JPH0831365B2 - Method for manufacturing corrosion-resistant permanent magnet - Google Patents

Method for manufacturing corrosion-resistant permanent magnet

Info

Publication number
JPH0831365B2
JPH0831365B2 JP62100981A JP10098187A JPH0831365B2 JP H0831365 B2 JPH0831365 B2 JP H0831365B2 JP 62100981 A JP62100981 A JP 62100981A JP 10098187 A JP10098187 A JP 10098187A JP H0831365 B2 JPH0831365 B2 JP H0831365B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
atom
atomic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62100981A
Other languages
Japanese (ja)
Other versions
JPS63266021A (en
Inventor
敦 濱村
隆樹 浜田
浩子 中村
知之 今井
敏樹 松井
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Proterial Ltd
Original Assignee
Toda Kogyo Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Sumitomo Special Metals Co Ltd filed Critical Toda Kogyo Corp
Priority to JP62100981A priority Critical patent/JPH0831365B2/en
Priority to US07/172,395 priority patent/US4942098A/en
Publication of JPS63266021A publication Critical patent/JPS63266021A/en
Priority to US07/454,451 priority patent/US4968529A/en
Publication of JPH0831365B2 publication Critical patent/JPH0831365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、高磁気特性を有しかつ耐食性にすぐれた
Fe−B−R系永久磁石の製造方法に係り、耐食性、特に
80℃、相対湿度90%の雰囲気中に長時間放置した場合の
初期磁石特性からの劣化が少なく、きわめて安定した磁
石特性を有するFe−B−R系永久磁石の製造方法に関す
る。
TECHNICAL FIELD The present invention has high magnetic properties and excellent corrosion resistance.
The present invention relates to a method for manufacturing a Fe-BR permanent magnet, which has a corrosion resistance, particularly
The present invention relates to a method for producing a Fe-BR permanent magnet having extremely stable magnet characteristics with little deterioration from the initial magnet characteristics when left for a long time in an atmosphere of 80 ° C and 90% relative humidity.

背景技術 先に、NdやPrを中心とする資源的に豊富な軽希土類を
用いてB,Feを主成分とし、高価なSmやCoを含有せず、従
来の希土類コバルト磁石の最高特性を大幅に越える新し
い高性能永久磁石として、Fe−B−R系永久磁石が提案
されている(特開昭59−46008号公報、特開昭59−89401
号公報)。
BACKGROUND ART First, light rare earths, which are rich in resources centered on Nd and Pr, are used as the main components of B and Fe, and they do not contain expensive Sm or Co. Fe-BR permanent magnets have been proposed as a new high-performance permanent magnet that exceeds the above (Japanese Patent Laid-Open Nos. 59-46008 and 59-89401).
Issue).

前記磁石合金のキュリー点は、一般に、300℃〜370℃
であるが、Feの一部をCoにて置換することにより、より
高いキュリー点を有するFe−B−R系永久磁石(特開昭
59−64733号、特開昭59−132104号)を得ており、さら
に、前記Co含有のFe−B−R系希土類永久磁石と同等以
上のキュリー点並びにより高い(BH)maxを有し、その
温度特性、特に、iHcを向上させるため、希土類元素
(R)としてNdやPr等の軽希土類を中心としたCo含有の
Fe−B−R系希土類永久磁石のRの一部にDy、Tb等の重
希土類のうち少なくとも1種を含有することにより、25
MGOe以上の極めて高い(BH)maxを保有したままで、iHc
をさらに向上させたCo含有のFe−B−R系希土類永久磁
石が提案(特開昭60−34005号)されている。
The Curie point of the magnet alloy is generally 300 ° C to 370 ° C.
However, by substituting a part of Fe with Co, an Fe-BR type permanent magnet having a higher Curie point (Japanese Patent Application Laid-Open No. S60-18753).
59-64733, JP-A-59-132104), and further has a Curie point equal to or higher than that of the Fe-BR rare earth permanent magnet containing Co and a higher (BH) max, In order to improve the temperature characteristics, especially iHc, Co containing mainly rare earth elements such as Nd and Pr as rare earth elements (R) is contained.
By including at least one kind of heavy rare earth such as Dy and Tb in a part of R of the Fe-BR rare earth permanent magnet, 25
IHc with extremely high (BH) max higher than MGOe
A Fe-BR rare earth permanent magnet containing Co, which is further improved, has been proposed (JP-A-60-34005).

しかしながら、上記のすぐれた磁気特性を有するFe−
B−R系磁気異方性焼結体からなる永久磁石は主成分と
して、空気中で酸化し次第に安定な酸化物を生成し易い
希土類元素及び鉄を含有するため、磁気回路に組込んだ
場合に、磁石表面に生成する酸化物により、磁気回路の
出力低下及び磁気回路間のばらつきを惹起し、また、表
面酸化物の脱落による周辺機器への汚染の問題があっ
た。
However, Fe-
A permanent magnet made of a B-R magnetically anisotropic sintered body contains iron as a main component, which is a rare earth element that easily oxidizes in air to form a stable oxide, and iron. In addition, the oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and a variation between the magnetic circuits, and there is a problem that the peripheral oxide is contaminated due to the dropping of the surface oxide.

そこで、上記のFe−B−R系永久磁石の耐食性の改善
のため、焼結磁石体表面に気相めっき法により金属薄膜
を形成する方法が提案(特願昭61−150201号,特開昭61
−166115号,特開昭61−166116号,特開昭61−166117
号)されているが、これにより、Fe−B−R系永久磁石
の耐食性は改善されるが、前記被着された金属粒子は磁
石体表面に堆積して形成されるため、付着強度が弱く、
特に、磁石体角部での金属粒子の被着が不均一となり、
苛酷な環境下での長時間使用においては局部的に被着の
剥離、亀裂を生じ、局部的な錆発生の問題があった。
Therefore, in order to improve the corrosion resistance of the Fe-BR permanent magnet, a method of forming a metal thin film on the surface of the sintered magnet body by vapor-phase plating is proposed (Japanese Patent Application No. 61-150201, Japanese Patent Application Laid-Open No. Sho 61-150201). 61
-166115, JP-A-61-166116, JP-A-61-166117
However, although the corrosion resistance of the Fe-BR permanent magnet is improved, the adhered metal particles are formed by being deposited on the surface of the magnet body, so that the adhesion strength is weak. ,
In particular, the deposition of metal particles at the corners of the magnet becomes uneven,
When used for a long time in a harsh environment, there was a problem of local peeling and cracking of the adherend and local rusting.

従来技術の問題点 すなわち、Fe−B−R系永久磁石表面に耐食性の改善
のため、気相めっき法による金属薄膜を設けるが、磁石
体角部での密着性,防蝕性が劣る問題があり、苛酷な環
境下での長時間使用において、局部的な錆発生の問題が
あった。
Problems of Prior Art That is, a metal thin film is formed on the surface of the Fe-BR permanent magnet by a vapor phase plating method to improve corrosion resistance, but there is a problem that adhesion and corrosion resistance at corners of the magnet are poor. However, there was a problem of local rust generation when used for a long time in a harsh environment.

発明の目的 この発明は、Fe−B−R系永久磁石の耐食性の改善を
目的とし、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合の初期磁石特性からの劣化を極力
少なくし、安定した高磁石特性を有するFe−B−R系永
久磁石を安価に提供できる製造方法を目的とする。
OBJECT OF THE INVENTION The present invention aims to improve the corrosion resistance of Fe-BR permanent magnets, and particularly to prevent deterioration from the initial magnet characteristics when left standing for a long time under an atmospheric condition of temperature 80 ° C and relative humidity 90%. An object of the present invention is to provide a manufacturing method that can provide an Fe-B-R-based permanent magnet that has stable and high magnet characteristics with a minimum amount at a low cost.

発明の構成 この発明は、すぐれた耐食性、特に、温度80℃、相対
湿度90%の雰囲気条件下で長時間放置した場合において
も、その磁石特性が安定したFe−B−R系永久磁石の製
造方法を目的に、永久磁石体の表面処理について種々研
究した結果、特定成分を有するFe−B−R系焼結磁石体
表面に、貴金属と特定金属とからなる金属被覆層を被着
することにより、すぐれた耐食性ときわめて安定した磁
石特性が得られることを知見し、この発明を完成したも
のである。
Structure of the Invention The present invention has excellent corrosion resistance, and in particular, manufacture of a Fe-B-R permanent magnet having stable magnet characteristics even when left standing for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%. As a result of various studies on the surface treatment of the permanent magnet for the purpose of the method, by applying a metal coating layer made of a noble metal and a specific metal on the surface of the Fe-BR type sintered magnet having a specific component. The inventors have completed the present invention by finding that excellent corrosion resistance and extremely stable magnet characteristics can be obtained.

すなわち、この発明は、 R(RはNd、Pr、Dy、Ho、Tbのうち少なくとも1種あ
るいはさらに、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、
Yのうち少なくとも1種からなる)10原子%〜30原子
%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相
からなる焼結永久磁石体表面に、 Pd、Ag、Pt及びAuから選ばれた少なくとも1種の貴金
属またはこれらの合金の薄膜を設けた後、さらに、Ni、
Cu、Sn、Al、Cr、Zn及びCoから選ばれた少なくとも1種
の金属またはこれらの合金の薄膜を気相成膜法にて設け
ることにより、 温度80℃、相対湿度90%の条件下で500時間放置した
ときの初期磁石特性からの劣化が5%以下であることを
特徴とする耐食性永久磁石の製造方法である。
That is, the present invention relates to R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu,
Sintered permanent magnet body containing 10 to 30 atomic% of B, 2 to 28 atomic% of B and 65 atomic% to 80 atomic% of Fe as a main component and a tetragonal phase as a main phase. After a thin film of at least one noble metal selected from Pd, Ag, Pt and Au or an alloy thereof is provided on the surface, Ni,
By providing a thin film of at least one metal selected from Cu, Sn, Al, Cr, Zn and Co or a thin film of these alloys by a vapor deposition method, the temperature is 80 ° C and the relative humidity is 90%. The method for producing a corrosion-resistant permanent magnet is characterized in that the deterioration from the initial magnet characteristics when left for 500 hours is 5% or less.

この発明による金属被覆層を有するFe−B−R系永久
磁石が、苛酷な雰囲気条件下において、初期磁石特性か
らの劣化が少なく、磁石特性値が極めて安定する理由は
未だ明らかではない。
The reason why the Fe-BR type permanent magnet having the metal coating layer according to the present invention has little deterioration from the initial magnet characteristics under extremely harsh atmospheric conditions and the magnet characteristic values are extremely stable is not yet clear.

しかし、前記Fe−B−R系焼結磁石体表面に、気相成
膜法によりNi,Cu,Sn,Al,Cr,Zn及びCoから選ばれた少な
くとも1種の金属又はこれらの合金薄膜を被着した場合
は、温度80℃、相対湿度90%に500時間放置した苛酷な
耐食性試験条件で、局部的被膜の欠陥による錆発生によ
り磁石特性値は不安定となるが、これに対して、前記焼
結磁石体表面に、Pd,Ag,Pt,Auから選ばれた少なくとも
1種の貴金属層又はこれらの合金層を設け、さらにNi,C
u,Sn,Al,Cr,Zn及びCoから選ばれた少なくとも1種の金
属又は合金の薄膜層を気相成膜法により施したこの発明
による金属被膜層を形成することにより、該金属被膜層
は緻密となり、湿気、ガス等の外部環境の変化に対し
て、永久磁石を完全に保護できることが明らかとなっ
た。
However, at least one metal selected from Ni, Cu, Sn, Al, Cr, Zn and Co or an alloy thin film thereof is formed on the surface of the Fe-BR sintered magnet body by a vapor deposition method. If adhered, the magnet characteristic values will become unstable due to rust generation due to defects in the local coating under the severe corrosion resistance test conditions that were left at a temperature of 80 ° C and a relative humidity of 90% for 500 hours. At least one noble metal layer selected from Pd, Ag, Pt and Au or an alloy layer thereof is provided on the surface of the sintered magnet body, and Ni, C
By forming a thin film layer of at least one metal or alloy selected from u, Sn, Al, Cr, Zn and Co by a vapor deposition method to form a metal coating layer according to the present invention, the metal coating layer is formed. Became dense and it became clear that the permanent magnet could be completely protected against changes in the external environment such as moisture and gas.

発明の好ましい実施態様 この発明において、焼結磁石体表面に設けたPd、Ag、
Pt、Auから選ばれた少なくとも1種からなる貴金属層
は、真空蒸着法やイオンスパッタ法等、イオンプレーテ
ィング法等公知の気相成膜法にて設けたり、あるいは非
水液媒中でPd,Ag,Pt,Auから選ばれた少なくとも1種か
らなる貴金属コロイドを吸着させて得ることができ、ま
た、特定のpH値の中性液媒中で前記貴金属コロイドを吸
着させて得ることができる。この発明における前記貴金
属層厚みは10Å〜100Åが好ましい。
Preferred Embodiments of the Invention In the present invention, Pd, Ag, provided on the surface of the sintered magnet body,
The noble metal layer made of at least one selected from Pt and Au is provided by a known vapor deposition method such as vacuum deposition method, ion sputtering method, ion plating method, or Pd in a non-aqueous liquid medium. It can be obtained by adsorbing at least one precious metal colloid selected from Ag, Pt, Au, or by adsorbing the precious metal colloid in a neutral liquid medium having a specific pH value. . The thickness of the noble metal layer in the present invention is preferably 10Å to 100Å.

この発明において、貴金属コロイドを吸着させるため
の非水液媒としては、ベンゼン、トルエン、キシレン等
の炭化水素類、トリクロロトリフルオロエタン、クロロ
ホルム、トリクロロエタン等のハロゲン化炭化水素類、
酢酸エチル等が好ましく、吸着方法としては、上記貴金
属コロイドが分散している非水液媒中に前記焼結磁石体
を浸漬する方法、あるいは金属コロイドが分散している
非水液媒を焼結磁石体表面に塗布する方法が好ましい。
In the present invention, as the non-aqueous liquid medium for adsorbing the noble metal colloid, benzene, toluene, hydrocarbons such as xylene, trichlorotrifluoroethane, chloroform, halogenated hydrocarbons such as trichloroethane,
Ethyl acetate or the like is preferable, and as an adsorption method, a method of immersing the sintered magnet body in a non-aqueous liquid medium in which the precious metal colloid is dispersed or a non-aqueous liquid medium in which the metal colloid is dispersed is sintered. A method of coating on the surface of the magnet body is preferable.

また、この発明において、中性液媒としては塩化パラ
ジウム等の貴金属塩を水溶性分散剤の存在下で塩化す
ず、ヒドラジン等の水溶性還元剤で還元して得られる粒
径20〜50Åの貴金属が均一に分散しているpH6.0〜9.0の
中性液媒である。
In the present invention, the neutral liquid medium is tin chloride in the presence of a water-soluble dispersant, such as a noble metal salt of palladium chloride, a noble metal having a particle size of 20 to 50 Å obtained by reduction with a water-soluble reducing agent such as hydrazine. Is a neutral liquid medium having a pH of 6.0 to 9.0 uniformly dispersed.

前記中性液媒のpH値をpH6.0〜pH9.0に限定した理由
は、pH6.0未満ではFe−B−R系焼結体が侵食される恐
れがあり、pH9.0を超えると安定な分散液媒が得られな
いので好ましくない。吸着方法としては、上記貴金属コ
ロイドが分散している中性液媒中に前記焼結磁石体を浸
漬する方法や中性液媒を焼結磁石体表面に塗布する方法
が好ましい。
The reason for limiting the pH value of the neutral liquid medium to pH 6.0 to pH 9.0 is that the Fe-BR sintered body may be eroded if the pH value is less than 6.0, and if it exceeds pH 9.0. It is not preferable because a stable dispersion medium cannot be obtained. As the adsorption method, a method of immersing the sintered magnet body in a neutral liquid medium in which the noble metal colloid is dispersed or a method of applying the neutral liquid medium to the surface of the sintered magnet body is preferable.

この発明において、Ni,Cu,Su,Al,Cr,Zn及びCoから選
ばれた少なくとも1種の金属層あるいはこれらの合金層
は、真空蒸着法、イオンスパッター法、イオンプレーテ
ィング法等の気相成膜法により形成するもので、25μm
以下の厚みに被着されるのが好ましく、さらに好ましく
は3〜20μm厚みである。
In the present invention, at least one metal layer selected from Ni, Cu, Su, Al, Cr, Zn and Co or an alloy layer thereof is a gas phase such as a vacuum vapor deposition method, an ion sputtering method, an ion plating method. 25 μm, which is formed by the film forming method
The thickness is preferably the following, and more preferably 3 to 20 μm.

永久磁石の成分限定理由 この発明による永久磁石に用いる希土類元素Rは、組
成の10原子%〜30原子%を占めるが、Nd、Pr、Dy、Ho、
Tbのうち少なくとも1種、あるいはさらに、La、Ce、S
m、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種
を含むものが好ましい。
Reasons for Limiting Components of Permanent Magnet Although the rare earth element R used in the permanent magnet according to the present invention occupies 10 atom% to 30 atom% of the composition, Nd, Pr, Dy, Ho,
At least one of Tb, or further, La, Ce, S
Those containing at least one of m, Gd, Er, Eu, Tm, Yb, Lu, and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は
2種以上の混合物(ミッシュメタル,ジジム等)を入手
上の便宜等の理由により用いることができる。
Further, although one of R is usually sufficient, in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons of availability and the like.

なお、このRは純希土類元素でなくてもよく、工業上
入手可能な範囲で製造上不可避な不純物を含有するもの
でも差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、上記系永久磁石における、必須元素であって、
10原子%未満では、結晶構造がα−鉄と同一構造の立方
晶組織となるため、高磁気特性、特に高保磁力が得られ
ず、30原子%を越えると、Rリッチな非磁性相が多くな
り、残留磁束密度(Br)が低下して、すぐれた特性の永
久磁石が得られない。よって、希土類元素は、10原子%
〜30原子%の範囲とする。
R is an essential element in the above-mentioned permanent magnet,
If it is less than 10 atom%, the crystal structure will be a cubic crystal structure having the same structure as α-iron, so that high magnetic properties, especially high coercive force cannot be obtained, and if it exceeds 30 atom%, there are many R-rich nonmagnetic phases. As a result, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is 10 atomic%
The range is up to 30 atom%.

Bは、この発明による永久磁石における、必須元素で
あって、2原子%未満では、菱面体構造が主相となり、
高い保磁力(iHc)は得られず、28原子%を越えると、
Bリッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet according to the present invention, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase,
A high coercive force (iHc) cannot be obtained, and if it exceeds 28 atom%,
An excellent permanent magnet cannot be obtained because the B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. Therefore, B is in the range of 2 at% to 28 at%.

Feは、上記系永久磁石において、必須元素であり、65
原子%未満では残留磁束密度(Br)が低下し、80原子%
を越えると、高い保磁力が得られないので、Feは65原子
%〜80原子%の含有とする。
Fe is an essential element in the above-mentioned permanent magnet, and is 65
If it is less than atomic%, the residual magnetic flux density (Br) will decrease,
If it exceeds, a high coercive force cannot be obtained, so Fe is contained at 65 to 80 atomic%.

また、この発明による永久磁石において、Feの一部を
Coで置換することは、得られる磁石の磁気特性を損うこ
となく、温度特性を改善することができるが、Co置換量
がFeの20%を越えると、逆に磁気特性が劣化するため、
好ましくない。Coの置換量がFeとCoの合計量で5原子%
〜15原子%の場合は、(Br)は置換しない場合に比較し
て増加するため、高磁束密度を得るために好ましい。
Further, in the permanent magnet according to the present invention, part of Fe is
By substituting with Co, the temperature characteristics can be improved without deteriorating the magnetic characteristics of the obtained magnet, but when the Co substitution amount exceeds 20% of Fe, the magnetic characteristics are deteriorated.
Not preferred. The substitution amount of Co is 5 atomic% in the total amount of Fe and Co.
In the case of up to 15 atom%, (Br) increases as compared with the case where no substitution is carried out, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石は、R,B,Feの他、工業
的生産上不可避的不純物の存在を許容できるが、Bの一
部を4.0原子%以下のC、3.5原子%以下のP、2.5原子
%以下のS、3.5原子%以下のCuのうち少なくとも1
種、合計量で4.0原子%以下で置換することにより、永
久磁石の製造性改善、低価格化が可能である。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom% or less of P, At least one of 2.5 atomic% or less S and 3.5 atomic% or less Cu
It is possible to improve the manufacturability of permanent magnets and reduce the cost by substituting the total amount of seeds by 4.0 at% or less.

また、下記添加元素のうち少なくとも1種は、R−B
−Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。
Further, at least one of the following additional elements is RB
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含
有する場合は、その最大含有量は当該添加元素のうち最
大値を有するものの原子%以下を含有させることによ
り、永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is Inclusion of atomic% or less of the additive element having the maximum value makes it possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合
金粉末より、すぐれた磁気特性を有する焼結永久磁石を
作製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明による永久磁石は平均結晶粒径が1〜
80μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。
Further, the permanent magnet according to the present invention has an average crystal grain size of 1 to
A compound having a tetragonal crystal structure in the range of 80 μm as a main phase and a nonmagnetic phase (excluding an oxide phase) of 1% to 50% by volume is characterized.

この発明による永久磁石は、保磁力iHc≧1kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(BH)max
は、(BH)max≧10MGOeを示し、最大値は25MGOe以上に
達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe and a residual magnetic flux density Br> 4 kG, and has a maximum energy product (BH) max.
Indicates (BH) max ≧ 10MGOe, and the maximum value reaches 25MGOe or more.

また、この発明による永久磁石のRの主成分が、その
50%以上をNd及びPrを主とする軽希土類金属が占める場
合で、R12原子%〜20原子%、B4原子%〜24原子%、Fe7
4原子%〜80原子%、を主成分とするとき、(BH)max35
MGOe以上のすぐれた磁気特性を示し、特に軽希土類金属
がNdの場合には、その最大値が45MGOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is
When the light rare earth metal mainly composed of Nd and Pr occupies 50% or more, R12 atom% to 20 atom%, B4 atom% to 24 atom%, Fe7
When the main component is 4 atom% to 80 atom%, (BH) max35
It exhibits excellent magnetic properties above MGOe, and its maximum reaches 45 MGOe or above, especially when the light rare earth metal is Nd.

また、80℃、相対湿度90%の環境に長時間放置する耐
食試験で、極めて高い耐食性を示すこの発明による永久
磁石として、 Nd11at%〜15at%、Dy0.2at%〜3.0at%、かつNdとDy
の総量が12at%〜17at%であり、B5at%〜8at%、Co0.5
at%〜13at%、Al0.5at%〜4at%、C1000ppm以下を含有
し、残部F及び不可避的不純物からなる場合が好まし
い。
In addition, as a permanent magnet according to the present invention showing extremely high corrosion resistance in a corrosion resistance test of leaving it in an environment of 80 ° C. and 90% relative humidity for a long time, Nd11at% to 15at%, Dy0.2at% to 3.0at%, and Nd Dy
The total amount of 12at% to 17at%, B5at% to 8at%, Co0.5
It is preferable that it contains at% to 13 at%, Al0.5 at% to 4 at%, C 1000 ppm or less, and the balance F and unavoidable impurities.

実 施 例 以下に、実施例及び比較例によりこの発明を説明す
る。
Examples The present invention will be described below with reference to Examples and Comparative Examples.

実施例 出発原料として、純度99.9%の電解鉄、B19.4%含有
のフェロボロン合金、純度99.7%以上のNd、Dyを使用
し、これらを配合した後、高周波溶解して鋳造し、14Nd
−0.5Dy−7B−78.5Feなる組成(at%)の鋳塊を得た。
Example As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy containing B19.4%, Nd having a purity of 99.7% or more, and Dy are used, and after blending these, high-frequency melting and casting, 14Nd
An ingot having a composition (at%) of −0.5Dy-7B-78.5Fe was obtained.

その後、この鋳塊を微粉砕し、平均粒度3μmの微粉
砕粉を得た。
Then, this ingot was finely pulverized to obtain finely pulverized powder having an average particle size of 3 μm.

この微粉砕粉をプレス装置の金型に装入し、12kOeの
磁界中で配向し、磁界に平行方向に1.5ton/cm2の圧力で
成形して、得られた成形体を1100℃、2時間、Ar雰囲気
中の条件で焼結後、更にAr雰囲気中で800℃、1時間、
次に630℃、1.5時間の時効処理を行い、焼結磁石体を得
た。
This finely pulverized powder was put into a die of a press machine, oriented in a magnetic field of 12 kOe, and molded at a pressure of 1.5 ton / cm 2 in a direction parallel to the magnetic field, and the obtained molded body was heated at 1100 ° C for 2 After sintering in Ar atmosphere for 800 hours in Ar atmosphere for 1 hour,
Then, aging treatment was performed at 630 ° C. for 1.5 hours to obtain a sintered magnet body.

得られた永久磁石体から径12mm×厚み2mm寸法の試験
片を作製した。
A test piece having a diameter of 12 mm and a thickness of 2 mm was prepared from the obtained permanent magnet body.

この焼結磁石体試験片の磁石特性を第1表に示す。 The magnet characteristics of this sintered magnet body test piece are shown in Table 1.

次に、得られた焼結磁石体試験片を、真空度0.05Torr
の雰囲気でイオンスパッター法により、PdPt合金膜を被
着した。
Next, the obtained sintered magnet test piece was subjected to a vacuum degree of 0.05 Torr.
The PdPt alloy film was deposited by the ion sputtering method in the atmosphere.

さらに、PdPt合金膜を表面に被着した上記試験片に、
真空度10-6Torrの雰囲気中で真空蒸着法によりNi膜を表
面に被着した。
Furthermore, on the above-mentioned test piece coated with a PdPt alloy film on the surface,
A Ni film was deposited on the surface by a vacuum deposition method in an atmosphere having a vacuum degree of 10 -6 Torr.

得られた焼結磁石体試験片は表面に金属光沢を有して
いた。
The obtained sintered magnet body test piece had a metallic luster on the surface.

次に、ICAP575型発光プラズマ分光分析計を用いて測
定した、前記永久磁石の発光プラズマ分光分析の結果
は、 試料重量当たり、Pdは0.01wt%、Niは1.2wt%であ
り、 Pd層厚は50Å、Ni層厚は5.0μmであった。
Next, the results of the emission plasma spectroscopic analysis of the permanent magnet, measured using an ICAP575 type emission plasma spectrophotometer, show that Pd was 0.01 wt% and Ni was 1.2 wt% and the Pd layer thickness was 50Å, Ni layer thickness was 5.0 μm.

また、表面処理後のこの発明による永久磁石の磁石特
性を第1表に表す。
Table 1 shows the magnetic characteristics of the permanent magnet according to the present invention after the surface treatment.

その後、得られたこの発明の永久磁石を、温度80℃、
相対湿度90%の条件下で500時間放置した後の外観、磁
石特性、及びその劣化状況を測定した。その結果を第1
表に表す。
Then, the obtained permanent magnet of the present invention,
The appearance, the magnet characteristics, and the deterioration state after standing for 500 hours under the condition of relative humidity of 90% were measured. The result is first
Shown in the table.

実施例2 実施例1と同一の焼結磁石体試験片を用いて、粒径が
約20Åのパラジウムコロイドが分散しているトルエン中
に、上記試験片を10分間浸漬した後、分散媒のトルエン
を蒸発させ、パラジウムコロイドを表面に吸着させたNd
−Dy−B−Fe系永久磁石を得た。
Example 2 Using the same sintered magnet body test piece as in Example 1, the test piece was immersed in toluene in which a palladium colloid having a particle size of about 20Å was dispersed for 10 minutes, and then the toluene dispersion medium was used. Nd adsorbed palladium colloid on the surface
A -Dy-B-Fe based permanent magnet was obtained.

さらに、PdPt合金膜を表面に被着した上記試験片に、
真空度10-6Torrの雰囲気中で真空蒸着法によりNi膜を表
面に被着した。
Furthermore, on the above-mentioned test piece coated with a PdPt alloy film on the surface,
A Ni film was deposited on the surface by a vacuum deposition method in an atmosphere having a vacuum degree of 10 -6 Torr.

得られた焼結磁石体試験片は表面に金属光沢を有して
いた。
The obtained sintered magnet body test piece had a metallic luster on the surface.

次に、ICAP575型発光プラズマ分光分析計を用いて測
定した、前記永久磁石の発光プラズマ分光分析の結果
は、 試料重量当たり、Pdは0.01wt%、Niは1.5wt%であ
り、 Pd層厚は60Å、Ni層厚は5.0μmであった。
Next, the results of the emission plasma spectroscopic analysis of the permanent magnet, measured using an ICAP575 type emission plasma spectrophotometer, show that Pd is 0.01 wt% and Ni is 1.5 wt% and the Pd layer thickness is 60Å, Ni layer thickness was 5.0 μm.

また、表面処理後のこの発明による永久磁石の磁石特
性を第1表に表す。
Table 1 shows the magnetic characteristics of the permanent magnet according to the present invention after the surface treatment.

その後、得られたこの発明の永久磁石を、温度80℃、
相対湿度90%の条件下で500時間放置した後の外観、磁
石特性、及びその劣化状況を測定した。その結果を第1
表に表す。
Then, the obtained permanent magnet of the present invention,
The appearance, the magnet characteristics, and the deterioration state after standing for 500 hours under the condition of relative humidity of 90% were measured. The result is first
Shown in the table.

実施例3 実施例1と同一の焼結磁石体試験片を用いて、粒径が
200Å〜300Åの酸化アルミニウムコロイド(日本アエロ
ジル社製“aluminium OxideC")0.4gが分散しているア
セトン中に、上記試験片を10分間浸漬した後、分散媒の
アセトンを蒸発させ、酸化アルミニウムコロイドを表面
に吸着させた試験片を得た。
Example 3 Using the same sintered magnet body test piece as in Example 1, the particle size was
After dipping the above test piece for 10 minutes in acetone containing 0.4 g of 200 Å to 300 Å aluminum oxide colloid ("aluminium Oxide C" manufactured by Nippon Aerosil Co., Ltd.), the dispersion medium acetone was evaporated to form an aluminum oxide colloid. A test piece adsorbed on the surface was obtained.

続いて、粒径が約30Åのパラジウムコロイドが分散し
ている純水中に、酸化アルミニウムコロイドを表面に吸
着させた上記試験片を15分間浸漬したのち、水洗、乾燥
させ、パラジウムコロイドを表面に吸着させたNd−Dy−
B−Fe系永久磁石試験片を得た。
Then, in pure water in which a palladium colloid with a particle size of about 30Å is dispersed, soak the above test piece with the aluminum oxide colloid adsorbed on the surface for 15 minutes, then wash with water and dry it, and then put the palladium colloid on the surface. Adsorbed Nd-Dy-
A B-Fe based permanent magnet test piece was obtained.

さらに、パラジウムコロイドを表面に被着した上記試
験片に、真空度10-6Torrの雰囲気中で真空蒸着法により
Ni膜を表面に被着した。
Furthermore, the above-mentioned test piece coated with palladium colloid on the surface was vacuum-deposited in an atmosphere with a vacuum degree of 10 -6 Torr.
A Ni film was deposited on the surface.

得られた焼結磁石体試験片は表面に金属光沢を有して
いた。
The obtained sintered magnet body test piece had a metallic luster on the surface.

次に、ICAP575型発光プラズマ分光分析計を用いて測
定した、前記永久磁石の発光プラズマ分光分析の結果
は、 試料重量当たり、Pdは0.01wt%、Niは1.5wt%であ
り、 Pd層厚は60Å、Ni層厚は5.0μmであった。
Next, the results of the emission plasma spectroscopic analysis of the permanent magnet, measured using an ICAP575 type emission plasma spectrophotometer, show that Pd is 0.01 wt% and Ni is 1.5 wt% and the Pd layer thickness is 60Å, Ni layer thickness was 5.0 μm.

また、表面処理後のこの発明による永久磁石の磁石特
性を第1表に表す。
Table 1 shows the magnetic characteristics of the permanent magnet according to the present invention after the surface treatment.

その後、得られたこの発明の永久磁石を、温度80℃、
相対湿度90%の条件下で500時間放置した後の外観、磁
石特性、及びその劣化状況を測定した。その結果を第1
表に表す。
Then, the obtained permanent magnet of the present invention,
The appearance, the magnet characteristics, and the deterioration state after standing for 500 hours under the condition of relative humidity of 90% were measured. The result is first
Shown in the table.

比較例 実施例と同一組成、同一製造条件で得られた焼結磁石
体に、実施例1と同一条件で真空蒸着を行い、Ni膜を被
着した。Ni膜厚は5.1μmであり、鈍い金属光沢を有し
ていた。
Comparative Example A sintered magnet body obtained under the same composition and under the same manufacturing conditions as in Example was vacuum-deposited under the same conditions as in Example 1 to deposit a Ni film. The Ni film thickness was 5.1 μm and had a dull metallic luster.

得られた比較の永久磁石を、温度80℃、相対湿度90%
の条件下で500時間放置した後の外観、磁石特性、及び
その劣化状況を測定した。その結果を第1表に示す。
The obtained comparative permanent magnet was tested at a temperature of 80 ° C and a relative humidity of 90%.
The appearance, the magnet characteristics, and the deterioration state thereof after standing for 500 hours under the above conditions were measured. The results are shown in Table 1.

この発明による永久磁石は、第1表の耐食試験前後の
外観、磁石特性及び該特性の劣化率に明らかなように、
すぐれた初期磁石特性からの劣化が少なく、すぐれた耐
食性と磁石特性の安定性を有することが明らかである。
The permanent magnet according to the present invention, as shown in Table 1, shows the appearance before and after the corrosion resistance test, the magnet characteristics, and the deterioration rate of the characteristics,
It is clear that there is little deterioration from the excellent initial magnet characteristics, and that it has excellent corrosion resistance and stability of the magnet characteristics.

発明の効果 この発明によるFe−B−R系永久磁石体は、実施例の
如く、苛酷な耐食試験条件、特に、温度80℃、相対湿度
90%の条件下で、500時間放置した後、その磁石特性の
劣化は初期磁石特性の5%以下の低下にすぎず、現在、
最も要求されている高性能永久磁石として安価に提供で
きる。
EFFECTS OF THE INVENTION The Fe-BR type permanent magnet body according to the present invention is subjected to severe corrosion resistance test conditions, in particular, a temperature of 80 ° C. and a relative humidity, as in Examples.
After being left for 500 hours under the condition of 90%, the deterioration of the magnet characteristics is only 5% or less of the initial magnet characteristics.
It can be provided at low cost as the most demanded high-performance permanent magnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 浩子 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 今井 知之 広島県広島市中区舟入南4丁目1−2 戸 田工業株式会社創造センター内 (72)発明者 松井 敏樹 広島県広島市中区舟入南4丁目1−2 戸 田工業株式会社創造センター内 (72)発明者 堀石 七生 広島県広島市中区舟入南4丁目1−2 戸 田工業株式会社創造センター内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroko Nakamura Inventor Hiroko Nakamura 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Yamazaki Works Sumitomo Special Metals Co., Ltd. (72) Tomoyuki Imai Funairi Minami, Naka-ku, Hiroshima-shi, Hiroshima 4-1-2 Toda Kogyo Co., Ltd. Creation Center (72) Inventor Toshiki Matsui 4-1-2 Funaruinami Naka-ku, Hiroshima City, Hiroshima Prefecture Toda Kogyo Co., Ltd. Creation Center (72) Inventor Horiishi Nanao Hiroshima 1-2, Funairi Minami, Naka-ku, Hiroshima-shi, Toda

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種からなる)10原子
%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる焼結永久磁石体表面に、 Pd、Ag、Pt及びAuから選ばれた少なくとも1種の貴金属
またはこれらの合金の薄膜を設けた後、 さらに、Ni、Cu、Sn、Al、Cr、Zn及びCoから選ばれた少
なくとも1種の金属またはこれらの合金の薄膜を気相成
膜法にて設けたことを特徴とする耐食性永久磁石の製造
方法。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, T
m, Yb, Lu, and Y) consisting of at least 1) 10 atom% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to 80 atom% as main components, and main phase from tetragonal phase After providing a thin film of at least one noble metal selected from Pd, Ag, Pt and Au on the surface of the sintered permanent magnet body, the Ni, Cu, Sn, Al, Cr, Zn and A method for producing a corrosion-resistant permanent magnet, characterized in that a thin film of at least one metal selected from Co or an alloy thereof is provided by a vapor deposition method.
JP62100981A 1987-03-26 1987-04-23 Method for manufacturing corrosion-resistant permanent magnet Expired - Fee Related JPH0831365B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62100981A JPH0831365B2 (en) 1987-04-23 1987-04-23 Method for manufacturing corrosion-resistant permanent magnet
US07/172,395 US4942098A (en) 1987-03-26 1988-03-24 Corrosion resistant permanent magnet
US07/454,451 US4968529A (en) 1987-03-26 1989-12-21 Process for producing a corrosion resistant permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100981A JPH0831365B2 (en) 1987-04-23 1987-04-23 Method for manufacturing corrosion-resistant permanent magnet

Publications (2)

Publication Number Publication Date
JPS63266021A JPS63266021A (en) 1988-11-02
JPH0831365B2 true JPH0831365B2 (en) 1996-03-27

Family

ID=14288514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100981A Expired - Fee Related JPH0831365B2 (en) 1987-03-26 1987-04-23 Method for manufacturing corrosion-resistant permanent magnet

Country Status (1)

Country Link
JP (1) JPH0831365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572673B2 (en) 2011-07-08 2014-08-13 昭和電工株式会社 R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor

Also Published As

Publication number Publication date
JPS63266021A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
US4968529A (en) Process for producing a corrosion resistant permanent magnet
JPH0432523B2 (en)
JPS62192566A (en) Permanent magnet material and its production
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP2724391B2 (en) Corrosion resistant permanent magnet
JPH0831365B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JPH0569282B2 (en)
JP2631479B2 (en) Corrosion resistant permanent magnet and method for producing the same
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JP2526076B2 (en) Permanent magnet manufacturing method
JPS63255376A (en) Production of corrosion resistant permanent magnet
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JPH0831364B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH0535216B2 (en)
JPH069169B2 (en) Fe-BR resin-bonded magnet with excellent corrosion resistance
JP3234306B2 (en) Corrosion resistant permanent magnet
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07272922A (en) Manufacture of fe-b-r resin bonded magnet excellent in corrosion resistance
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0752685B2 (en) Corrosion resistant permanent magnet
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees