JPH08313431A - Spectroscopic measuring device - Google Patents

Spectroscopic measuring device

Info

Publication number
JPH08313431A
JPH08313431A JP7143877A JP14387795A JPH08313431A JP H08313431 A JPH08313431 A JP H08313431A JP 7143877 A JP7143877 A JP 7143877A JP 14387795 A JP14387795 A JP 14387795A JP H08313431 A JPH08313431 A JP H08313431A
Authority
JP
Japan
Prior art keywords
measured
sample
light
light amount
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7143877A
Other languages
Japanese (ja)
Other versions
JP3415329B2 (en
Inventor
Satoru Satake
覺 佐竹
Masanori Matsuda
真典 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP14387795A priority Critical patent/JP3415329B2/en
Publication of JPH08313431A publication Critical patent/JPH08313431A/en
Application granted granted Critical
Publication of JP3415329B2 publication Critical patent/JP3415329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To easily and accurately estimate the direct quantity of light at a time of the measurement of a sample to be measured by measuring the direct quantity of light of a light source before or after the quantity of transmitted light of the sample is measured. CONSTITUTION: Before the quantity of transmitted light of a sample leaf 19 to be measured is measured, a plurality of the direct quantities of light of a light source 10 are measured at a unit time (e.g. 3sec) interval to obtain values R1 , R2 . A worker pushes a push button 15 on the basis of the measuring completion signal of the value R2 to open the upper lid 12 closing a quantity-of-light detector 11 to insert the leaf 19. The button 15 is released to close the upper lid 12 and the quantity S of transmitted light of the leaf 19 is measured after 3sec. By processing the obtained values S, R1 , R2 the direct quantity-of-light value R' of the light source 10 at the time of the measurement of the leaf 19 can be estimated by formula R'=2R2 -R1 . Therefore, the quantity-of-light value R' of the light source 10 incaple of being measured simultaneously with the measurement of the quantity S of light of the leaf 19 can be estimated and accurate absorbancy having no error caused by a change with the elapse of time can be operated from the value R'. Transmissivity can be also accurately calculated by the operation of the value R'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定サンプルの透過
光量を測定して、演算によって透過率あるいは吸光度等
を演算する分光分析測定装置に関し、特に光源光量の経
時変化による測定デ−タの誤差を補正して正確な透過率
あるいは吸光度等が測定演算できるようにした分光分析
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic analysis measuring device for measuring the amount of transmitted light of a sample to be measured and calculating transmittance or absorbance by calculation. The present invention relates to a spectroscopic analysis measurement device that corrects an error so that accurate transmittance or absorbance can be measured and calculated.

【0002】[0002]

【従来の技術】被測定サンプルの透過光量を測定して透
過率あるいは吸光度等を演算する従来技術は、基準サン
プルの透過光量あるいは反射光量を測定してその後被測
定サンプルの透過光量あるいは反射光量を測定し、これ
らの測定結果から反射率、透過率あるいは吸光度等を演
算で求めていた。
2. Description of the Related Art A conventional technique for measuring the amount of transmitted light of a sample to be measured to calculate the transmittance or the absorbance is to measure the amount of transmitted light or the amount of reflected light of a reference sample and then measure the amount of transmitted light or the amount of reflected light of the sample to be measured. The measurement was performed, and the reflectance, the transmittance, the absorbance, or the like was calculated from these measurement results.

【0003】[0003]

【発明が解決しようとする課題】一般的にこれらの分光
分析測定装置に使用される光源は、点灯して時間が経過
すると光源の温度上昇に伴って光量が変化する傾向が明
らかである。従って、基準となる光源光量が変化してい
るために、特に測定サンプルを手動で入れ替えるような
試験用測定装置や携帯型の測定装置などのように、基準
の透過光量を測定する時刻と被測定サンプルの透過光量
を測定する時刻とに大きな時間的差が生じると、基準と
被測定サンプルの測定時刻における光源光量にも差を生
じることになる。つまり光源の光量差による測定誤差を
生じていることになる。しかも光源の温度や上昇率は環
境条件によって大きく異なるため単に点灯経過時間など
一定の補正を加えるようなことで簡単に補正することは
できないものである。しかし一般的には、時差を持って
測定された基準光のデ−タ値(R)と被測定サンプルの
透過光量値(S)とを利用して次式によって吸光度等が
求められていた。
Generally, it is clear that the light sources used in these spectroscopic analysis measurement devices tend to change in light quantity as the temperature of the light sources rises with the passage of time after lighting. Therefore, because the light source light quantity that is the reference is changing, the time when the reference transmitted light quantity is measured and the measured value are measured, especially in the case of a test measuring device or a portable measuring device that manually replaces the measurement sample. When a large time difference occurs between the time when the transmitted light amount of the sample is measured, the light source light amount at the measurement time of the reference sample and the measurement time of the sample is also changed. That is, the measurement error is caused by the difference in the light amount of the light source. Moreover, since the temperature and rate of rise of the light source vary greatly depending on the environmental conditions, it cannot be easily corrected by simply adding a fixed correction such as the lighting elapsed time. However, in general, the absorbance and the like have been obtained by the following equation using the data value (R) of the reference light measured with a time difference and the transmitted light amount value (S) of the sample to be measured.

【0004】[0004]

【数1】 前述のように測定時における光源光量が異なるので求め
られた値に誤差が含まれている。このような誤差をなく
すためには、基準サンプルと被測定サンプルとは同じ光
源光量のもとで、時間的には光源光量と被測定サンプル
の透過光量とを同時に測定することが不可欠となる。し
かし、これを実現しようとすれば光量検出器を複数個設
けたり温度センサ−を設けたりと、そのために装置が複
雑化してなお光量検出器等の増加で装置が高価になるな
どの実現不可能な要素が多く残っていた。
[Equation 1] As described above, the light amount of the light source at the time of measurement is different, and thus the obtained value includes an error. In order to eliminate such an error, it is essential that the reference sample and the sample to be measured have the same light source light amount, and the light source light amount and the transmitted light amount of the measured sample are simultaneously measured in terms of time. However, if it is attempted to realize this, a plurality of light quantity detectors or a temperature sensor will be provided, which complicates the apparatus, and the number of light quantity detectors and the like will increase, making the apparatus expensive. Many elements remained.

【0005】以上のことから、本発明では、分光分析に
おける光源光量の経時変化による測定デ−タの誤差を補
正するために、測定作業者の負担を増やすことなく、ま
た簡単な構造の測定装置によって補正手段を備えた分光
分析測定装置の提供を技術的課題としたものである。
From the above, according to the present invention, in order to correct the error of the measurement data due to the temporal change of the light amount of the light source in the spectroscopic analysis, the measuring device does not increase the burden on the measuring operator and has a simple structure. The technical problem is to provide a spectroscopic analysis measurement device equipped with a correction means.

【0006】[0006]

【課題を解決するための手段】本発明によると、光源
と、該光源から入射する特定波長の光量を検出する単一
の光量検出装置とを任意の間隔をもって対向させ、光源
と光量検出装置との間に被測定サンプルを挿入して該サ
ンプルの透過光量を測定し、被測定サンプルの透過率あ
るいは吸光度等を演算装置で算出するようにした分光分
析測定装置であって、光量検出装置では、被測定サンプ
ルを挿入して測定した時の被測定サンプル透過光量
(S)と、該被測定サンプルの透過光量(S)を測定し
た前後あるいはいずれかにおける、光源を直接測定した
複数の直接光量(Rn )とを、単位時間ごとに測定し
て、演算装置では、複数の直接光量(Rn )値から被測
定サンプルを測定した時刻における直接光量(R’)値
を予測すると共に、該予測した直接光量(R’)値と被
測定サンプル透過光量(S)とから被測定サンプルの透
過率あるいは吸光度等を演算するようにした分光分析測
定装置を提供することで前記課題を解決するための手段
とした。
According to the present invention, a light source and a light amount detecting device are arranged so that a light source and a single light amount detecting device for detecting the light amount of a specific wavelength incident from the light source are opposed to each other at an arbitrary interval. A sample to be measured is inserted between and the amount of transmitted light of the sample is measured, and the transmittance or the absorbance of the sample to be measured is a spectroscopic analysis measurement device that is calculated by an arithmetic device, and in the light amount detection device, The transmitted light amount (S) of the measured sample when the measured sample is inserted and measured, and a plurality of direct light amounts of the light source directly measured before or after measuring the transmitted light amount (S) of the measured sample ( Rn) is measured for each unit time, and the arithmetic unit predicts the direct light quantity (R ′) value at the time when the sample to be measured is measured from the plurality of direct light quantity (Rn) values, and Means for solving the above-mentioned problems by providing a spectroscopic analysis measuring device that calculates the transmittance or the absorbance of a sample to be measured from the direct light amount (R ′) value and the amount of transmitted light (S) of the sample to be measured. And

【0007】更に、前記演算装置では、単位時間ごとに
測定した複数の直接光量(Rn )から、光源の点灯時間
に対する光量変化を推測し、該光量変化から予測される
光量特性直線を決定して、被測定サンプルの透過光量
(S)を測定した時刻における光源の直接光量(R’)
を算出し、該算出した直接光量(R’)と被測定サンプ
ル透過光量(S)とから被測定サンプルの透過率あるい
は吸光度等を演算するようにした。
Further, in the arithmetic unit, a light quantity change with respect to the lighting time of the light source is estimated from a plurality of direct light quantities (Rn) measured for each unit time, and a light quantity characteristic straight line predicted from the light quantity change is determined. , The direct light quantity (R ') of the light source at the time when the transmitted light quantity (S) of the sample to be measured is measured
Was calculated, and the transmittance or the absorbance of the measured sample was calculated from the calculated direct light amount (R ′) and the measured sample transmitted light amount (S).

【0008】[0008]

【作用】本発明は、光源と、該光源から入射する特定波
長の光量を検出する単一の光量検出装置とを任意の間隔
をもって対向させ、光源と光量検出装置との間に被測定
サンプルを挿入して該サンプルの透過光量を測定し、被
測定サンプルの透過率あるいは吸光度等を演算装置で算
出するようにした分光分析測定装置において、測定作業
者が意識するような作業上の負担をかけることなく、分
光分析測定装置が被測定サンプルの透過光量測定の前後
あるいはいずれか一方において行う光源の直接光量測定
と該測定値からサンプルの透過光量測定時における光源
の直接光量を予測することによって、より正確な測定結
果が得られる分光分析測定装置が安価に提供できるもの
となった。
According to the present invention, the light source and the single light amount detecting device for detecting the light amount of the specific wavelength incident from the light source are opposed to each other at an arbitrary interval, and the sample to be measured is placed between the light source and the light amount detecting device. In a spectroscopic measurement device that is inserted to measure the amount of transmitted light of the sample and calculate the transmittance or absorbance of the sample to be measured with a computing device, put a work burden on the measurement operator Without, by spectroscopic analysis measuring device before and / or after the transmitted light amount measurement of the sample to be measured by direct light amount measurement of the light source and by predicting the direct light amount of the light source at the time of measuring the transmitted light amount of the sample from the measured value, A spectroscopic measurement device that can obtain more accurate measurement results can now be provided at low cost.

【0009】詳細について説明すると、まず光量検出器
では、被測定サンプルを挿入して測定した時のサンプル
透過光量(S)と、該被測定サンプルの透過光量を測定
した前後あるいはいずれかにおける、光源を直接測定し
た複数の直接光量(Rn )とを、単位時間ごとに測定す
るようにした。例えば3秒間隔で複数の直接光量(R1
〜Rn )を測定したあとで被測定サンプルを挿入してそ
の透過光量(S)を測定する。このとき、最後の直接光
量測定時刻と被測定サンプル測定時刻との間隔は同じ3
秒である。
More specifically, first, in the light amount detector, the sample transmitted light amount (S) when the sample to be measured is inserted and measured, and the light source before and / or after the transmitted light amount of the sample to be measured is measured. And a plurality of direct light quantities (Rn) directly measured at each unit time. For example, multiple direct light amounts (R1
˜Rn), the sample to be measured is inserted and the amount of transmitted light (S) is measured. At this time, the interval between the last direct light amount measurement time and the measured sample measurement time is the same 3
Seconds.

【0010】更に具体的には、分光分析測定装置の電源
投入後、作業者の測定開始ボタンの押下等で測定作業を
開始する。最初は複数の直接光量(R1 〜Rn )を装置
側で自動的に測定し、最後の直接光量(Rn )の測定が
終了するとランプやディスプレイ等のシグナルで作業者
に終了を伝え、作業者はこのシグナルを確認して3秒以
内に光量検出装置部分を遮へいするカバ−を開き、被測
定サンプルを挿入して閉じることで透過光量(S)も単
位時間ごとに測定できる。作業者が3秒を超えた場合に
はエラ−表示して作業者は再度測定開始ボタンを押して
作業を繰り返して行う。これで作業者は、シグナルを待
って被測定サンプルを挿入する作業だけを行えばよく、
光源の温度特性などを考える必要はない。 ところでこ
の測定作業工程は次のようにもできる。つまり、分光分
析測定装置の電源投入後、光量検出装置部分を遮へいす
るカバ−を開いて被測定サンプルを挿入して閉じること
で光量検出装置が被測定サンプルの挿入を感知するか、
あるいは測定作業者による測定ボタンの押下等によって
被測定サンプルが挿入されたことを感知するようにして
おくことにより、被測定サンプルの透過光量(S)を測
定開始する。被測定サンプルの測定が終了すると、ラン
プやディスプレイ等のシグナルで作業者に終了を伝え、
作業者はこのシグナルを確認して3秒以内に被測定サン
プルを取り去りカバ−等を閉じて、その後被測定サンプ
ルの測定時刻も含めて3秒間隔で複数の直接光量(R1
〜Rn )を測定する。このような作業工程でも本発明の
目的は達成される。
More specifically, after the power supply of the spectroscopic analysis measurement device is turned on, the measurement work is started by the operator depressing the measurement start button or the like. At the beginning, a plurality of direct light quantities (R1 to Rn) are automatically measured on the device side, and when the measurement of the last direct light quantity (Rn) is finished, the operator is notified of the end by a signal such as a lamp or a display. The transmitted light amount (S) can also be measured every unit time by opening the cover that shields the light amount detection device portion within 3 seconds after confirming this signal and inserting and closing the sample to be measured. If the operator exceeds 3 seconds, an error is displayed and the operator presses the measurement start button again to repeat the work. Now the operator only has to wait for the signal and insert the sample to be measured,
It is not necessary to consider the temperature characteristics of the light source. By the way, this measuring operation step can also be performed as follows. That is, after the power supply of the spectroscopic analysis measuring device is turned on, whether the light amount detecting device senses the insertion of the sample to be measured by opening the cover that shields the light amount detecting device portion and inserting and closing the sample to be measured,
Alternatively, the amount of transmitted light (S) of the sample to be measured is started by sensing that the sample to be measured has been inserted by the measurement operator pressing the measurement button or the like. When the measurement of the sample to be measured is completed, the operator is notified of the end by a signal such as a lamp or display,
The operator confirms this signal, removes the sample to be measured within 3 seconds, closes the cover, etc., and then includes multiple direct light quantities (R1) at intervals of 3 seconds including the measurement time of the sample to be measured.
~ Rn) is measured. The object of the present invention can be achieved even with such a work process.

【0011】また、直接光量の測定は、被測定サンプル
の透過光量を測定する前後でおこなってもよい。また、
実際の被測定サンプルの透過光量測定で行う作業は、被
測定サンプルを光源と光量検出装置との間に挿入する作
業と被測定サンプルを挿入して光量検出装置に外光が入
らないように遮へいするカバ−仕様のものを閉じる作業
であり、他の直接光量の測定については測定装置側で自
動的に測定することが容易に実現できることから、すべ
ての作業はきわめて簡単に完結する。
The direct light quantity may be measured before and after measuring the transmitted light quantity of the sample to be measured. Also,
The work performed in the actual measurement of the transmitted light amount of the sample to be measured is to insert the sample to be measured between the light source and the light amount detection device and to insert the sample to be measured and shield it so that external light does not enter the light amount detection device. This is the work of closing the cover specification, and all the other work can be completed very easily because it is easy to automatically measure other direct light amounts on the measuring device side.

【0012】次に、演算装置では以上のようにして測定
された各光量は次のように演算処理される。被測定サン
プルの前後で測定された複数の直接光量(Rn )値は、
被測定サンプルと共に単位時間ごとに測定してあること
から、温度上昇による光源の光量変化が線形であると仮
定すれば、複数の直接光量と被測定サンプルの透過光量
測定時における光源の直接光量とは同じ線形の光量特性
の直線上にあることが想定できる。従って本発明では、
被測定サンプルの測定前後で測定した、複数の直接光量
の単位時間に対する光量変化から予測式を作り、被測定
サンプルを測定している時刻における直接光量値を予測
する。このようにして被測定サンプルを挿入した時刻に
おける直接光量(R’)値を予測することによって、被
測定サンプルを測定している時刻の直接光量と透過光量
とが明らかとなり、これらの値から、反射率、透過率あ
るいは吸光度等を演算し正確な値を知ることができる。
これは、従来のような被測定サンプルから光量デ−タを
得る時刻と、基準となる光量デ−タを得る時刻とに時差
を生じて、時間経過とともに変化する光源光量について
の配慮が全くなされていなかった技術に比較して、本発
明は被測定サンプルを測定している時刻の光源の直接光
量を知ることができるので、得られるデ−タの精度ある
いは信頼性は大きく向上した。
Next, in the arithmetic unit, each light quantity measured as described above is arithmetically processed as follows. The multiple direct light intensity (Rn) values measured before and after the measured sample are
Since it is measured together with the sample to be measured for each unit of time, assuming that the change in the light amount of the light source due to the temperature rise is linear, there are multiple direct light amounts and the direct light amount of the light source when measuring the transmitted light amount of the sample to be measured. Can be assumed to be on a straight line with the same linear light amount characteristic. Therefore, in the present invention,
A prediction formula is created from the light intensity changes per unit time of a plurality of direct light intensities measured before and after the measurement of the sample to be measured, and the direct light intensity value at the time when the sample to be measured is measured is estimated. By predicting the direct light amount (R ′) value at the time when the sample to be measured is inserted in this way, the direct light amount and the transmitted light amount at the time when the sample to be measured is measured become clear, and from these values, Accurate values can be known by calculating reflectance, transmittance or absorbance.
This is because a time difference is generated between the time when the light amount data is obtained from the sample to be measured and the time when the reference light amount data is obtained, and consideration is given to the light source light amount that changes with time. Since the present invention can know the direct light amount of the light source at the time when the sample to be measured is measured, the accuracy or reliability of the obtained data is greatly improved as compared with the technique which has not been described.

【0013】[0013]

【実施例】本発明に好適な実施例として、葉に近赤外光
を照射して、その吸光度と吸光度から求められる成分を
測定演算するような分光分析測定装置を例として図1と
図2に示して説明する。図1に示すものは、分光分析測
定装置1の主要部分の側断面図である。図1では、下方
の本体7内に光源10と、上部に光量検出装置11とし
てのフォトダイオ−ド9とを設けた構成となっている。
光源10は、同一円周上に異なる波長ピ−クを持つ複数
のLED2を配置して、該LED2にはそれぞれ波長帯
域の異なる狭帯域フィルタ−3を設けてある。波長帯域
は600nm〜1100nmで、この波長帯域から求める成
分に関係する任意の特定波長の狭帯域フィルタ−3を選
択してある。各LED2の発光する光は、狭帯域フィル
タ−3によって特定波長の光となって、光が透過する散
乱板4に入射する。この散乱板4の板厚内では光が拡散
して指向性を失ってしまう。散乱板4から出る指向性の
無くなった光は、内部を拡散作用のある円錐状の散乱壁
に形成した集光ブロック5に入射し、該集光ブロック5
内では、集光ブロック5と散乱板4とで囲まれた空間を
反射・拡散を繰り返しながら透明ガラス板6から光量検
出装置11に入射するようにしてある。光量検出装置1
1は、光源10と任意間隔をおいて、より詳しくは前記
光源10のガラス6との間に、被測定サンプルとなる葉
19が挿入できる間隔を置いて固設してある。
As a preferred embodiment of the present invention, FIG. 1 and FIG. 2 are taken as an example of a spectroscopic analysis measuring device for irradiating a leaf with near infrared light and measuring and calculating the absorbance and a component obtained from the absorbance. Will be described. FIG. 1 is a side sectional view of a main part of the spectroscopic analysis measurement device 1. In FIG. 1, a light source 10 is provided in the lower main body 7, and a photodiode 9 as a light amount detecting device 11 is provided in the upper portion.
The light source 10 has a plurality of LEDs 2 having different wavelength peaks arranged on the same circumference, and each LED 2 is provided with a narrow band filter-3 having a different wavelength band. The wavelength band is 600 nm to 1100 nm, and the narrow band filter-3 having an arbitrary specific wavelength related to the component obtained from this wavelength band is selected. The light emitted from each LED 2 becomes a light of a specific wavelength by the narrow band filter-3 and enters the scattering plate 4 through which the light passes. Within the thickness of the scattering plate 4, light diffuses and loses directivity. The light having no directivity emitted from the scattering plate 4 enters a condensing block 5 formed inside a conical scattering wall having a diffusing action, and the condensing block 5
Inside, the space surrounded by the light collecting block 5 and the scattering plate 4 is made to enter the light amount detecting device 11 from the transparent glass plate 6 while repeating reflection and diffusion. Light intensity detector 1
1 is fixed to the light source 10 at an arbitrary interval, and more specifically, is fixed to the glass 6 of the light source 10 with an interval into which a leaf 19 as a sample to be measured can be inserted.

【0014】さらに光量検出装置11の上部外周に上蓋
12を繞設して、該上蓋12から延長した腕16は支点
13によって軸支されている。更に、本体7に遊嵌して
上蓋12の腕16を押し下げる押しボタン15を設ける
と共に、押しボタン15とは逆方向に付勢するコイルバ
ネ17を設けてある。また前記押しボタン15と対向す
る本体7には、押しボタン15を押し下げたことを検知
するスイッチ18を設けてある。
Further, an upper lid 12 is provided on the outer periphery of the upper portion of the light quantity detecting device 11, and an arm 16 extending from the upper lid 12 is pivotally supported by a fulcrum 13. Further, a push button 15 that is loosely fitted to the main body 7 and pushes down the arm 16 of the upper lid 12 is provided, and a coil spring 17 that biases the push button 15 in the opposite direction is provided. The main body 7 facing the push button 15 is provided with a switch 18 for detecting that the push button 15 is pushed down.

【0015】次に、図2によって分光分析測定装置1の
ブロック図を示し説明する。光源10と、光量検出装置
11とからなる測定部8で検出される被測定サンプル葉
19の透過光量は、フォトダイオ−ド9によってアナロ
グの電気信号に変換されアナログボ−ド20に接続され
ている。光源10にはLED2の発光装置29を設けて
ある。アナログボ−ド20ではアナログからデジタル信
号へのA/D変換をするか、あるいは電圧から周波数へ
のV/F変換を行う。変換された信号はI/Oボ−ド2
1を経由して演算装置を含むCPUボ−ド22に入力さ
れる。アナログボ−ド20から発光装置29へLED2
発光の信号が出力される。前記I/Oボ−ド21には、
測定結果、演算結果あるいは操作指示を表示する液晶表
示器LCD23、初期デ−タを入力したり操作を行うキ
−ボ−ド24、外部装置とデ−タを入出力するRS23
2Cの接続ポ−ト25等を設けてある。これらCPUボ
−ド22とI/Oボ−ド21とは電源ボ−ド26に接続
してある。また、プリンタ28はプリンタI/Fボ−ド
27を介してCPUボ−ド22に接続してある。
Next, a block diagram of the spectroscopic analysis measurement device 1 will be shown and described with reference to FIG. The transmitted light amount of the sample leaf 19 to be measured detected by the measuring section 8 including the light source 10 and the light amount detection device 11 is converted into an analog electric signal by the photodiode 9 and connected to the analog board 20. . The light source 10 is provided with a light emitting device 29 for the LED 2. The analog board 20 performs A / D conversion from analog to digital signal or V / F conversion from voltage to frequency. The converted signal is I / O board 2
It is input to the CPU board 22 including the arithmetic unit via 1. LED2 from analog board 20 to light emitting device 29
A light emission signal is output. In the I / O board 21,
A liquid crystal display LCD23 for displaying measurement results, calculation results or operation instructions, a keyboard 24 for inputting and operating initial data, and an RS23 for inputting / outputting data to / from external devices.
A 2C connection port 25 and the like are provided. The CPU board 22 and the I / O board 21 are connected to a power supply board 26. The printer 28 is connected to the CPU board 22 via the printer I / F board 27.

【0016】このように構成された分光分析測定装置1
では、光源10と、入射する特定波長の光量を検出する
単一の光量検出装置11とを任意の間隔をもって対向さ
せ、光源10と光量検出装置11との間に被測定サンプ
ル葉19を挿入して該サンプル19の透過光量を測定
し、被測定サンプルの透過率あるいは吸光度等をCPU
ボ−ド22で算出するようにした分光分析測定装置1で
は、測定に対して測定作業者が意識するような負担をか
けることなく、装置側の測定システムによる定期的な光
源の直接光量のサンプル測定と該測定値によって得られ
るサンプル葉の透過光量測定時における光源の直接光量
の予測値によって、より正確な測定結果が得られる分光
分析測定装置が安価に提供できるものとなった。
The spectroscopic analysis measurement device 1 configured as described above
Then, the light source 10 and the single light amount detecting device 11 for detecting the incident light amount of the specific wavelength are opposed to each other at an arbitrary interval, and the sample leaf 19 to be measured is inserted between the light source 10 and the light amount detecting device 11. Then, the amount of transmitted light of the sample 19 is measured, and the transmittance or absorbance of the sample to be measured is measured by the CPU.
In the spectroscopic analysis measurement device 1 which is calculated by the board 22, the direct light amount sample of the light source is periodically sampled by the measurement system on the device side without burdening the measurement operator with the measurement. By the measurement and the predicted value of the direct light amount of the light source at the time of measuring the transmitted light amount of the sample leaf obtained by the measured value, it becomes possible to inexpensively provide a spectroscopic analysis measurement device that can obtain a more accurate measurement result.

【0017】次に被測定サンプルの透過光量測定値と光
源の直接光量測定値の演算処理について測定手順に沿っ
て説明する。分光分析測定装置1の電源投入後、作業者
の測定開始ボタンの押下あるいは電源の投入等で測定作
業が開始される。このとき基準サンプルを挿入測定し
て、基準サンプルから得られるデ−タによって初期設定
すれば、より正確に測定するための有効な手段となる。
Next, the calculation process of the measured value of the transmitted light amount of the sample to be measured and the measured value of the direct light amount of the light source will be described according to the measuring procedure. After the power supply of the spectroscopic analysis measurement device 1 is turned on, the measurement work is started by the operator depressing the measurement start button or turning on the power supply. At this time, if the reference sample is inserted and measured and the data is obtained from the reference sample and initialized, it becomes an effective means for more accurate measurement.

【0018】最初に分光分析測定装置1は、光源の光量
を直接測定して複数の直接光量値を得る。このときの複
数の直接光量は単位時間間隔例えば3秒間隔で測定さ
れ、時刻TR1, TR2時の値をR1 ,R2 とする。また最
後の直接光量(R2 )の測定が終了するとランプやディ
スプレイ等のシグナルで作業者に終了を伝え、作業者は
このシグナル、例えば液晶表示LCD23で「測定サン
プルを入れてください。」等の表示を確認して3秒以内
で、押しボタン15を押し下げ光量検出装置11部分を
遮へいする上蓋12を開いて、被測定サンプルを挿入し
て押しボタン15を放して上蓋12を閉じることで被測
定サンプルの透過光量(S)を3秒後のTS 時に測定し
て、単位時間ごとに測定できる。作業者が3秒を超えた
場合にはエラ−表示して作業者は再度測定開始ボタンを
押して最初から作業を繰り返して行う。これで作業者
は、シグナルを待って被測定サンプルを挿入する作業だ
けを行えばよい。被測定サンプルの挿入の確認は、押し
ボタン15の押し下げにより感知するスイッチ18の作
動によって測定装置に被測定サンプルが挿入できたと見
なすことができる。
First, the spectroscopic analysis measurement device 1 directly measures the light quantity of the light source to obtain a plurality of direct light quantity values. At this time, the plurality of direct light quantities are measured at unit time intervals, for example, at 3 second intervals, and the values at the times TR1 and TR2 are R1 and R2. When the final measurement of the direct light amount (R2) is completed, the operator is notified of the end by a signal such as a lamp or a display, and the operator displays this signal, for example, "Please insert the measurement sample" on the LCD 23. Within 3 seconds after confirming the condition, the push button 15 is pushed down to open the upper lid 12 that shields the light amount detection device 11 part, the sample to be measured is inserted, the push button 15 is released, and the upper lid 12 is closed to close the sample to be measured. The amount of transmitted light (S) can be measured at the time Ts after 3 seconds and measured every unit time. If the operator exceeds 3 seconds, an error is displayed and the operator presses the measurement start button again and repeats the work from the beginning. Now, the operator need only wait for the signal and insert the sample to be measured. The confirmation of the insertion of the sample to be measured can be regarded as that the sample to be measured can be inserted into the measuring device by the operation of the switch 18 which is sensed by pressing down the push button 15.

【0019】このようにして得られたサンプル透過光量
値(S)、直接光量値(R1 )(R2 )のデ−タはつぎ
のように処理される。光源光量が点灯時間の経過と共に
変化しその変化を線形と仮定すると、図3のように時刻
TR1, TR2, TS を等間隔で取って図示すると、光源の
光量変化は直接光量値(R1 )(R2 )によって線形の
光量特性直線を得ることができる。つまり各時刻間隔が
等しいとすれば、
The data of the sample transmitted light amount value (S) and the direct light amount value (R1) (R2) thus obtained are processed as follows. Assuming that the light intensity of the light source changes with the lapse of lighting time and the change is linear, if the time TR1, TR2, TS are shown at equal intervals as shown in FIG. 3, the light intensity change of the light source is the direct light intensity value (R1) A linear light quantity characteristic line can be obtained by R2). So if each time interval is equal,

【0020】[0020]

【数2】 と定義できると予測した。勿論この予測式に限定される
ものではないが、この予測式によって、サンプル葉の透
過光量測定と同時に測定できなかったサンプル透過光量
測定時の光源の直接光量値(R’)を予測することがで
きる。このようにして求められた光源の直接光量値
(R’)を「数1」の(R)に置き換えて、測定された
被測定サンプルの透過光量(S)を代入すれば、誤差の
ないより正確な吸光度を演算することができる。また、
透過率、反射率もこの値によって演算して正確な値を求
めることができる。
[Equation 2] It was predicted that it could be defined as Of course, it is not limited to this prediction formula, but this prediction formula can predict the direct light quantity value (R ′) of the light source at the time of measuring the sample transmitted light quantity that could not be measured simultaneously with the measurement of the transmitted light quantity of the sample leaf. it can. If the direct light amount value (R ′) of the light source obtained in this way is replaced with (R) of “Equation 1” and the measured transmitted light amount (S) of the measured sample is substituted, there is no error. Accurate absorbance can be calculated. Also,
Accurate values can be obtained by calculating the transmittance and the reflectance as well.

【0021】被測定サンプルの透過率を測定する前後
に、光源の直接光量を測定する工程を加えることによっ
て、同時に測定できなかったサンプル測定時の光源の直
接光量を容易に且つ正確に予測することができ、しかも
測定作業者にはそのための手間を必要とせず、被測定サ
ンプルを測定するこれまでの作業と同じ内容で、これま
で以上に正確な測定結果を得ることができるようになっ
た。
By adding a step of measuring the direct light quantity of the light source before and after measuring the transmittance of the sample to be measured, it is possible to easily and accurately predict the direct light quantity of the light source at the time of measuring the sample, which could not be simultaneously measured. In addition, the measurement operator does not need to take the trouble to do so, and it is possible to obtain a more accurate measurement result with the same content as the operation up to now for measuring the sample to be measured.

【0022】ところでこの測定作業工程は次のようにも
できる。つまり、分光分析測定装置1の電源投入後、光
量検出装置11部分を遮へいする上蓋12を押しボタン
15を押して開き被測定サンプル19を挿入して閉じる
ことで光量検出装置11に被測定サンプル19が挿入さ
れたことを感知すると、被測定サンプル19の透過光量
(S)を測定する。被測定サンプル19の測定が終了す
ると、液晶表示LCD23等のシグナルで作業者に被測
定サンプル19の透過光量の測定終了を伝え、作業者は
このシグナルを確認して3秒以内に被測定サンプル19
を取り去り、その後、被測定サンプル19の測定も合わ
せて3秒間隔で複数の直接光量(R1 〜Rn )を測定す
る。このような作業工程でも本発明の目的は達成され
る。
By the way, this measuring operation step can also be performed as follows. That is, after the power supply of the spectroscopic analysis measurement device 1 is turned on, the upper lid 12 that shields the light amount detection device 11 portion is opened by pressing the push button 15 and inserting and closing the measured sample 19, so that the measured sample 19 is placed on the light amount detection device 11. When the insertion is sensed, the transmitted light amount (S) of the measured sample 19 is measured. When the measurement of the sample to be measured 19 is completed, the operator is informed by the signal of the liquid crystal display LCD 23 or the like that the measurement of the transmitted light amount of the sample to be measured 19 is completed, and the operator confirms this signal and within 3 seconds the sample to be measured 19 is measured.
After that, a plurality of direct light quantities (R1 to Rn) are measured at intervals of 3 seconds including the measurement of the sample to be measured 19. The object of the present invention can be achieved even with such a work process.

【0023】また、直接光量の測定は、被測定サンプル
の透過光量を測定する前後に分けて行ってもよい。ま
た、実際上の作業では、被測定サンプルの透過光量を測
定する場合にサンプルを光量検出装置に挿入する作業と
被測定サンプルを挿入して光量検出装置に外光が入らな
いように遮へいする上蓋12を閉じる作業であり、他の
直接光量の測定については測定装置側で自動的に測定す
ること等が容易に実現できることから、すべての作業は
きわめて簡単に作業は簡潔する。
The direct light quantity may be measured separately before and after measuring the transmitted light quantity of the sample to be measured. Also, in actual work, when measuring the amount of transmitted light of the sample to be measured, insert the sample into the light amount detection device and insert the sample to be measured and shield the light amount detection device so that external light does not enter. This is a work for closing 12, and it is possible to easily realize the measurement of the other direct light amount automatically on the measuring device side. Therefore, all the work is extremely simple and the work is simple.

【0024】[0024]

【発明の効果】被測定サンプルの透過率を測定する前後
に、光源の直接光量を測定する工程を加えることによっ
て、同時に測定できなかったサンプル測定時の光源の直
接光量を容易に且つ正確に予測することができ、しかも
測定作業者にはそのための手間を必要とせず、被測定サ
ンプルを測定するこれまでの作業と同じ内容で、これま
で以上に正確な測定結果を得ることができるようになっ
た。
By adding a step of measuring the direct light quantity of the light source before and after measuring the transmittance of the sample to be measured, it is possible to easily and accurately predict the direct light quantity of the light source at the time of measuring the sample, which could not be measured at the same time. In addition, the measurement operator does not need to take the trouble to do so, and it is possible to obtain more accurate measurement results with the same contents as the previous work of measuring the sample to be measured. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分光分析測定装置の側断面図である。FIG. 1 is a side sectional view of a spectroscopic analysis measurement device of the present invention.

【図2】分光分析測定装置の制御ブロック図である。FIG. 2 is a control block diagram of the spectroscopic analysis measurement device.

【図3】光源の直接光量値が時間的に変化する特性を表
した図である。
FIG. 3 is a diagram showing a characteristic in which a direct light amount value of a light source changes with time.

【符号の説明】[Explanation of symbols]

1 分光分析測定装置 2 LED 3 狭帯域フィルタ− 4 散乱板 5 集光ブロック 6 透明ガラス板 7 本体 8 測定部 9 フォトダイオ−ド 10 光源 11 光量検出装置 12 上蓋 13 支点 15 押しボタン 16 腕 17 コイルバネ 18 スイッチ18 19 被測定サンプル葉 20 アナログボ−ド 21 I/Oボ−ド 22 CPUボ−ド 23 LCD(液晶表示) 24 キ−ボ−ド 25 接続ポ−ト 26 電源ボ−ド 27 I/Fボ−ド 28 プリンタ 29 発光装置 1 Spectroscopic Analysis Measuring Device 2 LED 3 Narrow Band Filter-4 Scattering Plate 5 Condensing Block 6 Transparent Glass Plate 7 Main Body 8 Measuring Section 9 Photodiode 10 Light Source 11 Light Quantity Detection Device 12 Top Lid 13 Support Point 15 Push Button 16 Arm 17 Coil Spring 18 Switch 18 19 Measured Sample Leaf 20 Analog Board 21 I / O Board 22 CPU Board 23 LCD (Liquid Crystal Display) 24 Keyboard Board 25 Connection Port 26 Power Board 27 I / F Board 28 printer 29 light emitting device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源と、該光源から入射する特定波長の
光量を検出する単一の光量検出装置とを任意の間隔をも
って対向させ、光源と光量検出装置との間に被測定サン
プルを挿入して該サンプルの透過光量を測定し、被測定
サンプルの透過率あるいは吸光度等を演算装置で算出す
るようにした分光分析測定装置であって、 光量検出装置では、被測定サンプルを挿入して測定した
時の被測定サンプル透過光量(S)と、該被測定サンプ
ルの透過光量(S)を測定した前後あるいはいずれかに
おける、光源を直接測定した複数の直接光量(Rn )と
を、単位時間ごとに測定して、演算装置では、複数の直
接光量(Rn )値から被測定サンプルを測定した時刻に
おける直接光量(R’)値を予測すると共に、該予測し
た直接光量(R’)値と被測定サンプル透過光量(S)
とから被測定サンプルの透過率あるいは吸光度等を演算
するようにしたことを特徴とする分光分析測定装置。
1. A light source and a single light amount detecting device for detecting a light amount of a specific wavelength incident from the light source are opposed to each other at an arbitrary interval, and a sample to be measured is inserted between the light source and the light amount detecting device. Is a spectroscopic analysis measuring device in which the transmitted light amount of the sample is measured, and the transmittance or the absorbance of the sample to be measured is calculated by an arithmetic device. In the light amount detecting device, the sample to be measured is inserted and measured. The measured sample transmitted light amount (S) at the time and a plurality of direct light amounts (Rn) directly measured by the light source before and / or after the measured sample transmitted light amount (S) are measured for each unit time. The arithmetic unit predicts the direct light intensity (R ') value at the time when the sample to be measured is measured from the plurality of direct light intensity (Rn) values, and the predicted direct light intensity (R') value and the measured value are measured. Sun Le transmitted light amount (S)
A spectroscopic analysis measurement device characterized in that the transmittance or the absorbance of the sample to be measured is calculated from the above.
【請求項2】 演算装置は、単位時間ごとに測定した複
数の直接光量(Rn)から、光源の点灯時間に対する光
量変化を推測し、該光量変化から予測される光量特性直
線を決定して、被測定サンプルの透過光量(S)を測定
した時刻における光源の直接光量(R’)を算出し、該
算出した直接光量(R’)と被測定サンプル透過光量
(S)とから被測定サンプルの透過率あるいは吸光度等
を演算するようにしたことを特徴とする請求項1記載の
分光分析測定装置。
2. The arithmetic unit estimates a light quantity change with respect to a lighting time of a light source from a plurality of direct light quantities (Rn) measured every unit time, and determines a light quantity characteristic straight line predicted from the light quantity change, The direct light amount (R ′) of the light source at the time when the transmitted light amount (S) of the measured sample is measured, and the measured direct light amount (R ′) and the measured sample transmitted light amount (S) of the measured sample The spectroscopic analysis measurement device according to claim 1, wherein the transmittance or the absorbance is calculated.
JP14387795A 1995-05-17 1995-05-17 Portable spectrometer Expired - Fee Related JP3415329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14387795A JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14387795A JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Publications (2)

Publication Number Publication Date
JPH08313431A true JPH08313431A (en) 1996-11-29
JP3415329B2 JP3415329B2 (en) 2003-06-09

Family

ID=15349096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14387795A Expired - Fee Related JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Country Status (1)

Country Link
JP (1) JP3415329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511709A (en) * 2008-12-11 2012-05-24 シリオス テクノロジーズ Optical spectroscopic device including multiple radiation sources

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511709A (en) * 2008-12-11 2012-05-24 シリオス テクノロジーズ Optical spectroscopic device including multiple radiation sources

Also Published As

Publication number Publication date
JP3415329B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
JPH11352057A (en) Spectrum meter device and integrated spectrum meter device
US6845326B1 (en) Optical sensor for analyzing a stream of an agricultural product to determine its constituents
US7268864B2 (en) Method for a liquid chemical concentration analysis system
JP3436093B2 (en) Leaf component measuring device
US20050261605A1 (en) System for monitoring the health of an individual and method for use thereof
US20070188759A1 (en) Colorimeter operating on color matching logic
JP2007256294A (en) Method and apparatus of measuring reflected ray of light, and apparatus thereof
KR20080075182A (en) Apparatus and method for spectrophotometric analysis
JP5961482B2 (en) Spectrophotometer
US20070023670A1 (en) UV transmittance measuring device
JP2002202254A (en) Light measuring method and device therefor
JPH10332582A (en) Measuring apparatus for turbidity
JPH08313431A (en) Spectroscopic measuring device
JPH0395440A (en) Measuring apparatus
JPH0815131A (en) Deterioration diagnostic system
EP0187675A2 (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
JPH08327538A (en) Spectral analysis measuring device
JPH08320287A (en) Spectral analyzing and measuring device
JPH0843299A (en) Optical measuring apparatus for component analyzer
JP3415330B2 (en) Portable spectrometer
JPH01284758A (en) Automatic chemical analysis apparatus
KR0129488B1 (en) Automatic system of urine test and decipherment
KR100414186B1 (en) the automatic calibration system and for measuring internal qualities of fruits on both side
JP2002048709A (en) Internal quality measuring method for vegetable and fruit internal quality evaluating device
JP5949613B2 (en) Spectrophotometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees