JP3415329B2 - Portable spectrometer - Google Patents

Portable spectrometer

Info

Publication number
JP3415329B2
JP3415329B2 JP14387795A JP14387795A JP3415329B2 JP 3415329 B2 JP3415329 B2 JP 3415329B2 JP 14387795 A JP14387795 A JP 14387795A JP 14387795 A JP14387795 A JP 14387795A JP 3415329 B2 JP3415329 B2 JP 3415329B2
Authority
JP
Japan
Prior art keywords
light
sample
measured
light amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14387795A
Other languages
Japanese (ja)
Other versions
JPH08313431A (en
Inventor
覺 佐竹
真典 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP14387795A priority Critical patent/JP3415329B2/en
Publication of JPH08313431A publication Critical patent/JPH08313431A/en
Application granted granted Critical
Publication of JP3415329B2 publication Critical patent/JP3415329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被測定サンプルの透過
光量を測定し、演算によって透過率又は吸光度等を演算
する分光分析測定装置に係り、特に、光源光量の経時変
化による測定データの誤差を補正して正確な透過率又は
吸光度等が測定・演算できるようにした携帯用分光分析
測定装置に関する。
The present invention relates to measures the amount of light transmitted through the sample to be measured, relates to a spectroscopic measurement apparatus which calculates a transmittance or absorbance etc. by calculation, in particular, errors in the measurement data due to aging of the light source light quantity The present invention relates to a portable spectroscopic analyzer which can correct and correct transmittance or absorbance so as to be measured and calculated.

【0002】[0002]

【従来の技術】従来、被測定サンプルの透過光量を測定
して透過率は吸光度等を演算する場合、基準サンプル
の透過光量は反射光量を測定しその後被測定サン
プルの透過光量は反射光量を測定し、これらの測定結
果から反射率、透過率は吸光度等を演算で求めてい
た。
Conventionally, when calculating the amount of transmitted light was measured transmittance or absorbance etc. sample to be measured, the transmitted light quantity of the reference sample or measuring the amount of reflected light, then also the amount of transmitted light of the sample to be measured the amount of reflected light is measured, the reflectance from the measurement results, the transmittance or was determined by calculating the absorbance or the like.

【0003】[0003]

【発明が解決しようとする課題】一般的に、この種の分
光分析測定装置に使用される光源は、点灯して時間が経
過すると光源の温度上昇に伴って光量が変化する傾向
が明らかである。したがって、基準となる光源光量が変
化しているために、特に測定サンプルを手動で入れ替
えるような試験用測定装置や携帯型の測定装置などのよ
うに、基準の透過光量を測定する時刻と被測定サンプル
の透過光量を測定する時刻とに大きな時間的差が生じる
と、基準の透過光量と被測定サンプルの測定時刻におけ
る光源光量にも差を生じることになる。つまり光源
の光量差による測定誤差を生じていることになる。しか
光源の温度やその上昇率は環境条件によって大きく
異なるため単に点灯経過時間など一定の補正を加える
ようなことで簡単に補正することはできないものであ
る。ところが、一般的には、時差をって測定された基
準光のデ−タ値(R)と被測定サンプルの透過光量値
(S)とを利用して次式によって吸光度等が求められて
いた。
In general, the light source used in this type of spectroscopic analyzer has a tendency that the amount of light changes as the temperature of the light source rises over time after lighting. is there. Was although I, in order to light quantity as a reference is changed, in particular, the measurement sample, such as test measuring equipment and portable measuring devices such as replacing manually, measuring the amount of light transmitted through the reference If a large time difference between the time of measuring the amount of light transmitted through the time and the sample to be measured occurs, will produce a difference in the amount of source light in the transmitted light amount and the measurement time of the sample to be measured for reference. That is , a measurement error due to the light amount difference of the light source occurs. However <br/> also the temperature and the rate of rise of light sources for largely different environmental conditions, are presented solely can not easily be corrected by such adding a constant correction, such as the lighting elapsed time. However, in general, data of the reference light measured I also the difference - by using the data value (R) and transmitted light quantity value of the sample to be measured (S) have absorbance or the like obtained by the following equation Was.

【0004】[0004]

【数1】 前述のように、従来の分光分析測定においては、測定時
における光源光量が異なるので、求められた値に誤差が
含まれていることになる。このような誤差をなくすため
には、基準サンプルと被測定サンプルとは同じ光源光量
のもとで、時間的に光源光量と被測定サンプルの透過光
量とを同時に測定することが不可欠となる。しかし、こ
れを実現しようとすれば光量検出器を複数設けたり
度センサーを設けたりと、そのために装置が複雑化し
て、光量検出器等の増加で装置全体が高価になるなどの
実現困難な要素が多く残っていた。
(Equation 1) As described above, in the conventional spectroscopic measurement, since the light source light amount at the time of measurement is different, the obtained value includes an error. In order to eliminate such an error, it is indispensable to simultaneously measure the light source light amount and the transmitted light amount of the measured sample simultaneously under the same light source light amount of the reference sample and the measured sample. However, if this is to be realized, a plurality of light amount detectors or a temperature sensor would be required, which would complicate the device, and would be difficult to achieve, for example, the increase in the number of light amount detectors would make the entire device expensive. Many elements remained.

【0005】以上のことから、本発明では、分光分析に
おける光源光量の経時変化による測定デ−タの誤差を補
正するために、測定作業者の負担を増やすことなく、ま
簡単な構造の測定装置によって補正手段を備えた
分光分析測定装置の提供を技術的課題としたものであ
る。
[0005] From the above, in the present invention, in order to correct an error in measurement data due to a temporal change in the light source light amount in the spectroscopic analysis, without increasing the load on the measurement operator , the measuring device having a simple structure, in which the provision of spectroscopic measurement apparatus provided with a correction means to the technical problem.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
本発明は、光源と、該光源から入射する特定波長の光量
を検出する単一の光量検出装置とを任意の間隔をもって
対向させ、これら光源と光量検出装置との間に被測定サ
ンプルを挿入して該サンプルの透過光量を測定し、
ンプルの透過率又は吸光度を演算装置で算出するように
した分光分析測定装置であって、前記演算装置は、単位
時間ごとに測定した複数の直接光量(Rn)から、光源
の点灯時間に対する光量変化を推測するとともに、該光
量変化から予測される光量特性直線を決定し、これによ
り、前記サンプルの透過光量(S)を測定した時刻にお
ける光源の直接光量(R’)を算出し、該直接光量
(R’)と前記サンプル透過光量(S)とからサンプル
の透過率又は吸光度を演算する、という技術的手段を講
じたものである。
According to the present invention, a light source and a single light amount detecting device for detecting the light amount of a specific wavelength incident from the light source are opposed to each other at an arbitrary interval. spectroscopic measuring device by inserting the sample to be measured by measuring the amount of light transmitted through the sample, and the transmittance or absorbance of the sub <br/> sample to be calculated by the arithmetic unit between the light source and the light amount detecting device Wherein the arithmetic unit is a unit
From multiple direct light quantities (Rn) measured every time,
Of the change in the amount of light with respect to the lighting time of
The light intensity characteristic line predicted from the light amount change is determined, and
At the time when the amount of transmitted light (S) of the sample is measured.
Calculate the direct light amount (R ') of the light source
(R ′) and the sample transmitted light amount (S)
Technical means of calculating the transmittance or the absorbance of the sample.

【0007】[0007]

【0008】[0008]

【作用】本発明は、光源と、該光源から入射する特定波
長の光量を検出する単一の光量検出装置とを任意の間隔
をもって対向させ、光源と光量検出装置との間に被測定
サンプルを挿入して該サンプルの透過光量を測定し、被
測定サンプルの透過率は吸光度等を演算装置で算出す
るようにした分光分析測定装置において、測定作業者が
意識するような作業上の負担をかけることなく、分光分
析測定装置が被測定サンプルの透過光量測定の前後
いずれか一方において行う光源の直接光量測定と該測定
値からサンプルの透過光量測定時における光源の直接光
量を予測することによって、より正確な測定結果が得ら
れる分光分析測定装置が安価に提供できるものとなっ
た。
According to the present invention, a light source and a single light amount detection device for detecting the light amount of a specific wavelength incident from the light source are opposed to each other at an arbitrary interval, and a sample to be measured is placed between the light source and the light amount detection device. inserted by measuring the amount of light transmitted through the sample, the spectroscopic measurement apparatus to calculate the or transmittance of the sample to be measured computing device such as absorbance, the burden on the operations, such as measurement operator aware without putting it spectroscopic measurement apparatus for predicting direct light amount of the light source from direct light amount measurement and the measured value at the time of transmission light amount measurement of a sample of the light source to perform before and after or in one of the transmitted light quantity measurement sample to be measured As a result, a spectroscopic measurement apparatus capable of obtaining more accurate measurement results can be provided at low cost.

【0009】詳細について説明すると、まず光量検出器
では、被測定サンプルを挿入して測定した時のサンプル
透過光量(S)と、該被測定サンプルの透過光量を測定
した前後はいずれかにおける、光源を直接測定した複
数の直接光量(Rn )とを、単位時間ごとに測定する
ようにした。例えば3秒間隔で複数の直接光量(R1
〜Rn )を測定した被測定サンプルを挿入して
その透過光量(S)を測定する。このとき、最後の直接
光量測定時刻と被測定サンプル測定時刻との間隔は同じ
3秒である。
[0009] will be described in detail, the first light intensity detector, the sample transmitted light intensity when measured by inserting the sample to be measured (S), or before and after measuring the amount of light transmitted through the該被measurement sample in either, A plurality of direct light amounts (Rn) obtained by directly measuring the light source were measured every unit time. For example , a plurality of direct light amounts (R1
After measuring the ~Rn), and measuring the amount of transmitted light by inserting a sample to be measured (S). At this time, the interval between the last direct light amount measurement time and the measured sample measurement time is the same 3 seconds.

【0010】更に具体的には、分光分析測定装置の電源
投入後、作業者の測定開始ボタンの押下操作等で測定作
業を開始する。最初は複数の直接光量(R1 〜Rn )
を装置側で自動的に測定し、最後の直接光量(Rn )
の測定が終了するとランプやディスプレイ等のシグナル
で作業者に終了を伝え、作業者はこのシグナルを確認し
て3秒以内に光量検出装置部分を遮へいするカバ−を開
き、被測定サンプルを挿入して閉じることで透過光量
(S)も単位時間ごとに測定できる。作業者が3秒を超
えた場合にはエラ−表示して作業者は再度測定開始ボ
タンを操作して作業を繰り返して行う。これで作業者
は、シグナルを待って被測定サンプルを挿入する作業だ
けを行えばよく、光源の温度特性などを考える必要はな
い。ところでこの測定作業工程は次のようにもでき
る。つまり、分光分析測定装置の電源投入後、光量検出
装置部分を遮へいするカバ−を開いて被測定サンプルを
挿入して閉じることで光量検出装置が被測定サンプル
の挿入を感知するか、は測定作業者による測定ボタン
の押下操作等によって被測定サンプルが挿入されたこと
を感知するようにしておくことにより、被測定サンプル
の透過光量(S)を測定開始する。被測定サンプルの測
定が終了すると、ランプやディスプレイ等のシグナルで
作業者に終了を伝え、作業者はこのシグナルを確認して
3秒以内に被測定サンプルを取り去りるとともにカバ−
等を閉じて、その後被測定サンプルの測定時刻も含め
て3秒間隔で複数の直接光量(R1 〜Rn )を測定す
る。このような作業工程でも本発明の目的は達成され
る。
[0010] More specifically, after power-on of the spectroscopic measurement apparatus, the measurement is started working with pressing operation by the measurement start button of the operator. Initially, a plurality of direct light amounts (R1 to Rn)
Is automatically measured on the device side, and the last direct light amount (Rn)
When the measurement is completed, the operator is notified of the end by a signal such as a lamp or a display. After confirming this signal, the operator opens the cover for shielding the light amount detecting device within 3 seconds and inserts the sample to be measured. By closing it, the amount of transmitted light (S) can also be measured per unit time. If the operator exceeds 3 seconds, an error message is displayed, and the operator operates the measurement start button again to repeat the operation . Thus, the operator only needs to wait for the signal and insert the sample to be measured, without having to consider the temperature characteristics of the light source. By the way , this measuring operation process can also be performed as follows. That is, after power-on of the spectroscopic measurement apparatus, cover that shields the light quantity detector section - the open by closure by inserting a sample to be measured, or light amount detecting device senses the insertion of the sample to be measured, or The measurement of the transmitted light amount (S) of the sample to be measured is started by sensing that the sample to be measured is inserted by the measurement operator pressing down the measurement button or the like. When the measurement of the sample to be measured is completed, the operator is notified of the completion by a signal such as a lamp or a display, and after confirming this signal, the operator removes the sample to be measured within 3 seconds and covers the sample.
After that , a plurality of direct light amounts (R1 to Rn) are measured at intervals of 3 seconds including the measurement time of the sample to be measured. The object of the present invention is achieved even in such a working process.

【0011】また、直接光量の測定は、被測定サンプル
の透過光量を測定する前後でってもよい。また、実際
の被測定サンプルの透過光量測定で行う作業は、被測定
サンプルを光源と光量検出装置との間に挿入する作業
被測定サンプルを挿入して光量検出装置に外光が入
らないように遮へいするカバ−仕様のものを閉じる作業
であり、他の直接光量の測定については測定装置側で
自動的に測定することが容易に実現できることから、す
べての作業はきわめて簡単に完結する。
[0011] The measurement of the direct light amount may be I line before and after measuring the amount of light transmitted through the sample to be measured. Also, work done by the transmitted light quantity measurement of the actual sample to be measured, the operation of inserting the sample to be measured between the light source and the light quantity detection device, the external light from entering the light quantity detecting apparatus by inserting the sample to be measured This is the work of closing the cover specification that covers the screen, and the other direct light quantity measurement can be easily and automatically realized by the measuring device, so that all the work is completed very easily. .

【0012】次に、演算装置では以上のようにして測定
された各光量次のように演算処理される。すなわち
被測定サンプルの前後で測定された複数の直接光量(R
n )値は、被測定サンプルと共に単位時間ごとに測定
してあることから、温度上昇による光源の光量変化が線
形であると仮定すれば、複数の直接光量と被測定サンプ
ルの透過光量測定時における光源の直接光量とは同じ線
形の光量特性の直線上にあることが想定できる。したが
って本発明では、被測定サンプルの測定前後で測定し
た、複数の直接光量の単位時間に対する光量変化から予
測式を作り、被測定サンプルを測定している時刻におけ
る直接光量値を予測する。このようにして被測定サンプ
ルを挿入した時刻における直接光量(R’)値を予測す
ることによって、被測定サンプルを測定している時刻の
直接光量と透過光量とが明らかとなり、これらの値か
ら、反射率、透過率は吸光度等を演算し正確な値を知
ることができ、従来のように、被測定サンプルから光量
デ−タを得る時刻と、基準となる光量デ−タを得る時刻
とに時差を生じて、時間経過とともに変化する光源光量
についての配慮が全くなされていなかった技術に比較し
て、本発明は被測定サンプルを測定している時刻の光源
の直接光量を知ることができるので、得られるデ−タの
精度あるいは信頼性は大きく向上した。
[0012] Next, the light amount measured in the manner described above in the arithmetic unit is computed processed as follows. That is ,
A plurality of direct light amounts (R) measured before and after the sample to be measured
n) Since the value is measured every unit time together with the sample to be measured, if it is assumed that the change in the light amount of the light source due to the temperature rise is linear, a plurality of direct light amounts and the transmission light amount of the sample to be measured are measured. It can be assumed that the direct light amount of the light source is on a straight line having the same linear light amount characteristic. It was but <br/>, in the present invention, was measured before and after the measurement of the sample to be measured, to make a prediction equation from the amount of light changes with respect to the unit time of the plurality of direct light amount, directly at the time being measured sample to be measured Predict the light amount value. By predicting the direct light amount (R ') value at the time when the sample to be measured is inserted in this way, the direct light amount and the transmitted light amount at the time when the sample to be measured is measured become clear, and from these values, reflectance, transmittance or calculates the absorbance or the like can know the exact values, as in the prior art, the amount of light emitted from the sample to be measured - and the time of obtaining the data - and the time of obtaining the data, the light amount de as a reference Compared to a technique in which a time difference is caused and no consideration is given to the light source light amount that changes with the passage of time, the present invention makes it possible to know the direct light amount of the light source at the time when the sample to be measured is measured. Therefore, the accuracy or reliability of the obtained data is greatly improved.

【0013】[0013]

【実施例】以下 本発明に好適な実施例として、葉に近
赤外光を照射して、その吸光度と吸光度から求められ
る成分を測定演算する分光分析測定装置につき、
1と図2に基づいて説明する。図1に示すものは、分光
分析測定装置1の主要部分の側断面図である。図1で
は、下の本体7内に光源10を設けるとともに、上部
に光量検出装置11としてのフォトダイオ−ド9を各々
設けた構成となっている。光源10は、同一円周上に異
なる波長ピ−クを持つ複数のLED2を配置してなり
該LED2にはそれぞれ波長帯域の異なる狭帯域フィル
タ−3を設けてある。波長帯域は600nm〜1100
nmで、この波長帯域から求める成分に関係する任意の
特定波長の狭帯域フィルタ−3を選択してある。各LE
D2の発光する光は、狭帯域フィルタ−3によって特定
波長の光となって、光が透過する散乱板4に入射する。
この散乱板4の板厚内では光が拡散して指向性を失って
しまう。散乱板4から出る指向性のくなった光は、内
部を拡散作用のある円錐状の散乱壁に形成した集光ブロ
ック5に入射し、該集光ブロック5内では、集光ブロッ
ク5と散乱板4とで囲まれた空間を反射・拡散を繰り返
しながら透明ガラス板6から光量検出装置11に入射す
るようにしてある。光量検出装置11は、光源10と任
意間隔をおいて、より詳しくは前記光源10の透明ガラ
6との間に、被測定サンプル葉19が挿入できる間
隔を置いて固設してある。
EXAMPLES Hereinafter, a preferred embodiment of the present invention, by irradiating near infrared light to the leaves, per spectroscopic measuring device for measuring and calculating the component obtained from the absorbance and the absorbance, and FIG. 1 A description will be given based on FIG. FIG. 1 is a side sectional view of a main part of the spectroscopic analyzer 1. In Figure 1, the light source 10 is provided on the body 7 of the lower part, the photodiode of the light quantity detecting apparatus 11 in the upper - and has a respective <br/> provided configuration the de 9. Light source 10, a different wavelength peak on the same circumference - made by disposing a plurality of LED2 with click,
Each of the LEDs 2 is provided with a narrow band filter-3 having a different wavelength band. The wavelength band is from 600 nm to 1100
In nm, a narrow band filter-3 having an arbitrary specific wavelength related to a component obtained from this wavelength band is selected. Each LE
The light emitted by D2 is converted into light of a specific wavelength by the narrow band filter 3, and is incident on the scattering plate 4 through which the light is transmitted.
Within the thickness of the scattering plate 4, light is diffused and the directivity is lost. Light became name rather directional leaving the scattering plate 4 enters the condenser block 5 formed inside the conical scattering walls of diffusing action, the light-collection block within 5, the condenser block 5 The light enters the light amount detection device 11 from the transparent glass plate 6 while repeatedly reflecting and diffusing the space surrounded by the scattering plate 4. The light quantity detection device 11 is fixedly provided at an arbitrary distance from the light source 10, more specifically, at a distance between the light source 10 and the transparent glass plate 6 of the light source 10 so that the sample leaf 19 to be measured can be inserted. I have.

【0014】さらに光量検出装置11の上部外周に上
蓋12を設け、該上蓋12から延長した腕16は支点1
3によって軸支されている。また、本体7に遊嵌して上
蓋12の腕16を押し下げる押しボタン15を設けると
ともに、押しボタン15とは逆方向に付勢するコイル
ばね17を設けてある。また前記押しボタン15と対向
する本体7には、押しボタン15を押し下げたことを検
知するスイッチ18設けてある。
Further , an upper lid 12 is provided on the outer periphery of the upper part of the light amount detecting device 11, and an arm 16 extended from the upper lid 12 is
3 for pivoting. When a push button 15 is provided to loosely fit on the main body 7 and press down the arm 16 of the upper lid 12,
To Tomo, coil for urging in a direction opposite to the said push-button 15
A spring 17 is provided. A switch 18 for detecting that the push button 15 has been pressed is provided on the main body 7 facing the push button 15.

【0015】次に、図2によって分光分析測定装置1の
ブロック図に基づいて説明する。光源10光量検出装
置11とからなる測定部8で検出される被測定サンプル
葉19の透過光量は、フォトダイオ−ド9によってアナ
ログの電気信号に変換される。該フォトダイオードは
ナログボ−ド20に接続されている。また、光源10に
はLED2の発光装置29を設けてある。アナログボ−
ド20ではアナログからデジタル信号へのA/D変換
をするか、あるいは電圧から周波数へのV/F変換を行
う。変換された信号はI/Oボ−ド21を経由して演算
装置を含むCPUボ−ド22に入力される。アナログボ
−ド20から発光装置29へLED2発光のための信号
が出力される。前記I/Oボ−ド21には、測定結果、
演算結果は操作指示を表示する液晶表示器LCD2
3、初期デ−タを入力したり操作したりするキ−ボ−ド
24、及び外部装置との間でデ−タを入出力するRS2
32Cの接続ポ−ト25等を設けてある。これらCPU
ボ−ド22とI/Oボ−ド21とは電源ボ−ド26に接
続してある。また、プリンタ28はプリンタI/Fボ−
ド27を介してCPUボ−ド22に接続してある。
Next, a description will be given based on a block diagram of the spectroscopic analyzer 1 with reference to FIG. The transmitted light amount of the measured sample leaf 19 detected by the measuring unit 8 including the light source 10 and the light amount detecting device 11 is converted into an analog electric signal by the photodiode 9 . The photodiode is connected to the analog board 20. The light source 10 is provided with a light emitting device 29 of the LED 2. Analog board
In de 20 performs V / F conversion or A / D conversion from analog to digital signals, or from the voltage to frequency. The converted signal is input to a CPU board 22 including an arithmetic unit via an I / O board 21. A signal for emitting the LED2 is output from the analog board 20 to the light emitting device 29. The I / O board 21 has a measurement result,
The liquid crystal display calculation results or displays the operation instruction LCD2
3, the initial de - key and manipulate or enter data - board - de 24, and de with an external device - to input and output data RS2
A 32C connection port 25 and the like are provided. These CPUs
The board 22 and the I / O board 21 are connected to a power supply board 26. The printer 28 has a printer I / F board.
It is connected to the CPU board 22 through the board 27.

【0016】このように構成された分光分析測定装置1
では、光源10と、入射する特定波長の光量を検出する
単一の光量検出装置11とを任意の間隔をもって対向さ
せ、光源10と光量検出装置11との間に被測定サンプ
ル葉19を挿入して該サンプル19の透過光量を測定
し、被測定サンプルの透過率は吸光度等をCPUボ−
ド22で算出するようにした分光分析測定装置1では、
測定にして測定作業者が意識するような負担をかける
ことなく、装置側の測定システムによる定期的な光源の
直接光量のサンプル測定と該測定値によって得られるサ
ンプル葉の透過光量測定時における光源の直接光量の予
測値によって、より正確な測定結果が得られる分光分析
測定装置が安価に提供できるものとなった。
[0016] The spectroscopic analysis and measurement apparatus 1 configured as described above.
Then, the light source 10 and a single light amount detecting device 11 for detecting the amount of incident light of a specific wavelength are opposed at an arbitrary interval, and the sample leaf 19 to be measured is inserted between the light source 10 and the light amount detecting device 11. Te measured amount of transmitted light of the sample 19, transmission or CPU board absorbance like sample to be measured -
In the spectroscopic measurement apparatus 1 that is calculated by the
Measured when without imposing a burden, such as the measurement worker consciousness, when the transmitted light quantity measurement of sample leaves obtained by the sample measurement and the measured value of the direct light amount of regular light source by the apparatus side of the measuring system The predicted value of the direct light amount of the light source has made it possible to provide a low-cost spectroscopic measurement apparatus capable of obtaining more accurate measurement results.

【0017】次に被測定サンプルの透過光量測定値と
光源の直接光量測定値の演算処理について測定手順に沿
って説明する。分光分析測定装置1の電源投入後、作業
者の測定開始ボタンの押下操作あるいは電源の投入等で
測定作業が開始される。このとき基準サンプルを挿入
測定して、基準サンプルから得られるデ−タによって
初期設定すれば、より正確に測定するための有効な手段
となる。
Next , the calculation processing of the transmitted light amount measurement value of the sample to be measured and the direct light amount measurement value of the light source will be described along the measurement procedure. After turning on the power of the spectroscopic analyzer 1, the measuring operation is started when the operator presses the measurement start button or turns on the power. At this time , insert the reference sample
If the measurement is made and initialized by data obtained from the reference sample, it is an effective means for more accurate measurement.

【0018】分光分析測定装置1は、最初に、光源の光
量を直接測定して複数の直接光量値を得る。このときの
複数の直接光量は単位時間間隔例えば3秒間隔で測定
される。時刻TR1, TR2時の値をR1 ,R2 とす
る。また最後の直接光量(R2 )の測定が終了する
ランプやディスプレイ等のシグナルで作業者に終了
を伝え、作業者はこのシグナル、例えば液晶表示LCD
23で「測定サンプルを入れてください。」等の表示を
確認して3秒以内押しボタン15を押し下げ操作
し、光量検出装置11部分を遮へいする上蓋12を開い
て被測定サンプルを挿入する。次いで 押しボタン15
を放して上蓋12を閉じることにより、被測定サンプル
の透過光量(S)を3秒後のTS 時に測定して、単位時
間ごとに測定できる。作業者が3秒を超えた場合にはエ
ラ−表示して作業者は再度測定開始ボタンを押して最初
から作業を繰り返して行う。このように作業者は、本測
定装置からのシグナルを待って被測定サンプルを挿入す
る作業だけを行えばよい。被測定サンプルの挿入の確認
は、押しボタン15の押し下げにより感知するスイッチ
18の作動によって測定装置に被測定サンプルが挿入で
きたと見なすことができる。
First, the spectroscopic analyzer 1 directly measures the light intensity of the light source to obtain a plurality of direct light intensity values. A plurality of direct light amount per unit time interval of the time, for example, Ru is measured at 3-second intervals. The values at times TR1 and TR2 are R1 and R2. When the measurement of the last direct light amount (R2) is completed, the end is notified to the operator by a signal of a lamp, a display, or the like.
"Please put the measurement sample." In 23 display to confirm such, pressed down the button 15 pressed within 3 seconds
Then, the upper lid 12 for shielding the light amount detecting device 11 is opened, and the sample to be measured is inserted . Then, the push-button 15
Is released to close the upper lid 12, the transmitted light amount (S) of the sample to be measured can be measured at TS after 3 seconds, and can be measured every unit time. If the operator exceeds 3 seconds, an error message is displayed and the operator presses the measurement start button again to repeat the operation from the beginning. In this way the operator, this measurement
Only the operation of inserting the sample to be measured after waiting for the signal from the measuring device has to be performed. The confirmation of the insertion of the sample to be measured can be regarded as the fact that the sample to be measured has been inserted into the measuring device by the operation of the switch 18 sensed by pressing down the push button 15.

【0019】このようにして得られたサンプル透過光量
値(S)及び直接光量値(R1 )(R2 )のデ−タは
のように処理される。光源光量が点灯時間の経過と共
に変化しその変化を線形と仮定すると、図3のように
時刻TR1, TR2, TS を等間隔で取って図示すると、
光源の光量変化は直接光量値(R1 )(R2 )によっ
て線形の光量特性直線を得ることができる。つまり
時刻間隔が等しいとすれば、
The data of the sample transmitted light value (S) and the direct light values (R1) (R2) thus obtained are as follows.
It is processed as follows . Assuming that the light source light quantity changes with the passage of the lighting time and that the change is linear, if the time TR1, TR2, and TS are taken at equal intervals as shown in FIG.
Regarding the change in the light amount of the light source, a linear light amount characteristic line can be obtained directly by the light amount values (R1) and (R2). That is , if each time interval is equal,

【0020】[0020]

【数2】 と定義できると予測した。もち論、この予測式に限定さ
れるものではないが、この予測式によって、サンプル葉
の透過光量測定と同時に測定できなかったサンプル透過
光量測定時の光源の直接光量値(R’)を予測すること
ができる。このようにして求められた光源の直接光量値
(R’)を「数1」の(R)に置き換えて、測定された
被測定サンプルの透過光量(S)を代入すれば、誤差の
ない、より正確な吸光度を演算することができる。ま
た、透過率及び反射率もこの値によって演算して正確な
値を求めることができる。
(Equation 2) It was predicted that it could be defined. Of course, the present invention is not limited to this prediction formula, but the prediction formula predicts the direct light value (R ') of the light source at the time of measuring the sample transmitted light amount, which cannot be measured simultaneously with the measurement of the transmitted light amount of the sample leaves. be able to. If the direct light amount value (R ′) of the light source obtained in this way is replaced with (R) in “Equation 1” and the measured transmitted light amount (S) of the sample to be measured is substituted, there is no error. More accurate absorbance can be calculated. Also, the transmittance and the reflectance can be calculated based on these values to obtain accurate values.

【0021】被測定サンプルの透過率を測定する前後
に、光源の直接光量を測定する工程を加えることによっ
て、同時に測定できなかったサンプル測定時の光源の直
接光量を容易に、かつ正確に予測することができ、しか
測定作業者にはそのための手間を必要とせず、被測
定サンプルを測定するこれまでの作業と同じ内容で、こ
れまで以上に正確な測定結果を得ることができるように
なった。
By adding a step of measuring the direct light amount of the light source before and after measuring the transmittance of the sample to be measured, the direct light amount of the light source at the time of sample measurement, which cannot be measured simultaneously, can be easily and accurately predicted. it can also only <br/>, without requiring effort therefore the measurement operator, the same contents as the work to date for measuring the sample to be measured, to obtain accurate measurements than ever Is now available.

【0022】ところでこの測定作業工程は次のように
もできる。つまり、分光分析測定装置1の電源投入後、
光量検出装置11部分を遮へいする上蓋12を押しボタ
ン15を押して開き被測定サンプル19を挿入して閉
じることで光量検出装置11に被測定サンプル19が挿
入されたことを感知すると、被測定サンプル19の透過
光量(S)を測定する。被測定サンプル19の測定が終
了すると、液晶表示LCD23等のシグナルで作業者に
被測定サンプル19の透過光量の測定終了を伝え、作業
者はこのシグナルを確認して3秒以内に被測定サンプル
19を取り去り、その後、被測定サンプル19の測定も
合わせて3秒間隔で複数の直接光量(R1 〜Rn )を
測定する。このような作業工程でも本発明の目的は達成
される。
Incidentally , this measuring operation step can also be performed as follows. That is, after turning on the power of the spectroscopic analyzer 1,
Open button 15 press the upper lid 12 to shield the light quantity detecting apparatus 11 parts, upon sensing that the measured sample 19 is inserted to the light quantity detector 11 by closing by inserting the measured sample 19, the sample to be measured The transmitted light amount (S) of No. 19 is measured. When the measurement of the measured sample 19 is completed, the operator is notified by a signal of the liquid crystal display LCD 23 or the like that the measurement of the transmitted light amount of the measured sample 19 has been completed. After that, a plurality of direct light amounts (R1 to Rn) are measured at intervals of 3 seconds including the measurement of the sample 19 to be measured. The object of the present invention is achieved even in such a working process.

【0023】また、直接光量の測定は、被測定サンプル
の透過光量を測定する前後に分けて行ってもよい。ま
た、実際の作業では、被測定サンプルの透過光量を測定
する場合にサンプルを光量検出装置に挿入する作業と
被測定サンプルを挿入して光量検出装置に外光が入らな
いように上蓋12を閉じる作業であり、直接光量の測
定については測定装置側で自動的に測定すること等が容
易に実現できることから、すべての作業はきわめて簡単
完結する。
The measurement of the direct light quantity may be performed separately before and after measuring the transmitted light quantity of the sample to be measured. Further, in actual work, when measuring the transmitted light amount of the sample to be measured, inserting the sample into the light amount detection device ,
Sequence by the operations of closing the upper lid 12 so that the external light from entering the light quantity detecting apparatus by inserting the sample to be measured, since it like automatically measured by the measuring apparatus can be easily realized for the measurement of direct light quantity , All work is completed very easily.

【0024】[0024]

【発明の効果】単位時間ごとに光源の光量を測定すると
ともに、該光量変化から予測される光量特性直線を決定
することによって、サンプル測定と同時に測定できなか
った光源の直接光量を容易に、かつ正確に算出すること
ができ、しかも、測定作業者にはそのための手間を必要
とせず、被測定サンプルを測定するこれまでの作業と同
じ内容で、これまで以上に正確な測定結果を得ることが
できるようになった。
According to the present invention, the light amount of the light source is measured every unit time, and the light amount characteristic line predicted from the light amount change is determined.
By doing so, it is possible to easily and accurately calculate the direct light amount of the light source that could not be measured at the same time as the sample measurement , and to measure the sample to be measured without requiring the measurement operator to perform such work. With the same content as before, it is now possible to obtain more accurate measurement results.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す分光分析測定装置の側
断面図である。
FIG. 1 is a side sectional view of a spectroscopic analysis and measurement apparatus showing one embodiment of the present invention .

【図2】分光分析測定装置の制御ブロック図である。FIG. 2 is a control block diagram of the spectroscopic analyzer.

【図3】光源の直接光量値が時間的に変化する特性を表
した図である。
FIG. 3 is a diagram illustrating a characteristic that a direct light amount value of a light source changes with time.

【符号の説明】[Explanation of symbols]

1 分光分析測定装置 2 LED 3 狭帯域フィルタ− 4 散乱板 5 集光ブロック 6 透明ガラス板 7 本体 8 測定部 9 フォトダイオ−ド 10 光源 11 光量検出装置 12 上蓋 13 支点 15 押しボタン 16 腕 17 コイルばね 18 スイッチ18 19 被測定サンプル葉 20 アナログボ−ド 21 I/Oボ−ド 22 CPUボ−ド 23 LCD(液晶表示) 24 キ−ボ−ド 25 接続ポ−ト 26 電源ボ−ド 27 I/Fボ−ド 28 プリンタ 29 発光装置 1 Spectroscopic analyzer 2 LED 3 Narrow band filter 4 scattering plate 5 Focusing block 6 Transparent glass plate 7 Body 8 Measurement section 9 Photodiode 10. Light source 11 Light intensity detector 12 Top lid 13 fulcrum 15 push buttons 16 arms 17 coilsSpring 18 Switch 18 19 Leaf to be measured 20 Analog board 21 I / O board 22 CPU board 23 LCD (liquid crystal display) 24 Keyboard 25 connection port 26 Power supply board 27 I / F board 28 Printer 29 Light emitting device

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 PATOLISContinuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 PATOLIS

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と、該光源から入射する特定波長の
光量を検出する単一の光量検出装置とを任意の間隔をも
って対向させ、これら光源と光量検出装置との間に被測
定サンプルを挿入して該サンプルの透過光量を測定し、
サンプルの透過率又は吸光度を演算装置で算出するよ
うにした分光分析測定装置であって、前記演算装置は、
単位時間ごとに測定した複数の直接光量(Rn)から、
光源の点灯時間に対する光量変化を推測するとともに、
該光量変化から予測される光量特性直線を決定し、これ
により、前記サンプルの透過光量(S)を測定した時刻
における光源の直接光量(R’)を算出し、該直接光量
(R’)と前記サンプル透過光量(S)とからサンプル
の透過率又は吸光度を演算することを特徴とする携帯用
分光分析測定装置。
1. A light source and a single light amount detecting device for detecting a light amount of a specific wavelength incident from the light source are opposed to each other at an arbitrary interval, and a sample to be measured is inserted between the light source and the light amount detecting device. And measure the amount of transmitted light of the sample,
A spectroscopic measurement apparatus to calculate the transmittance or absorbance of the sample in the arithmetic unit, the arithmetic unit,
From a plurality of direct light amounts (Rn) measured per unit time,
While estimating the change in light amount with respect to the lighting time of the light source,
A light amount characteristic line predicted from the light amount change is determined, and
Is the time at which the transmitted light amount (S) of the sample was measured
, Calculate the direct light amount (R ') of the light source at
(R ′) and the sample transmitted light amount (S)
A portable spectroscopic analyzer for calculating the transmittance or absorbance of a light .
JP14387795A 1995-05-17 1995-05-17 Portable spectrometer Expired - Fee Related JP3415329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14387795A JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14387795A JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Publications (2)

Publication Number Publication Date
JPH08313431A JPH08313431A (en) 1996-11-29
JP3415329B2 true JP3415329B2 (en) 2003-06-09

Family

ID=15349096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14387795A Expired - Fee Related JP3415329B2 (en) 1995-05-17 1995-05-17 Portable spectrometer

Country Status (1)

Country Link
JP (1) JP3415329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939887B1 (en) * 2008-12-11 2017-12-08 Silios Tech OPTICAL SPECTROSCOPY DEVICE HAVING A PLURALITY OF TRANSMISSION SOURCES

Also Published As

Publication number Publication date
JPH08313431A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
JP4951502B2 (en) Measuring head for spectral analysis and method for recalibration thereof
US7245373B2 (en) Spectrometer system for optical reflectance measurements
US6845326B1 (en) Optical sensor for analyzing a stream of an agricultural product to determine its constituents
EP0250959B1 (en) Method of calibrating reflectance measuring devices
EP1634058B1 (en) Light source wavelength correction
US8629397B2 (en) Spectrophotometer and method for calibrating the same
JPH11352057A (en) Spectrum meter device and integrated spectrum meter device
US6320652B1 (en) Optical measuring apparatus
JP2006153498A (en) Standard surface sample and optical characteristic measuring system
JP3415329B2 (en) Portable spectrometer
CN105326479A (en) Handheld animal body temperature monitoring device and data processing method thereof
RU2713586C2 (en) Detachable alcohol sensor module
JPH01284758A (en) Automatic chemical analysis apparatus
JPH0843299A (en) Optical measuring apparatus for component analyzer
KR20130074659A (en) Active oxygen analyzer
KR20110085039A (en) Apparatus and method for detecting surface temperature in infrared rays thermometer
JPH08122246A (en) Spectral analyzer
JP3415330B2 (en) Portable spectrometer
EP3978909A1 (en) Method of determining the concentration of at least one analyte in a bodily fluid
JP2002048709A (en) Internal quality measuring method for vegetable and fruit internal quality evaluating device
CN213779870U (en) Full-automatic multi-view-field metal measurement rating device
RU2781237C1 (en) Spectrometric system and method for testing therefor
JP2950329B1 (en) Food component analyzer
JP2926857B2 (en) X-ray qualitative analyzer
JPH0660846B2 (en) Photoelectric colorimeter with spectral sensitivity correction function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees