JPH08313746A - Optical element and its packaging method - Google Patents

Optical element and its packaging method

Info

Publication number
JPH08313746A
JPH08313746A JP12337595A JP12337595A JPH08313746A JP H08313746 A JPH08313746 A JP H08313746A JP 12337595 A JP12337595 A JP 12337595A JP 12337595 A JP12337595 A JP 12337595A JP H08313746 A JPH08313746 A JP H08313746A
Authority
JP
Japan
Prior art keywords
optical element
optical
positioning
waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12337595A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mogi
俊行 茂木
Hiroyasu Sasaki
博康 佐々木
Hiroo Furuichi
浩朗 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12337595A priority Critical patent/JPH08313746A/en
Publication of JPH08313746A publication Critical patent/JPH08313746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make positioning possible with high accuracy by clamp a non-connected optical element having plural electrodes with a chuck with a fine adjustment mechanism, finely adjusting the optical element laterally with an optical axis and searching an optimum position by the peak of light output force. CONSTITUTION: The un-connected optical element 1 having the two soldered electrodes 3 on the rear surface is clamped by the insulator (glass) air chuck having the fine adjustment mechanism 12 and this optical element 1 is pressed to a substrate side electrode 6 for emission of a semiconductor laser and is energized to a light emission state at the time of positioning the end face light emission type semiconductor optical element 1 onto an optical waveguide 5 disposed on a substrate 4. The fine adjustment of the optical element 1 laterally with the optical axis repeated by the fine adjustment mechanism 12, by which the optimum position of the optical element 1 with respect to the incident part of the optical waveguide 5 is searched with the peak of the light output. At this time, the chuck 11 is constituted of the insulator (glass) to allow the transmission of light and, therefore, the observation of the end face of the optical element 1 with a camera 21 disposed above the chuck 11 is possible and consequently, the measurement of the relative moving quantity of the optical element 1 is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光素子のおよびその実装
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device and its mounting method.

【0002】[0002]

【従来の技術】従来は、光素子を実装する方法として、
光素子及び実装する基板上に位置決めの為の突き当て面
を設定し、その精度を上げ、基準となる基板の突き当て
面に光素子の基準面を押し当てて基板と光素子間の精度
を確保する方法(特開平5−196844号公報)が提
案されている。
2. Description of the Related Art Conventionally, as a method for mounting an optical element,
The abutting surface for positioning is set on the optical element and the board to be mounted, the accuracy is increased, and the reference surface of the optical element is pressed against the abutting surface of the reference board to improve the accuracy between the board and the optical element. A method of securing (Japanese Patent Laid-Open No. 5-196844) has been proposed.

【0003】また、基板上に光素子の発光用電極とは別
の光導波路との位置精度を出した位置合わせ用電極を設
け、横方向の位置合わせをする際に基板上の二つの電極
とその電極間と同寸法の光素子に設けた電極間に電流を
流し、その間の電気的導通をモニタする事で、光素子と
光導波路間の位置精度を確保する方法(特開平2−58
005号公報)が提案されている。
Further, a positioning electrode is provided on the substrate so as to have a positional accuracy different from that of the light emitting electrode of the optical element with respect to the optical waveguide, and two electrodes on the substrate are used for lateral positioning. A method for ensuring the positional accuracy between the optical element and the optical waveguide by passing a current between the electrodes and between the electrodes provided on the optical element having the same size as that of the electrode and monitoring the electrical continuity therebetween (Japanese Patent Laid-Open No. 2-58).
No. 005) is proposed.

【0004】また、光素子を電気伝導体でできたチャッ
クで把持し、光素子をチャックと基板に設けた電極を通
した通電により発光させ、その出力値をモニタで観察
し、位置決めを行う方法(特開昭63−213804号
公報)も提案されている。
Further, the optical element is held by a chuck made of an electric conductor, the optical element is caused to emit light by energization through electrodes provided on the chuck and the substrate, and the output value thereof is observed on a monitor for positioning. (JP-A-63-213804) has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】従来の光素子を発光さ
せない位置決め方法では、外形の基準面や加工面を測定
または突き当てによって基板上への位置決めを行ってい
た。そのため高精度な位置決めを行い、光素子の実装に
よる光損出を最小限に抑えるためには、光素子、基板両
方に非常に高い加工精度が必要となっていた。また、光
素子の発光点である活性層と基板上の導波路の位置に
は、ばらつきがあるため、最終的な実装精度はその値を
加味した値となる。
In the conventional positioning method in which the optical element is not caused to emit light, the reference surface or the processed surface of the outer shape is measured or abutted to perform the positioning on the substrate. Therefore, in order to perform highly accurate positioning and minimize the optical loss due to the mounting of the optical element, both the optical element and the substrate require extremely high processing accuracy. Further, since there are variations in the positions of the active layer, which is the light emitting point of the optical element, and the waveguide on the substrate, the final mounting accuracy is a value that takes that value into consideration.

【0006】また、実際に光素子を発光させながら位置
決めを行う場合には、光素子や基板の加工精度は必要な
い為、光導波路と光素子の接合効率を落とさない最適位
置で実装できるが、未結線である光素子を実際に実装し
た時と同条件で通電させ、発光させ、その光出力値を計
測する必要がある。
In addition, when positioning is performed while actually emitting light from the optical element, the processing accuracy of the optical element and the substrate is not required, so that the optical waveguide and the optical element can be mounted at the optimum position without lowering the bonding efficiency. It is necessary to energize an unconnected optical element under the same conditions as when it is actually mounted, emit light, and measure the optical output value.

【0007】本発明の目的は、未結線の光素子を実際に
実装した時と同条件で発光、または、受光させ、高精度
な位置決めを達成することにある。
An object of the present invention is to achieve high-precision positioning by emitting or receiving light under the same conditions as when actually mounting an unconnected optical element.

【0008】本発明の第二の目的は未結線の光素子を効
率よく電気的に接合する事にある。
A second object of the present invention is to efficiently electrically connect unconnected optical elements.

【0009】本発明の第三の目的は、未結線で発光させ
ながら位置決めする事に最適な光素子を提供することに
ある。
A third object of the present invention is to provide an optical element which is optimal for positioning while emitting light in an unconnected state.

【0010】本発明の第四の目的は、位置決めした光素
子を高精度で固定する事にある。
A fourth object of the present invention is to fix the positioned optical element with high accuracy.

【0011】[0011]

【課題を解決するため手段】本発明は、光素子を掴み微
動するために微動機構を付加した絶縁体で構成されたエ
アチャックと、導波路を含む基板を固定する治具と、基
板上の電極に電気を流すプローブと、導波路から出射さ
れる光出力値を計測する装置が提供され、下面に二つの
電極を持つ光素子を光導波路を持つ基板上に高精度に位
置決め固定する為のものである。
According to the present invention, there is provided an air chuck made of an insulator to which a fine movement mechanism is added for grasping and finely moving an optical element, a jig for fixing a substrate including a waveguide, and a jig on the substrate. A probe that applies electricity to the electrodes and a device that measures the optical output value emitted from the waveguide are provided, which is used to position and fix the optical element with two electrodes on the bottom surface on the substrate with the optical waveguide with high accuracy. It is a thing.

【0012】[0012]

【作用】上記構成としたことにより、未結線の光素子は
絶縁体のチャックで把持され、基板の電極上で光導波路
に対し、上下左右を微動させることができる。そして、
電極に押しつけたときに発光させ、その光導波路に入射
するピーク値により、基板上で正確な位置決めする事が
できる。
With the above-mentioned structure, the unconnected optical element can be held by the chuck made of an insulator, and can be finely moved vertically and horizontally with respect to the optical waveguide on the electrode of the substrate. And
Light is emitted when it is pressed against the electrodes, and accurate positioning can be performed on the substrate by the peak value incident on the optical waveguide.

【0013】また、チャックを光を透過できる絶縁体
(例えばガラスなど)で構成することで、光素子を発光
させながら行う導波路に対しての位置決めの際に、光素
子端面をチャック上方に設置したカメラにより観察する
ことができるため、光素子の相対移動量を計測する事が
でき、光素子の移動を正確に行い、高精度な位置決めを
行う事ができる。
Further, since the chuck is made of an insulator (eg, glass) that can transmit light, the end surface of the optical element is installed above the chuck when positioning the optical element while making the optical element emit light. Since it can be observed by the camera, the relative movement amount of the optical element can be measured, the optical element can be accurately moved, and highly accurate positioning can be performed.

【0014】また、光素子に形成する電極を下面に両端
に離して形成する事により、電極片当たりによる発光が
なく、実際に実装した時と同じ、正しい姿勢で光素子を
発光できるため正確な光出力値を検出し、正確な位置決
めをする事ができる。
Further, since the electrodes formed on the optical element are formed on the lower surface so as to be separated from each other on both ends, there is no light emission due to the electrode piece contact, and the optical element can emit light in the same correct posture as when actually mounted. It is possible to detect the optical output value and perform accurate positioning.

【0015】[0015]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0016】図1は本発明の光素子の位置決め装置を示
す斜視図である。1は端面発光型半導体光素子、2は半
導体光素子の活性層、3は半導体光素子のはんだ電極、
4は基板、5は基板上に設けられた光導波路、6は基板
上に設けられた半導体レーザ発光用の基板側電極、11
は絶縁体(ガラス)エアチャック、12はエアチャック
を微動させる微動機構、21は半導体光素子を観察する
ためのカメラを示す。
FIG. 1 is a perspective view showing a positioning device for an optical element according to the present invention. 1 is an edge emitting semiconductor optical device, 2 is an active layer of the semiconductor optical device, 3 is a solder electrode of the semiconductor optical device,
Reference numeral 4 is a substrate, 5 is an optical waveguide provided on the substrate, 6 is a substrate-side electrode for emitting a semiconductor laser provided on the substrate, 11
Is an insulator (glass) air chuck, 12 is a fine movement mechanism for finely moving the air chuck, and 21 is a camera for observing the semiconductor optical device.

【0017】また、図2は発光及び計測のシステムを含
むチャックの側面図であり、14は基板とチャックの位
置を計測するセンサ、22はカメラ21の画像を観察す
るモニタ、31は基板の電極に電流を流すための発光用
プローブ、33は光導波路から出力された光を入力する
大口径光ファイバ、51は制御用コンピュータ、52は
カメラの画像を処理する画像処理装置、53はプローブ
に光素子駆動の為の任意の電流を流す電源装置、54は
光の出力値を計測する光パワーアンプを示す。
FIG. 2 is a side view of the chuck including a light emitting and measuring system. 14 is a sensor for measuring the positions of the substrate and the chuck, 22 is a monitor for observing the image of the camera 21, 31 is an electrode of the substrate. A light emitting probe for supplying a current to the device, 33 is a large-diameter optical fiber for inputting the light output from the optical waveguide, 51 is a control computer, 52 is an image processing device for processing the image of the camera, and 53 is a light for the probe. A power supply device for supplying an arbitrary current for driving the element, 54 is an optical power amplifier for measuring the output value of light.

【0018】また、図3は位置決め及び移載機構を含ん
だシステム全体の斜視図であり、13は光素子搬送用ロ
ボット、32は基板固定台板粗動機構、34は基板位置
決め治具、35は基板位置決め板、36は基板押しつけ
用ピン、41は光素子パレット、42は光素子パレット
位置決め用台板、43はパレット微動機構、44は導波
路基板位置決め用台板、45は基板搬送用ロボット、4
6は基板チャックを示す。
FIG. 3 is a perspective view of the entire system including a positioning and transfer mechanism. 13 is a robot for transporting optical elements, 32 is a substrate fixing base plate coarse movement mechanism, 34 is a substrate positioning jig, and 35 is a substrate positioning jig. Is a substrate positioning plate, 36 is a substrate pressing pin, 41 is an optical element pallet, 42 is an optical element pallet positioning base plate, 43 is a pallet fine movement mechanism, 44 is a waveguide substrate positioning base plate, and 45 is a substrate transfer robot. Four
Reference numeral 6 represents a substrate chuck.

【0019】次に以上の図を使い各部の構成及び機能を
説明する。
Next, the configuration and function of each part will be described with reference to the above figures.

【0020】基板4は導波路基板位置決め用台板44上
に規則的に並べられる。そして、基板搬送用ロボット4
5が対象とするに基板の上方に移動し、基板用チャック
46により把持される。把持された基板4は基板搬送用
ロボット45により基板位置決め治具34上に移動して
設置される。基板位置決め治具34上に置かれた基板4
は基板押しつけ用ピン36により基板位置決め板35に
押しつけられ、押し当てにより基板位置決め治具34に
対する水平方向の位置精度が出される。また、垂直方向
に関しては基板位置決め治具34中央に基板4の真空吸
着用に吸引孔が設けられ垂直方向の精度が保たれる。
The substrates 4 are regularly arranged on the waveguide substrate positioning base plate 44. Then, the substrate transfer robot 4
5 moves to the upper side of the substrate, and is gripped by the substrate chuck 46. The grasped substrate 4 is moved and set on the substrate positioning jig 34 by the substrate transfer robot 45. The substrate 4 placed on the substrate positioning jig 34
Is pressed against the board positioning plate 35 by the board pressing pin 36, and the positional accuracy in the horizontal direction with respect to the board positioning jig 34 is obtained by the pressing. Further, in the vertical direction, a suction hole for vacuum suction of the substrate 4 is provided at the center of the substrate positioning jig 34 to maintain the vertical accuracy.

【0021】光素子1は光素子パレット41に収納さ
れ、光素子パレット位置決め用台板42上に固定され
る。光素子1は光素子搬送用ロボット13により絶縁体
エアチャック11と同時に光素子パレット41上に移動
した光素子観察用カメラ21により光素子パレット41
上の位置が観察され、絶縁体エアチャック11で把持で
きる位置にパレット微動機構43により、光素子パレッ
ト位置決め用台板42と光素子パレット41を移動す
る。そして、絶縁体エアチャック11に真空吸着により
把持される。把持された光素子1は光素子搬送用ロボッ
ト13により基板位置決め治具34上に固定された基板
4の上方に移動される。
The optical element 1 is housed in the optical element pallet 41 and fixed on the optical element pallet positioning base plate 42. The optical element 1 is moved onto the optical element pallet 41 at the same time as the insulator air chuck 11 by the optical element conveying robot 13, and the optical element observing camera 21 moves the optical element pallet 41.
The upper position is observed, and the pallet fine movement mechanism 43 moves the optical element pallet positioning base plate 42 and the optical element pallet 41 to a position where the insulator air chuck 11 can hold. Then, it is gripped by the insulator air chuck 11 by vacuum suction. The grasped optical element 1 is moved above the substrate 4 fixed on the substrate positioning jig 34 by the optical element transport robot 13.

【0022】移動した光素子1は絶縁体エアチャック1
1を移動する微動機構12により基板4に近づけるが、
その際、光素子1と基板4の距離を規定する必要がある
ため、絶縁体エアチャック11上に設けた距離センサ1
4により基板4との距離を計りながら接近させ、光素子
1の上面と導波路5の上面がともに観察用カメラ21の
焦点深度内に納まり、かつ光素子電極3と基板側電極4
が接触しない位置(例えば電極すきま10um±3u
m)で停止させる。
The moved optical element 1 is an insulator air chuck 1.
The fine movement mechanism 12 for moving 1 brings it closer to the substrate 4,
At that time, since it is necessary to define the distance between the optical element 1 and the substrate 4, the distance sensor 1 provided on the insulator air chuck 11
4, the upper surface of the optical element 1 and the upper surface of the waveguide 5 are both within the depth of focus of the observation camera 21, and the optical element electrode 3 and the substrate side electrode 4
Position where they do not contact (eg electrode clearance 10um ± 3u
Stop at m).

【0023】光素子1は観察用カメラ21と画像処理装
置52により光導波路5に対する水平位置を計測され、
光素子1の活性層2から放射されるレーザ光が光導波路
5に入射する精度(例えば±10um以内)で固定し、
基板4を基板台板粗動機構32を使い移動する。また、
基板4は移動後、光素子発光用の基板側電極6に発光用
プローブ31を接続する。
The optical element 1 is measured in horizontal position with respect to the optical waveguide 5 by the observation camera 21 and the image processing device 52,
The laser light emitted from the active layer 2 of the optical element 1 is fixed with an accuracy (for example, within ± 10 μm) of being incident on the optical waveguide 5,
The substrate 4 is moved by using the substrate base plate coarse movement mechanism 32. Also,
After the substrate 4 is moved, the light emitting probe 31 is connected to the substrate side electrode 6 for emitting light from the optical element.

【0024】次に光素子1の導波路5に対する微調整を
行う。ここで導波路5に対する光素子1の光軸に対して
横方向の実装精度は非常に高い精度が要求されている。
(例えば±0.5um以内など)そこで、実際に光素子
1を移動しながら発光させ、光導波路5に対する光のピ
ークとなる位置を探す。しかし、光素子1は結線をして
いないため光素子1を微動機構12により下降させ光素
子電極3を基板側電極6に接続させる。基板4の電極6
に光素子1の二つの光素子電極3が接続した事を通電に
より確認し、光素子駆動用の電流を電源装置53から発
光用プローブ31、基板側電極4、光素子電極3を通
し、光素子1に流す事で活性層2から光(レーザ)を発
光させる。発光した光(レーザ光)は光導波路5に入射
して大口径光ファイバ33を介し、光パワーアンプ54
で計測される。光素子1は次に微動機構12で初期位置
まで上昇し、導波路5に対して水平方向に微小量(例え
ば0.1um)だけ移動する。そして、このアルゴリズ
ムを光素子1の外形による位置決め誤差分だけ繰り返
す。(第一の実施例ならば、位置決め精度±10um、
微小おくり量0.1um、繰り返し数百回) 動作をま
とめると光素子1下降→通電確認→発光→光出力値計測
→光素子1上昇→光素子1微小送り、となりそのアルゴ
リズムは制御用コンピュータ51によって光パワーアン
プ54、発光用電源53、微小送り機構12を制御し、
計測動作が行われる。そのデータは制御用コンピュータ
51により光ピーク値が計算され、光素子1が光導波路
5に対して最も効率が良い位置が算出され、光素子1が
基板4上の位置へ微動機構12により移動され基板4に
電極であるはんだを介して固定される。
Next, the waveguide 5 of the optical element 1 is finely adjusted. Here, the mounting accuracy in the lateral direction with respect to the optical axis of the optical element 1 on the waveguide 5 is required to be very high.
(For example, within ± 0.5 μm) Then, the light is actually emitted while moving the optical element 1 to find the position where the light peaks with respect to the optical waveguide 5. However, since the optical element 1 is not connected, the optical element 1 is lowered by the fine movement mechanism 12 to connect the optical element electrode 3 to the substrate side electrode 6. Electrode 6 on substrate 4
It is confirmed by energizing that the two optical element electrodes 3 of the optical element 1 are connected to each other, and a current for driving the optical element is passed from the power supply device 53 through the light emitting probe 31, the substrate side electrode 4, and the optical element electrode 3 to Light (laser) is emitted from the active layer 2 by flowing it into the element 1. The emitted light (laser light) enters the optical waveguide 5, passes through the large-diameter optical fiber 33, and is transmitted to the optical power amplifier 54.
Is measured at. Next, the optical element 1 is moved up to the initial position by the fine movement mechanism 12 and moved in the horizontal direction with respect to the waveguide 5 by a minute amount (for example, 0.1 μm). Then, this algorithm is repeated for the positioning error due to the outer shape of the optical element 1. (In the case of the first embodiment, the positioning accuracy is ± 10 μm,
When the operation is summarized, the optical element 1 descends → energization confirmation → light emission → optical output value measurement → optical element 1 increase → optical element 1 minute feed. The algorithm is the control computer 51. Controls the optical power amplifier 54, the light emitting power source 53, and the minute feeding mechanism 12 by
The measurement operation is performed. The optical peak value of the data is calculated by the control computer 51, the most efficient position of the optical element 1 with respect to the optical waveguide 5 is calculated, and the optical element 1 is moved to the position on the substrate 4 by the fine movement mechanism 12. It is fixed to the substrate 4 via solder which is an electrode.

【0025】この際に、絶縁体チャック11で把持した
光素子1がずれた場合は計測が正しく行えないため、光
素子1の上方に設置された観察カメラ21により、光素
子1の端面を含む画像22が計測される。そして、その
画像22を元に画像処理装置52で光素子1の移動距離
が計算され、ピークを求める際のデータにフィードバッ
クされ正しいピーク位置の計測が可能となる。
At this time, if the optical element 1 held by the insulator chuck 11 is displaced, the measurement cannot be performed correctly. Therefore, the observation camera 21 installed above the optical element 1 includes the end surface of the optical element 1. The image 22 is measured. Then, the moving distance of the optical element 1 is calculated by the image processing device 52 based on the image 22 and is fed back to the data when the peak is obtained, so that the correct peak position can be measured.

【0026】また、図4に光素子1と基板4の接合状態
の側面図を示す。光素子1を電極6に押しつける際に、
例えば、光素子1の下面全体が電極であるような場合
(図4(a))には全体が押しつけられれば発光条件に
問題はないが、少しでも傾いていた場合(図4(b))
の片当たりでも上方に出ているもう一つの電極により発
光してしまい高さ方向が実際の位置とずれ、誤差が大き
いデータを計測してしまう。その誤差要因を削除するた
め、電極を光素子1の下面の端面に二つ形成する事とし
た。(図5(c))この二つの電極により傾いた場合に
は片方が離れるため通電が取れず発光しない。(図4
(d))そのため間違った値を計測せずに正しいピーク
を算出する事ができる。
Further, FIG. 4 shows a side view of the bonded state of the optical element 1 and the substrate 4. When pressing the optical element 1 against the electrode 6,
For example, when the entire lower surface of the optical element 1 is an electrode (FIG. 4 (a)), there is no problem with the light emission condition if the entire surface is pressed, but if it is slightly inclined (FIG. 4 (b)).
Even if it hits one side, light will be emitted by the other electrode protruding upwards, and the height direction will shift from the actual position, and data with a large error will be measured. In order to eliminate the error factor, two electrodes are formed on the lower end surface of the optical element 1. (FIG. 5 (c)) When these two electrodes are tilted, one of them is separated from the other, so that current cannot be supplied and light is not emitted. (Fig. 4
(D)) Therefore, a correct peak can be calculated without measuring an incorrect value.

【0027】また、この位置決めの際には電極3を押し
つける事により光素子1に通電を行ったが、図5に示す
ように光素子と基板間に導電性物質を満たした場合で、
この物質が導電性ペースト61または導電性接着剤62
でも可能である。この際には電極3を電極6に押しつけ
る上下方向の移動は必要なく、流動体である導電性ペー
スト61、導電性接着剤62を通して通電させるため横
方向の移動のみで実装する最適位置を探索する事ができ
る。位置決め後、外部から熱などのエネルギを加える事
で固化させ、光素子1を任意の位置で固定する事ができ
る。
Further, at the time of this positioning, the optical element 1 was energized by pressing the electrode 3, but when the conductive material was filled between the optical element and the substrate as shown in FIG.
This substance is a conductive paste 61 or a conductive adhesive 62.
But it is possible. In this case, it is not necessary to vertically move the electrode 3 against the electrode 6, and the conductive paste 61 and the conductive adhesive 62, which are fluids, are used to conduct electricity, so that the optimum position for mounting is searched only by lateral movement. I can do things. After positioning, the optical element 1 can be fixed at an arbitrary position by solidifying it by applying energy such as heat from the outside.

【0028】[0028]

【発明の効果】本発明は、光素子の調整実装方法及びそ
の装置において、基準面がない光素子でも光導波路への
搭載精度の向上を図る効果と、精度の向上による後工程
の調整を不要とする。
According to the present invention, in an optical element adjusting and mounting method and apparatus, the effect of improving the mounting accuracy of an optical element having no reference plane on an optical waveguide and the adjustment of the post-process due to the improvement of the accuracy are unnecessary. And

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光素子の位置決め装置を示す斜視図。FIG. 1 is a perspective view showing an optical element positioning device of the present invention.

【図2】本発明の光素子位置決め装置とそのシステムを
含む側面図。
FIG. 2 is a side view including the optical element positioning device of the present invention and its system.

【図3】本発明の光素子の移載機構を含む装置全体の斜
視図。
FIG. 3 is a perspective view of the entire apparatus including the optical element transfer mechanism of the present invention.

【図4】本発明の光素子と基板の電極の状態を示す側面
図。
FIG. 4 is a side view showing the states of the optical element of the present invention and the electrodes of the substrate.

【図5】本発明の光素子と基板間を導電性物質で満たし
た場合の側面図。
FIG. 5 is a side view showing a case where the space between the optical element of the present invention and the substrate is filled with a conductive material.

【符号の説明】[Explanation of symbols]

1…光素子、 2…光素子活性層、 3…光素子電極、 4…基板、 5…光導波路、 6…基板通電用電極、 11…絶縁体(ガラス)エアチャック、 12…微動機構、 21…観察用カメラ。 DESCRIPTION OF SYMBOLS 1 ... Optical element, 2 ... Optical element active layer, 3 ... Optical element electrode, 4 ... Substrate, 5 ... Optical waveguide, 6 ... Substrate energizing electrode, 11 ... Insulator (glass) air chuck, 12 ... Fine movement mechanism, 21 … Observation camera.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】発光素子を導波路上に位置決めする際に、
下面に二つの電極を持つ未結線の光素子を、微動機構を
持つ絶縁体で作られたチャックで把持し、前記光素子を
前記導波路の電極に押しつけ通電させる発光状態と、光
軸に対し左右への前記光素子の微動を繰り返すことで、
前記導波路の入射部に対する前記光素子の最適位置を光
出力のピークにより探索することを特徴とする光素子の
位置決め方法。
1. When positioning a light emitting element on a waveguide,
An unconnected optical element having two electrodes on the bottom surface is gripped by a chuck made of an insulator having a fine movement mechanism, and the optical element is pressed against the electrode of the waveguide to energize it, and the optical axis By repeating the fine movement of the optical element to the left and right,
A method of positioning an optical element, characterized in that an optimum position of the optical element with respect to an incident portion of the waveguide is searched by a peak of optical output.
【請求項2】発光素子を導波路上に押しつけて発光さ
せ、その出力値を計測し位置決めを行う際に、前記発光
素子の下面両端につけた二つの電極間の通電状態を確認
する事で素子片当たりによる高さ方向のばらつきを低減
させ、安定した光出力と高い位置決め精度が得られるこ
とを特徴とする位置決め方法。
2. A light emitting element is pressed against a waveguide to emit light, and when the output value is measured and the positioning is performed, the element is confirmed by confirming the electric conduction state between two electrodes attached to both ends of the lower surface of the light emitting element. A positioning method characterized in that the variation in the height direction due to one-sided contact is reduced, and stable light output and high positioning accuracy are obtained.
【請求項3】請求項1の前記発光素子が受光素子であ
り、光導波路側から出射した光を、微動している受光素
子で受光し、電極を通し電流値をモニタする事で光素子
を光導波路に対し最適位置で位置決めする光素子の位置
決め方法。
3. The light emitting device according to claim 1, wherein the light emitting device is a light receiving device, and the light emitted from the optical waveguide side is received by the light receiving device which is finely moving, and the current value is monitored through an electrode to form an optical device. An optical element positioning method for positioning at an optimum position with respect to an optical waveguide.
【請求項4】光素子を導波路上で発光させ、出力値の最
大値をモニタする際に、高さ方向の位置を正確に再現す
る為に下面両端に形成した二つの発光用電極を持つこと
を特徴とする光素子。
4. An optical element having two light-emitting electrodes formed on both ends of a lower surface for accurately reproducing the position in the height direction when the maximum value of the output value is monitored by causing the optical element to emit light on the waveguide. An optical element characterized by the above.
【請求項5】光素子を導波路上に位置決めする際に端子
間を導電性ペーストで結線し通電させ、発光もしくは受
光状態の光素子を光軸に対し前後左右に移動する事で光
のピークが発生する位置を探索し、前記光素子を最適位
置で位置決めすることを特徴とする光素子の実装方法。
5. When the optical element is positioned on the waveguide, terminals are connected with a conductive paste to conduct electricity, and the optical element in the light emitting or receiving state is moved forward, backward, leftward, and rightward with respect to the optical axis. A method for mounting an optical element, characterized in that the optical element is located at an optimum position by searching for a position where
【請求項6】請求項5の前記導電性ペーストが導電性接
着剤である光素子の位置決め方法。
6. A method of positioning an optical element according to claim 5, wherein the conductive paste is a conductive adhesive.
JP12337595A 1995-05-23 1995-05-23 Optical element and its packaging method Pending JPH08313746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12337595A JPH08313746A (en) 1995-05-23 1995-05-23 Optical element and its packaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12337595A JPH08313746A (en) 1995-05-23 1995-05-23 Optical element and its packaging method

Publications (1)

Publication Number Publication Date
JPH08313746A true JPH08313746A (en) 1996-11-29

Family

ID=14859034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12337595A Pending JPH08313746A (en) 1995-05-23 1995-05-23 Optical element and its packaging method

Country Status (1)

Country Link
JP (1) JPH08313746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264441A (en) * 2006-03-29 2007-10-11 Fujitsu Ltd Optical coupling method
JP2020020990A (en) * 2018-08-02 2020-02-06 三菱電機株式会社 Joining device and joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264441A (en) * 2006-03-29 2007-10-11 Fujitsu Ltd Optical coupling method
JP2020020990A (en) * 2018-08-02 2020-02-06 三菱電機株式会社 Joining device and joining method

Similar Documents

Publication Publication Date Title
US4817849A (en) Method for bonding semiconductor laser element and apparatus therefor
US5659566A (en) Semiconductor laser module and method of assembling semiconductor laser module
EP0462742A2 (en) Photonics module and alignment method
EP0320722A2 (en) Mounting method for optical fibers and lasers
CN114325351A (en) Laser chip testing device and laser chip testing method
US7643047B2 (en) Light source module, optical unit array and pattern writing apparatus
CN114005778B (en) Bonding system and bonding compensation method
US20020168147A1 (en) Optical circuit pick and place machine
US7264980B2 (en) Method of mounting light emitting element
US6867508B2 (en) Method and apparatus for fabricating semiconductor laser device
JPH08313746A (en) Optical element and its packaging method
JP2010153672A (en) Apparatus and method for manufacturing semiconductor device
JP2000183404A (en) Light emitting element array and method and apparatus for bonding it
JP4002431B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device manufacturing apparatus
JP3379818B2 (en) Manufacturing method of multi-beam semiconductor laser
JP3448960B2 (en) Light emitting device assembling apparatus and assembling method
JP2006351875A (en) Manufacturing method of semiconductor module and manufacturing device of semiconductor module
JP2012122919A (en) Current-carrying test device for array type semiconductor laser element
JP2648371B2 (en) Inspection method for TAB device, carrier for TAB device used therefor, measuring module and insert device
JP3390572B2 (en) Transport contact structure for electronic devices
JP4570997B2 (en) Probe, method and apparatus for attaching probe to substrate, electrical connection device, and method for manufacturing electrical connection device
JPH0436630A (en) Life testing device
JP2538904B2 (en) Hybrid optical integrated circuit assembly device
JPS62252179A (en) Photoelectronic device assembling apparatus
JP4537540B2 (en) Light emitting element bonding apparatus and method