JPH08313111A - Adsorption type refrigerating and air-conditioning device - Google Patents

Adsorption type refrigerating and air-conditioning device

Info

Publication number
JPH08313111A
JPH08313111A JP7145659A JP14565995A JPH08313111A JP H08313111 A JPH08313111 A JP H08313111A JP 7145659 A JP7145659 A JP 7145659A JP 14565995 A JP14565995 A JP 14565995A JP H08313111 A JPH08313111 A JP H08313111A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
adsorbing
air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145659A
Other languages
Japanese (ja)
Inventor
Masaru Sanada
勝 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship & Ocean Zaidan
Mayekawa Manufacturing Co
Original Assignee
Ship & Ocean Zaidan
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship & Ocean Zaidan, Mayekawa Manufacturing Co filed Critical Ship & Ocean Zaidan
Priority to JP7145659A priority Critical patent/JPH08313111A/en
Publication of JPH08313111A publication Critical patent/JPH08313111A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To prevent fall-off of adsorbing agent from an adsorbing layer due to vibration or shock and improve resistances to vibration and shock by a method wherein the adsorbing agent is constituted of the mixed body of silica gel and copper fibers. CONSTITUTION: Adsorption type devices 12A, 12B are constituted of an adsorbing agent tank, filled with adsorbing agent, and a coil type heat transfer tube or plate fin heat transfer tube 13, buried into the adsorbing agent tank, while the devices are constituted so that refrigerant vapor passes through the adsorbing agent tank. The adsorbing agent used here should be produced by mixing heat conductive body or copper fibers into silica gel. According to this method, adsorbing strength is increased since the copper fibers fill the silica gel of the adsorbing agent in a cross form whereby the adsorbing agent will never be fallen off by vibration even during the use of long period of time. Accordingly, resistances to vibration and shock, which are optimum for the use in vessels which vibrates or swings much, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸着式冷凍・空調装置
及び吸着剤熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption type refrigeration / air conditioning system and an adsorbent heat exchanger.

【0002】[0002]

【従来の技術】近年、船舶においては、環境面での規制
を受けようとしているフロンを冷媒として使用する冷凍
・空調装置に代わり、主機関や補機のシリンダ冷却水等
からの温水(60〜90℃)を利用して船内で、必要な
冷熱を発生させる型式の吸着式冷凍・空調装置が採用さ
れるようになってきた。
2. Description of the Related Art In recent years, in ships, in place of refrigeration and air-conditioning systems that use CFCs as refrigerants, which are about to be regulated in terms of environment, hot water (60 to 60 Adsorption type refrigerating and air-conditioning systems of the type that generate the required cold heat onboard ships by utilizing 90 ° C) have come to be adopted.

【0003】この船舶用吸着式冷凍・空調装置は吸着装
置内において、吸着剤槽に充填されたシリカゲル、ゼオ
ライト等の吸着剤に蒸発器から導入された冷媒蒸気を、
冷却水を通水しながら吸着させ、次いでこの冷媒蒸気を
前記シリンダー冷却後の温水で加熱して吸着剤から冷媒
蒸気を脱着させている。
In this adsorption type refrigeration / air-conditioning system for ships, the refrigerant vapor introduced from the evaporator to the adsorbent such as silica gel or zeolite filled in the adsorbent tank is
The cooling water is adsorbed while passing through it, and then this refrigerant vapor is heated by the hot water after cooling the cylinder to desorb the refrigerant vapor from the adsorbent.

【0004】そしてこの蒸発器から冷媒蒸気を吸着する
とともに蒸発器で発生する冷水にて空気冷却器等の冷熱
負荷との熱交換器に導き、船舶内空調用等に供してい
る。
The refrigerant vapor is adsorbed from the evaporator, and the cold water generated in the evaporator is led to a heat exchanger such as an air cooler for a cold load, and is used for air conditioning in a ship.

【0005】[0005]

【発明が解決しようとする課題】前記のように、船舶用
として吸着式冷凍・空調装置を使用しようとする場合、
最も問題になるのは船舶の振動である。
As described above, when the adsorption type refrigeration / air conditioning system is to be used for ships,
The most important issue is vibration of the ship.

【0006】この振動は海の消泡で受けるもの以外に船
舶の主機関や補機関が主たる起振源であることから、通
常冷凍・空調装置本体が機関室内あるいは、機関室に隣
接した場所に設置される吸着式冷凍・空調装置にあって
は、機関から伝達される振動及び船体の振動により吸着
装置内の吸着剤槽に充填されている吸着剤が脱落し、冷
凍・空調装置としての機能を果たさなくなるという問題
点がある。
In addition to what is received by defoaming of the sea, this vibration is mainly caused by the main engine and auxiliary engine of the ship. Therefore, the refrigeration / air-conditioning apparatus main body is usually located in the engine room or in a place adjacent to the engine room. In the adsorption-type refrigeration / air-conditioning system installed, the adsorbent filled in the adsorbent tank inside the adsorption system drops off due to vibration transmitted from the engine and vibration of the hull, and functions as a refrigeration / air-conditioning system. There is a problem that it will not fulfill.

【0007】前記吸着剤として、例えば特開昭58−1
93062号に示されるような、ゼオライト、シリカゲ
ル等の無機系固体に銅等の良好な熱伝導性を有する物質
を粉末状、果粒状あるいはフィラー状等にしたものを添
加混合してなる吸着剤が提供されているが、かかる吸着
剤は従来の吸着剤に比較して伝熱係数が大きく、吸脱着
に要するサイクルタイムを短かくすることができる特徴
を有するものの、前記船舶用吸着式冷凍・空調装置のよ
うな高い振動あるいは振動が作用するものに適用するに
は、吸着剤の脱着阻止機能をもっていない。
As the adsorbent, for example, JP-A-58-1
No. 93062 discloses an adsorbent obtained by adding and mixing an inorganic solid such as zeolite or silica gel with a substance having good thermal conductivity such as copper in the form of powder, granules or filler. Although such an adsorbent is provided, it has a large heat transfer coefficient as compared with conventional adsorbents and has a feature that the cycle time required for adsorption / desorption can be shortened. It does not have a function to prevent desorption of the adsorbent when it is applied to a device such as a device with high vibration or vibration.

【0008】本発明の目的は、振動や衝撃による吸着剤
の吸着剤槽からの脱落が防止されて耐震性、耐衝撃性が
向上され、船舶用として好適な吸着式冷凍・空調装置を
提供することにある。本発明の他の目的は、容易に且つ
低コストで製作可能にしてスケールメリットも容易に発
揮し得る吸着剤熱交換器を提供する事を目的とする。本
発明の他の目的は、吸着剤がフィン部から脱落したり移
動したりして吸着剤の働きが大幅に低下する事なく、吸
着剤の再生及び冷却効率が前記従来技術に比較して大幅
に上昇し、成績係数の向上を図る事の出来るフィン形吸
着剤熱交換器を提供する事を目的とする。
An object of the present invention is to provide an adsorption type refrigeration / air-conditioning apparatus which prevents the adsorbent from falling out of the adsorbent tank due to vibration or impact and has improved seismic resistance and impact resistance, and which is suitable for ships. Especially. Another object of the present invention is to provide an adsorbent heat exchanger that can be manufactured easily and at low cost and can easily exert economies of scale. Another object of the present invention is that the adsorbent does not drop or move from the fin portion and the function of the adsorbent is not significantly decreased, and the regeneration and cooling efficiency of the adsorbent is significantly higher than that of the conventional technique. It is an object of the present invention to provide a fin type adsorbent heat exchanger capable of increasing the coefficient of performance and improving the coefficient of performance.

【0009】[0009]

【課題を解決するための手段】本発明は、吸着剤槽に充
填された吸着剤に、冷却水で冷却しつつ冷媒蒸気を吸着
工程及び前記冷媒蒸気を加熱してこれに附属された吸着
剤を脱着する脱着工程をなす吸着剤装置と、該吸着装置
からの脱着冷媒蒸気を冷却して凝固せしめ低温の液冷媒
となす凝縮器と上記液冷媒と負荷冷熱とを熱交換する蒸
発器を備え、前記吸着剤槽にシリカゲルと銅ファイバー
繊維との混合体、具体的にはシリカゲル中に線長5〜1
0mm、線径30〜60μm、重量比3〜10wt%の
銅ファイバーを混入してなる混合体が充填されているこ
とを特徴とする。
According to the present invention, an adsorbent attached to an adsorbent filled in an adsorbent tank by adsorbing a refrigerant vapor while cooling with cooling water and heating the refrigerant vapor. An adsorbent device for performing a desorption process for desorbing, a condenser for cooling and solidifying the desorbed refrigerant vapor from the adsorption device to form a low-temperature liquid refrigerant, and an evaporator for exchanging heat between the liquid refrigerant and load cold heat. , A mixture of silica gel and copper fiber fibers in the adsorbent tank, specifically a line length of 5 to 1 in silica gel.
It is characterized in that it is filled with a mixture of copper fibers having a diameter of 0 mm, a wire diameter of 30 to 60 μm, and a weight ratio of 3 to 10 wt%.

【0010】又前記吸着剤槽は、請求項3に記載のよう
に、前記吸着剤槽が、列状に配してなる複数の伝熱管に
一体的に、多数枚のプレート状フィンを所定空隙介して
嵌装させ、該フィン間隔に粒状吸着剤と銅ファイバー繊
維を充填して熱交換ユニット体を構成すると共に、該ユ
ニット体間に吸着剤脱落防止板を介装しながら上下に積
層配置させたユニット体群で構成するのがよく、そして
前記ユニット体150〜250mmピッチ間隔で上下に
積層配設するのが良い。
Further, in the adsorbent tank, as described in claim 3, the adsorbent tank is integrally formed with a plurality of heat transfer tubes arranged in a row, and a large number of plate-shaped fins are provided in predetermined spaces. The heat exchange unit body is formed by filling the space between the fins with the granular adsorbent and the copper fiber fiber, and the adsorbent dropout prevention plate is interposed between the unit bodies so that the fins are stacked one above the other. It is preferable that the unit bodies are composed of a plurality of unit bodies, and the unit bodies are vertically stacked at a pitch of 150 to 250 mm.

【0011】[0011]

【作用】吸着式熱交換器の伝達性能即ち総括伝熱係数U
は、一般に次の(1)で表わされる。 I/U=(I/hw)+(Sw/λw)+(Sef/λef)+(1/hex) …(1) ここで、hw=壁面での熱伝達率、Sw=壁の肉厚、λ
w=壁の熱伝導率、Sef=吸着剤槽の有効熱伝導率、
hex=熱媒体側の熱伝達率である。
Operation: The transfer performance of the adsorption heat exchanger, that is, the overall heat transfer coefficient U
Is generally represented by the following (1). I / U = (I / hw) + (Sw / λw) + (Sef / λef) + (1 / hex) (1) where, hw = heat transfer coefficient on the wall surface, Sw = wall thickness, λ
w = thermal conductivity of the wall, Sef = effective thermal conductivity of the adsorbent tank,
hex = heat transfer coefficient on the heat medium side.

【0012】前記(1)式より、吸着式熱交換器の総括
伝熱係数Uを上昇せしめるには、吸着剤の有効熱伝導率
λef及び壁面での熱伝達率hwを増大せしめる必要が
ある。又前記伝熱係数Uを上昇せしめるには、前記シリ
カゲルの中に熱伝導率の高い銅の粉抹、粒体、針状体等
を混入すれば、一義的にはこの目的が達成されることが
判明している。かかる吸着剤では振動条件下で吸着、脱
着を繰り返して長期間使用すると伝熱係数Uが低下す
る。これは使用時間の経過とともに振動のために重量の
大きい銅粉、銅粒体等が吸着剤中を沈降して、下方に脱
落してしまうことによる。特に吸着剤槽を構成する熱交
換器をプレートフィンで構成した場合著しい。
From the above equation (1), in order to increase the overall heat transfer coefficient U of the adsorption heat exchanger, it is necessary to increase the effective heat conductivity λef of the adsorbent and the heat transfer coefficient hw on the wall surface. Further, in order to increase the heat transfer coefficient U, the purpose can be uniquely achieved by mixing copper powder, granules, needles, etc. having high thermal conductivity into the silica gel. Is known. With such an adsorbent, the heat transfer coefficient U decreases when it is used for a long time by repeating adsorption and desorption under vibration conditions. This is because, as the use time elapses, heavy copper powder, copper particles, and the like settle in the adsorbent due to vibration and fall off downward. This is particularly remarkable when the heat exchanger that constitutes the adsorbent tank is constituted by plate fins.

【0013】然るに本発明に係るシリカゲルと銅ファイ
バーとの混合物からなる吸着剤は、発明者らの吸着工程
と再生工程を一定のサンプルタイムで繰返す実験結果に
よれば、シリカゲルに銅の粉抹、粒、針状体等を混入し
た従来のものに較べて再生工程後の伝熱係数Uが大き
く、振動条件下においても吸着剤の重量よりも軽い銅フ
ァイバーを使用することから重量沈降は生じにくいこ
と。又は、線径が細いので事実上の伝熱面積が大きくな
ることの他に、考えられている銅ファイバー充填では銅
ファイバー同士が接触し、からみあっている状態ができ
ているため吸着剤の沈降防止のためのストッパーともな
って働いている。さらにこの状態でも竪方向に充填層が
高いと下方の充填層は重量の影響もでるので、150〜
250mmピッチで区分された範囲内では重量の影響も
なく振動条件下でも性能劣化が生じない。。
However, according to the present inventors' experiment results of repeating the adsorption step and the regeneration step at a fixed sample time, the adsorbent comprising a mixture of silica gel and copper fibers according to the present invention, The heat transfer coefficient U after the regeneration process is larger than that of the conventional one in which particles, needles, etc. are mixed, and weight sedimentation is less likely to occur due to the use of copper fiber which is lighter than the weight of the adsorbent even under vibration conditions. thing. Or, in addition to the fact that the wire diameter is small, the heat transfer area is actually large, and the copper fibers are considered to be in contact with each other in the conceivable copper fiber filling, which prevents the adsorbent from settling. Is also working as a stopper for. Even in this state, if the packed bed is high in the vertical direction, the lower packed bed is affected by the weight.
Within the range of 250 mm pitch, there is no influence of weight and no performance deterioration occurs under vibration conditions. .

【0014】即ち、本発明によれば、シリカゲル中に銅
ファイバーがクロスして充填されることにより吸脱着性
能が向上し、吸着剤中の冷媒が脱着され難くなり、船舶
用冷凍・空調装置のように高振動、大揺動が加わって
も、吸着剤の脱落が阻止される。
That is, according to the present invention, the silica fibers are cross-filled with the copper fibers to improve the adsorption / desorption performance and make it difficult for the refrigerant in the adsorbent to be desorbed. Even if a high vibration or a large swing is applied, the adsorbent is prevented from falling off.

【0015】[0015]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対位置などは特
に特定的な記載がない限りは、この発明の範囲をそれの
みに限定する趣旨ではなく単なる説明例に過ぎない。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, the dimensions, materials, shapes, relative positions, etc., of the components described in this embodiment are not intended to limit the scope of the present invention thereto, unless there is a specific description, and are merely illustrative examples. Nothing more than.

【0016】図1は本発明が適用される吸着式空気冷却
装置の1例を示す。図1において10は吸着式空気冷却
装置(以下冷却装置と略釈する)であり、該吸着式空気
冷却装置10は、主要要素として、2個の吸着装置12
A、12Bと、吸着装置12A、12Bに接続された凝
縮器14と、吸着装置12A,12Bと凝縮器14にそ
れぞれ接続された冷媒貯槽16と、空気冷却器18と、
冷媒貯槽16から空気冷却器18に冷媒液を送液する冷
媒ポンプ36とを備えている。
FIG. 1 shows an example of an adsorption type air cooling device to which the present invention is applied. In FIG. 1, reference numeral 10 denotes an adsorption type air cooling device (hereinafter abbreviated as a cooling device). The adsorption type air cooling device 10 includes two adsorption devices 12 as main elements.
A, 12B, a condenser 14 connected to the adsorption devices 12A, 12B, a refrigerant storage tank 16 connected to each of the adsorption devices 12A, 12B and the condenser 14, and an air cooler 18,
A refrigerant pump 36 for sending a refrigerant liquid from the refrigerant storage tank 16 to the air cooler 18 is provided.

【0017】前記吸着式装置12A、12Bは、後述す
る構成を備えた吸着剤を充填した吸着剤槽と、吸着剤槽
中に埋設されたコイル式伝熱管若しくは図3に示すプレ
ートフィン伝熱管13(図1中吸着装置12Bにのみ図
示)とからなり、冷媒蒸気が吸着剤槽を通過するように
構成されていて、同じものが2個並列に配置されてい
る。
The adsorption-type devices 12A and 12B include an adsorbent tank filled with an adsorbent having a structure described later, and a coil heat transfer tube embedded in the adsorbent tank or the plate fin heat transfer tube 13 shown in FIG. (Only the adsorption device 12B is shown in FIG. 1), the refrigerant vapor is configured to pass through the adsorbent tank, and two identical refrigerants are arranged in parallel.

【0018】前記吸着装置12A,12Bの各々は、交
互に冷媒蒸気の吸着工程と脱着工程とを実施し、吸着工
程では、冷媒貯槽16から導入された冷媒蒸気を吸着剤
に吸着させ、脱着工程では吸着剤に吸着させた冷媒蒸気
を脱着させる。吸着工程では吸着熱を除去するために、
吸着剤槽に埋設した伝熱管13に冷却流体(本実施例で
は冷却水)を通水し、脱着工程では吸着剤を加温するた
めに伝熱管13に加熱流体(この実施例では、60℃〜
85℃のエンジンシリンダー冷却水)を通水する。
Each of the adsorbers 12A and 12B alternately performs a refrigerant vapor adsorption step and a desorption step. In the adsorption step, the refrigerant vapor introduced from the refrigerant storage tank 16 is adsorbed by the adsorbent, and the desorption step is performed. Then, the refrigerant vapor adsorbed by the adsorbent is desorbed. In the adsorption process, in order to remove the heat of adsorption,
A cooling fluid (cooling water in this embodiment) is passed through the heat transfer tube 13 embedded in the adsorbent tank, and a heating fluid (60 ° C. in this embodiment) is applied to the heat transfer tube 13 to heat the adsorbent in the desorption process. ~
Cooling water for engine cylinder at 85 ° C).

【0019】前記吸着装置12A,12Bは、プレート
フィン型熱交換器で構成することもできる。即ち、該プ
レートフィン型熱交換器を用いる場合は、後述する構成
を備えた吸着剤をプレート状のフィン間に充填し、伝熱
管内に冷媒の吸着工程では冷却水を通水し、脱着工程で
はエンジンのシリンダー冷却後の温水を通水する。
The adsorbing devices 12A and 12B can also be constituted by plate fin type heat exchangers. That is, when the plate fin type heat exchanger is used, an adsorbent having a configuration described below is filled between plate fins, cooling water is passed through the heat transfer tubes in the refrigerant adsorbing step, and the desorbing step is performed. Then, pass warm water after cooling the engine cylinder.

【0020】前記凝縮器14は、前記2個の吸着装置1
2A、12Bの上側に配置された横型の冷媒蒸気/冷却
水熱交換器であって、Uチューブを直列に接続した伝熱
管15を備えた上部の凝縮部と、凝縮部の下方に設けら
れた液溜まり15aとから構成されている。該凝縮器1
4は、2個の下部入口を15c、15dを介して吸着装
置12A,12Bにそれぞれ接続されており、各下部入
口15c、15dは、それぞれ冷媒体液溜まりを貫通し
て凝縮部に連通し、制御装置(図示せず)のプログラム
に従い開閉する開閉弁20A,Bを備えている。
The condenser 14 is composed of the two adsorption devices 1
A horizontal refrigerant vapor / cooling water heat exchanger arranged on the upper side of 2A, 12B, which is provided below the condensing part and an upper condensing part having a heat transfer tube 15 in which U tubes are connected in series. It is composed of a liquid pool 15a. The condenser 1
4 is connected to the adsorption devices 12A and 12B via two lower inlets 15c and 15d, respectively, and each lower inlet 15c and 15d penetrates the refrigerant body fluid reservoir and communicates with the condenser, On-off valves 20A and 20B that are opened and closed according to a program of an apparatus (not shown) are provided.

【0021】前記凝縮部14は、伝熱管15を流れる冷
却水により、吸着装置12から脱着して下部入口15
c、15dから流入した冷媒蒸気を冷却して凝縮させ、
凝縮した冷媒液を下部の液溜まり15aに滞留させる。
The condenser section 14 is desorbed from the adsorption device 12 by the cooling water flowing through the heat transfer tube 15, and the lower inlet 15
The refrigerant vapor flowing in from c and 15d is cooled and condensed,
The condensed refrigerant liquid is retained in the lower liquid pool 15a.

【0022】冷媒貯槽16は、前記2個の吸着装置12
A,12Bの下側に配置された横型の容器であって、上
部の空間部16aと下部の液溜まり16bとから構成さ
れ、かつ液溜まり16bには冷熱蓄熱剤22が配置され
ている。(この蓄熱剤22は、例えば、融解温度が8.
3℃、融解潜熱が22.8 Kcal/kgである非晶塩水化物
をカプセルに封入したものが用いられ、相変化点での容
積変化が極めて少ないものである。
The refrigerant storage tank 16 is composed of the two adsorption devices 12 described above.
It is a horizontal container arranged below A and 12B, and is composed of an upper space portion 16a and a lower liquid pool 16b, and a cold heat storage agent 22 is arranged in the liquid pool 16b. (This heat storage agent 22 has, for example, a melting temperature of 8.
An encapsulated amorphous salt hydrate having a latent heat of fusion of 22.8 Kcal / kg at 3 ° C. is used, and the volume change at the phase change point is extremely small.

【0023】冷媒貯槽16は、2個の上部出口16c、
16dを介して吸着装置12A,12Bにそれぞれ接続
されており、各上部出口は、それぞれ制御装置(図示せ
ず)のプログラムに従い開閉する開閉弁24A,24B
を備えている。また、冷媒貯槽16の液溜まり16bと
凝縮器14の液溜まり15aとは、絞り弁26を備えた
冷媒液管28により接続されており、凝縮器14の液溜
まり15aの冷媒液は、絞り弁26により流量調節され
つつ冷媒貯槽16の冷媒液面を制御し、かつ冷媒液をフ
ラッシュさせている。
The refrigerant storage tank 16 has two upper outlets 16c,
Opening valves 24A, 24B, which are connected to the adsorption devices 12A, 12B via 16d, and whose upper outlets are opened and closed according to a program of a control device (not shown), respectively.
It has. Further, the liquid pool 16b of the refrigerant storage tank 16 and the liquid pool 15a of the condenser 14 are connected by a refrigerant liquid pipe 28 having a throttle valve 26, and the refrigerant liquid in the liquid pool 15a of the condenser 14 is connected to the throttle valve. While controlling the flow rate by 26, the refrigerant liquid level in the refrigerant storage tank 16 is controlled and the refrigerant liquid is flushed.

【0024】前記空気冷却器18は、フィン付きの伝熱
管25を多数備えた空気/冷媒液の熱交換器であって、
空気は付設されたファンにより空気冷却器18に流入
し、伝熱管25の管外を通過しつつ伝熱管25を流れる
冷媒体によりフィンを介して冷却されて所定の場所に送
風される。空気冷却器18の冷媒入口のヘッダは、途中
に前記冷媒ポンプ36が介装された冷媒液供給管34に
より冷媒貯槽16の空間部16aに連通している。
The air cooler 18 is an air / refrigerant liquid heat exchanger having a large number of finned heat transfer tubes 25,
The air flows into the air cooler 18 by an attached fan, is cooled through the fins by the refrigerant flowing through the heat transfer tube 25 while passing outside the heat transfer tube 25, and is blown to a predetermined place. The header of the refrigerant inlet of the air cooler 18 communicates with the space 16a of the refrigerant storage tank 16 by the refrigerant liquid supply pipe 34 in which the refrigerant pump 36 is interposed.

【0025】冷媒液は、冷媒貯槽16から冷媒ポンプ3
6により冷媒供給管34を経て伝熱管25に流入し、空
気を冷却しつつ一部気化して伝熱管25から流出し、下
降管38を通って冷媒貯槽16に入り、気液分離する。
吸着工程中の吸着装置12Aあるいは12Bは、冷媒蒸
気を吸着するので減圧状態にあり、よって冷媒蒸気は圧
力差により空気冷却器18から吸着装置12A(12
B)に入る。
The refrigerant liquid flows from the refrigerant storage tank 16 to the refrigerant pump 3
6 flows into the heat transfer pipe 25 through the refrigerant supply pipe 34, partially evaporates while cooling the air, flows out of the heat transfer pipe 25, enters the refrigerant storage tank 16 through the downcomer 38, and separates into gas and liquid.
The adsorbing device 12A or 12B during the adsorbing step is in a depressurized state because it adsorbs the refrigerant vapor, and therefore the refrigerant vapor is transferred from the air cooler 18 to the adsorbing device 12A (12) due to the pressure difference.
Enter B).

【0026】吸着装置12A,12B及び凝縮器14に
冷却水及び温水を供給するために、凝縮器14に接続さ
れた冷却水供給管40と冷却水排出管42、吸着装置1
2A,12Bに接続された温水供給管44と温水排出管
46、並びに冷却水供給管41と冷却水排出管43が設
けられている。前記温水供給管44には、前記のよう
に、エンジン出口のシリンダー冷却水(温度60℃〜8
5℃)が通水されており、この温水の熱により吸着装置
12A(12B)での脱着作用を促進せしめる。
In order to supply cooling water and hot water to the adsorption devices 12A and 12B and the condenser 14, the cooling water supply pipe 40 and the cooling water discharge pipe 42 connected to the condenser 14 and the adsorption device 1
A warm water supply pipe 44 and a warm water discharge pipe 46, and a cooling water supply pipe 41 and a cooling water discharge pipe 43 connected to 2A and 12B are provided. In the hot water supply pipe 44, as described above, the engine cooling cylinder cooling water (temperature 60 ° C to 8 ° C) is used.
(5 ° C.) is passed, and the heat of this hot water promotes the desorption action in the adsorption device 12A (12B).

【0027】前記吸着装置12A,12Bの吸着剤槽に
装填される吸着剤は、シリカゲルに熱伝導良導体である
銅ファイバーを混入したものを用いる。前記シリカゲル
と銅ファイバーとの混合割合は銅ファイバー5wt%前
後が好適である。
As the adsorbent loaded in the adsorbent tanks of the adsorbers 12A and 12B, silica gel mixed with copper fiber which is a good conductor of heat is used. The mixing ratio of the silica gel and the copper fiber is preferably about 5 wt% of the copper fiber.

【0028】次に前記吸着剤槽の構成について図3に基
づいて説明する。本吸着剤槽は、水平方向に延設する複
数の伝熱管140を上下に列状に配置し、これをプレー
ト状の多数枚のアルミフィン141を所定空隙介して嵌
装させる。そして前記アルミフィン141は縦長の方形
板状をなし、上下に配設した3本の伝熱管140が一体
的に嵌挿保持して熱交換ユニット144を構成し、そし
て熱交換ユニット体144を、該ユニット体144間に
吸着剤脱落防止板145を介装しながら上下に積層配置
させたユニット体群で構成される。脱落防止板145は
熱伝導性のよい材料で板状若しくは細メッシュ状のパン
チングメタル板で形成される。
Next, the structure of the adsorbent tank will be described with reference to FIG. In this adsorbent tank, a plurality of heat transfer tubes 140 extending in the horizontal direction are arranged in a row in the vertical direction, and a large number of plate-shaped aluminum fins 141 are fitted through a predetermined space. The aluminum fin 141 has a vertically long rectangular plate shape, and the three heat transfer tubes 140 arranged above and below are integrally fitted and held to form the heat exchange unit 144, and the heat exchange unit body 144 is An adsorbent dropout prevention plate 145 is interposed between the unit bodies 144, and the unit body groups are vertically stacked. The captive prevention plate 145 is formed of a plate-shaped or fine mesh-shaped punching metal plate made of a material having good thermal conductivity.

【0029】そして前記熱交換ユニット体144群から
なる吸着剤槽本体147は、アルミフィン間隔に粒状吸
着剤142を充填し、吸着剤の脱落防止のためにフィン
表面に極細ワイヤーメッシュ(粒径により異なるが例え
ば40メッシュ程度)の薄い金網143をかぶせ、吸着
剤142がフィン面や間隔より外部に脱落したり、移動
したりしないようにしている。
The adsorbent tank body 147 consisting of the heat exchange unit bodies 144 is filled with granular adsorbent 142 at intervals between aluminum fins, and an ultrafine wire mesh (depending on particle size) is provided on the fin surface to prevent the adsorbent from falling off. A thin wire net 143 having a different mesh (for example, about 40 mesh) is covered to prevent the adsorbent 142 from falling off or moving to the outside from the fin surface or the gap.

【0030】そして前記技術においては吸着剤の脱落防
止のため、極細ワイアーメッシュで編んだ金網143で
フィンを外側から巻き熱交換ユニット体144群からな
る吸着剤槽本体147を覆って対処しているが、金網は
薄い布のようなもので自らフィンに密着することができ
ないので、外側からさらに目が荒いパンチングメタル等
を使い金網の密着度を上げるべく押えてもよい。
In the above technique, in order to prevent the adsorbent from falling off, the fins are wound from the outside with a wire net 143 knitted with an ultrafine wire mesh to cover the adsorbent tank body 147 including the heat exchange unit body 144. However, since the wire mesh is like a thin cloth and cannot be adhered to the fins by itself, a punching metal or the like having a rougher eye may be used from the outside to press the wire mesh to increase the degree of adhesion.

【0031】前記熱交換ユニット体144の上下の配設
ピッチ間隔、言換えれば脱落防止板45の配設ピッチ間
隔は150〜250mmピッチ間隔に設定される。
The upper and lower disposition pitch intervals of the heat exchange unit body 144, in other words, the disposition prevention plate 45 disposition pitch intervals are set to 150 to 250 mm pitch intervals.

【0032】次に前記シリカゲルと銅ファイバーとの混
合体からなる吸着剤の伝熱性能及び吸着安全性に関す
る。
Next, the heat transfer performance and adsorption safety of the adsorbent composed of the mixture of silica gel and copper fibers will be described.

【0033】(1)供試体及び実験方法 吸着装置として、プレートフィン型熱交換器を用い、吸
着剤をプレートフィン間に充填し、該熱交換器の伝熱管
内に熱媒体である冷却水及び温水を温度コントロールし
ながら通水し、吸着剤の吸着、脱着を行った。
(1) Specimen and Experimental Method A plate fin type heat exchanger was used as an adsorption device, an adsorbent was filled between the plate fins, and cooling water as a heating medium and a heat transfer medium were introduced into the heat transfer tubes of the heat exchanger. Hot water was passed while controlling the temperature to adsorb and desorb the adsorbent.

【0034】また、吸着、脱着のサイクルタイムは5〜
10分の間で変化させて吸着剤の温度変化、冷媒循環量
の変化、前記(1)式に示す総括伝熱係数Uの測定演算
を行った。
The cycle time of adsorption and desorption is 5 to 5.
The temperature change of the adsorbent, the change of the refrigerant circulation amount, and the calculation calculation of the overall heat transfer coefficient U shown in the equation (1) were performed by changing the temperature for 10 minutes.

【0035】実験に供した吸着剤は表1に示すように、
A:破砕シリカゲル、B:シリカゲル+銅粒10wt
%、C:シリカゲル+銅ファイバー10wt%の4種類
である。
The adsorbents used in the experiment are as shown in Table 1.
A: crushed silica gel, B: silica gel + copper particles 10 wt
%, C: silica gel + copper fiber 10 wt%.

【0036】[0036]

【表1】 [Table 1]

【0037】(2)実験結果 (2−1)伝熱特性及び吸着性安定性は測定結果 前記(1)式に示される総括伝熱係数Uを吸着工程、再
生工程において測定算出した結果を表2に示す。
(2) Experimental Results (2-1) Measurement Results of Heat Transfer Characteristics and Adsorption Stability The results obtained by measuring and calculating the overall heat transfer coefficient U shown in the above equation (1) in the adsorption step and the regeneration step are shown. 2 shows.

【0038】[0038]

【表2】 [Table 2]

【0039】表2から明らかになったように、供試サン
プルC(シリカゲル+銅ファイバー10wt%)が、吸
着→再生後における前記Uの落ち込みが小さい。
As is clear from Table 2, the sample C (silica gel + copper fiber 10 wt%) has a small drop of U after adsorption → regeneration.

【0040】前記Uの落ち込みが大きいのは、吸着→再
生の過程を繰り返すうちに吸着剤中の冷媒が脱着されて
行くため、吸着剤の有効熱伝導率λefが減少すること
による。
The reason why the drop of U is large is that the effective thermal conductivity λef of the adsorbent decreases because the refrigerant in the adsorbent is desorbed as the process of adsorption → regeneration is repeated.

【0041】即ち、前記4種の供試体のうち、サンプル
Cのシリカゲル+銅ファイバー10wt%が前記伝熱係
数Uの落ち込みが少なく、両者が吸着工程時に吸着剤中
の冷媒の脱着が少ないこととなる。
That is, among the four types of specimens, the silica gel + copper fiber 10 wt% of sample C had a small decrease in the heat transfer coefficient U, and both had less desorption of the refrigerant in the adsorbent during the adsorption step. Become.

【0042】前記サンプルC(シリカゲル+銅ファイバ
ー10wt%)の時間と前記伝熱係数U及び吸着剤温度
の測定、演算結果を図2に示す。
FIG. 2 shows the results of measurement and calculation of the time of the sample C (silica gel + copper fiber 10 wt%), the heat transfer coefficient U and the adsorbent temperature.

【0043】前記実験結果に基づく各サンプルA、B
、Cの吸着剤として評価の比較を表3に示す。
Samples A and B based on the above experimental results
Table 3 shows a comparison of evaluations as the adsorbents for C and C.

【0044】[0044]

【表3】 [Table 3]

【0045】前記伝熱性能U及び吸着性の面からは、サ
ンプルC(シリカゲル+銅ファイバー10wt%)が吸
着剤として好適である。よって伝熱性能、吸着性能、製
造コストの全ての面においてサンプルC(シリカゲル+
銅ファイバー10wt%)が吸着剤として最適である。
From the aspects of the heat transfer performance U and adsorptivity, sample C (silica gel + copper fiber 10 wt%) is suitable as an adsorbent. Therefore, in all aspects of heat transfer performance, adsorption performance, and manufacturing cost, sample C (silica gel +
Copper fiber (10 wt%) is most suitable as an adsorbent.

【0046】さらに、前記サンプルCのものについて、
振動試験を行い、船舶用エンジンや船体振動と同レベル
の振動を付与して耐震試験を行った結果、前記サンプル
Cのものは、振動により吸着剤が脱落することがなく、
充分な吸着剤槽への吸着性を備えていることが確認され
た。
Further, regarding the sample C,
As a result of performing a vibration test and performing a seismic resistance test by applying vibration at the same level as that of the ship engine and ship vibration, the sample C does not drop the adsorbent due to vibration,
It was confirmed that the adsorbent tank had sufficient adsorbability.

【0047】[0047]

【発明の効果】本発明によれば、冷媒蒸気の吸着剤への
吸着及び吸着剤からの脱着を行うための吸着装置と、吸
着装置からの脱着冷媒を冷却、凝縮せしめて液冷媒とな
すか凝縮器と、液冷媒と負荷冷熱とを熱交換する熱交換
器とを備えた吸着式冷凍・空調装置において、前記吸着
剤をシリカゲルと銅ファイバーとの混合体から構成した
ので、吸着剤のシリカゲル中に銅ファイバーがクロスし
て充填されて吸着強度が増すことになり、長時間の使用
に対しても、振動により吸着剤が脱落することがなく、
かつ良好な伝熱性能を維持できるとともに、低コストで
ある。
According to the present invention, an adsorbing device for adsorbing and adsorbing refrigerant vapor to and from the adsorbent, and whether the desorbed refrigerant from the adsorbing device is cooled and condensed to form a liquid refrigerant. In an adsorption type refrigeration / air-conditioning apparatus equipped with a condenser and a heat exchanger for exchanging liquid refrigerant and load cold heat, since the adsorbent is composed of a mixture of silica gel and copper fiber, silica gel of the adsorbent The copper fibers will be crossed and filled inside to increase the adsorption strength, and the adsorbent will not fall off due to vibration even during long-term use,
Moreover, good heat transfer performance can be maintained, and the cost is low.

【0048】従って、振動や揺動の大きい船舶用として
好適な耐震性、耐衝撃性を備えた吸着式冷凍・空調装置
を得ることができる。
Therefore, it is possible to obtain an adsorption type refrigerating / air-conditioning apparatus having earthquake resistance and shock resistance, which is suitable for a ship which is subject to large vibrations and swings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る吸着式空気冷却装置の構
成図。
FIG. 1 is a configuration diagram of an adsorption type air cooling device according to an embodiment of the present invention.

【図2】本発明に係る吸着剤の性能線図FIG. 2 is a performance diagram of the adsorbent according to the present invention.

【図3】本発明に適用される吸着剤槽の要部構成を示す
斜視図である。
FIG. 3 is a perspective view showing a main part configuration of an adsorbent tank applied to the present invention.

【符号の説明】[Explanation of symbols]

10 吸着式空気冷却装置 12A・12B 吸着装置 14 循環器 16 冷媒貯槽 18 空気冷却器 36 冷媒ポンプ 140 伝熱管 141 アルミプレートフィン 144 熱交換ユニット 145 吸着剤脱落防止板 10 Adsorption Type Air Cooling Device 12A / 12B Adsorption Device 14 Circulator 16 Refrigerant Storage Tank 18 Air Cooler 36 Refrigerant Pump 140 Heat Transfer Tube 141 Aluminum Plate Fin 144 Heat Exchange Unit 145 Adsorbent Fall Prevention Plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸着剤槽に充填された吸着剤に、冷却水
で冷却しつつ冷媒蒸気を吸着工程及び前記冷媒蒸気を加
熱してこれに附属された吸着剤を脱着する脱着工程をな
す吸着剤装置と、該吸着装置からの脱着冷媒蒸気を冷却
して凝固せしめ低温の液冷媒となす凝縮器と上記液冷媒
と負荷冷熱とを熱交換する蒸発器を備え、前記吸着剤槽
にシリカゲルと銅ファイバー繊維との混合体が充填され
ていることを特徴とする吸着式冷凍・空調装置。
1. An adsorption step of adsorbing a refrigerant vapor to an adsorbent filled in an adsorbent tank while cooling it with cooling water, and a desorption step of heating the refrigerant vapor to desorb the adsorbent attached to the refrigerant vapor. An adsorbent device, a condenser for cooling and solidifying the desorbed refrigerant vapor from the adsorption device to form a low-temperature liquid refrigerant, and an evaporator for exchanging heat between the liquid refrigerant and the load cold heat, and silica gel in the adsorbent tank. An adsorption type refrigeration / air-conditioning system characterized by being filled with a mixture with copper fiber fibers.
【請求項2】 前記混合体が、シリカゲル中に線長5〜
10mm、線径30〜60μm、重量比3〜10wt%
の銅ファイバーを混入してなる混合体である請求項1記
載の吸着式冷凍・空調装置。
2. The mixture has a line length of 5 to 5 in silica gel.
10 mm, wire diameter 30-60 μm, weight ratio 3-10 wt%
The adsorbing type refrigerating / air-conditioning apparatus according to claim 1, wherein the adsorbing type refrigerating / air-conditioning apparatus is a mixture formed by mixing the copper fiber.
【請求項3】 前記吸着剤槽が、列状に配してなる複数
の伝熱管に一体的に、多数枚のプレート状フィンを所定
空隙介して嵌装させ、該フィン間隔に粒状吸着剤と銅フ
ァイバー繊維を充填して熱交換ユニット体を構成すると
共に、該ユニット体間に吸着剤脱落防止板を介装しなが
ら上下に積層配置させたユニット体群で構成した事を特
徴とする請求項1記載の吸着式冷凍・空調装置。
3. The adsorbent tank is integrally mounted on a plurality of heat transfer tubes arranged in a row, with a large number of plate-shaped fins fitted through a predetermined space, and a granular adsorbent is provided between the fins. A heat exchange unit body is formed by filling copper fiber fibers, and the heat exchange unit body is composed of a unit body group which is vertically stacked while an adsorbent dropout prevention plate is interposed between the unit bodies. 1. Adsorption type refrigeration / air conditioning system according to 1.
JP7145659A 1995-05-19 1995-05-19 Adsorption type refrigerating and air-conditioning device Pending JPH08313111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145659A JPH08313111A (en) 1995-05-19 1995-05-19 Adsorption type refrigerating and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145659A JPH08313111A (en) 1995-05-19 1995-05-19 Adsorption type refrigerating and air-conditioning device

Publications (1)

Publication Number Publication Date
JPH08313111A true JPH08313111A (en) 1996-11-29

Family

ID=15390128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145659A Pending JPH08313111A (en) 1995-05-19 1995-05-19 Adsorption type refrigerating and air-conditioning device

Country Status (1)

Country Link
JP (1) JPH08313111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135026A1 (en) * 2005-06-15 2006-12-21 National University Corporation Kyushu University Adsorption refrigerator
JP2011104489A (en) * 2009-11-16 2011-06-02 Energy Products Co Ltd Adsorption tower
JP2014214937A (en) * 2013-04-24 2014-11-17 三菱重工業株式会社 Ship cold water generation system and ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135026A1 (en) * 2005-06-15 2006-12-21 National University Corporation Kyushu University Adsorption refrigerator
JPWO2006135026A1 (en) * 2005-06-15 2009-01-08 国立大学法人九州大学 Adsorption type refrigerator
JP4617433B2 (en) * 2005-06-15 2011-01-26 国立大学法人九州大学 Adsorption type refrigerator
JP2011104489A (en) * 2009-11-16 2011-06-02 Energy Products Co Ltd Adsorption tower
JP2014214937A (en) * 2013-04-24 2014-11-17 三菱重工業株式会社 Ship cold water generation system and ship

Similar Documents

Publication Publication Date Title
KR100241795B1 (en) Adsorption Chiller and Cooling Power Control Method
US5456093A (en) Adsorbent composites for sorption cooling process and apparatus
Sharafian et al. Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications
CN108883357A (en) The method of sorbent material and absorption carbon dioxide
JP6481541B2 (en) Adsorber
US10101066B2 (en) Adsorber and adsorption refrigerator
WO2013083992A1 (en) A sorption device
Lee et al. Experimental investigation of the solid desiccant dehumidification system with metal organic frameworks
Seol et al. Modeling of adsorption heat pump system based on experimental estimation of heat and mass transfer coefficients
JP4380620B2 (en) Adsorption core, production method of adsorption core and adsorption refrigerator
JP3440250B2 (en) Heat exchange metal tube and adsorption heat pump
JPH08313111A (en) Adsorption type refrigerating and air-conditioning device
US20080028787A1 (en) Adsorption type heat exchanger and method of manufacturing the same
JPH04194561A (en) Adsorption type cooling apparatus
Tarish et al. Impact of the adsorbent materials and adsorber bed design on performance of the adsorption thermophysical battery: Experimental study
JP2004263959A (en) Absorption core of absorption type heat pump
JP4698449B2 (en) Gasoline vapor recovery device
JPH10141803A (en) Adsorption core of adsorption type refrigerator
Narayanan et al. Recent advances in adsorption-based heating and cooling systems
WO2016059777A1 (en) Adsorber
JPH1089805A (en) Adsorption core for adsorption refrigerator
DE10047503A1 (en) Sorption reactor, for heat exchange in vehicle/building air conditioning systems, has a compound structure of zeolite and metal in a container together with an evaporator for steam
Abou Elfadil Investigations and technical development of adsorption thermal energy storage systems with simulation and different control strategies
JP5352906B2 (en) Fine adsorbent dispersion absorption liquid, fine adsorbent dispersion latent heat storage material and heat exchanger type absorber
CN109556310B (en) Adsorption refrigeration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907