for driving an AC PDP according to Item 3.
JP11858595A 1995-05-17 1995-05-17 Driving method of AC type PDP Expired - Fee Related JP3454969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11858595A JP3454969B2 (en) 1995-05-17 1995-05-17 Driving method of AC type PDP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11858595A JP3454969B2 (en) 1995-05-17 1995-05-17 Driving method of AC type PDP

Publications (2)

Publication Number Publication Date
JPH08314405A true JPH08314405A (en) 1996-11-29
JP3454969B2 JP3454969B2 (en) 2003-10-06

Family

ID=14740235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11858595A Expired - Fee Related JP3454969B2 (en) 1995-05-17 1995-05-17 Driving method of AC type PDP

Country Status (1)

Country Link
JP (1) JP3454969B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037250A1 (en) * 1999-11-12 2001-05-25 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
US6243084B1 (en) 1997-04-24 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Method for driving plasma display
US6922191B2 (en) 1999-12-24 2005-07-26 Pioneer Plasma Display Corporation Plasma display panel drive apparatus and drive method
JP2006285066A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Image display apparatus
US7417602B2 (en) 2003-04-29 2008-08-26 Samsung Sdi Co., Ltd. Plasma display panel and driving method thereof
JP2008268553A (en) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd Plasma display device and driving method of plasma display panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243084B1 (en) 1997-04-24 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Method for driving plasma display
WO2001037250A1 (en) * 1999-11-12 2001-05-25 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
EP1365379A1 (en) 1999-11-12 2003-11-26 Matsushita Electric Industrial Co., Ltd. Display device and method of driving the same
US6900781B1 (en) 1999-11-12 2005-05-31 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
US6922191B2 (en) 1999-12-24 2005-07-26 Pioneer Plasma Display Corporation Plasma display panel drive apparatus and drive method
US7417602B2 (en) 2003-04-29 2008-08-26 Samsung Sdi Co., Ltd. Plasma display panel and driving method thereof
JP2006285066A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Image display apparatus
JP4674485B2 (en) * 2005-04-04 2011-04-20 パナソニック株式会社 Image display device
JP2008268553A (en) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd Plasma display device and driving method of plasma display panel

Also Published As

Publication number Publication date
JP3454969B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
KR100388843B1 (en) Method and apparatus for driving plasma display panel
JP3429438B2 (en) Driving method of AC type PDP
KR100450451B1 (en) How to operate AC type PDP
KR20020074371A (en) Method of driving plasma display panel and display divice
JPH09274465A (en) Driving method of ac type pdp and display device
JP3532317B2 (en) Driving method of AC PDP
JPH1186735A (en) Plasma display panel
JP2009110019A (en) Driving method for plasma display panel
JP4357778B2 (en) Driving method of AC type plasma display panel
JP3454969B2 (en) Driving method of AC type PDP
JP3111949B2 (en) Surface discharge type plasma display panel and driving method thereof
JPH1124630A (en) Drive method for plasma display panel
JP4140671B2 (en) Driving method of AC type PDP
JPH1173155A (en) Method for ac-type pdp
KR100739549B1 (en) Mehtod of Driving Plasma Display Panel with Trigger-sustain Electrodes Structure
JPH09259767A (en) Ac type pdp and driving method therefor
KR20010035882A (en) Method of Driving Plasma Display Panel
KR100292463B1 (en) Plasma display panel using high frequency and its driving method
KR100281064B1 (en) Maintenance discharge driving method of plasma display panel
KR100547977B1 (en) Driving Method of Plasma Display Panel
KR100292466B1 (en) Plasma display panel using high frequency and its driving method
KR100824674B1 (en) Driving method of plasma display panel
KR100323976B1 (en) Driving Method of Plasma Display Panel Using High Frequency
KR20010037562A (en) Method of Driving Plasma Display Panel
KR100794348B1 (en) Plasma Display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees