JP2004263959A - Absorption core of absorption type heat pump - Google Patents

Absorption core of absorption type heat pump Download PDF

Info

Publication number
JP2004263959A
JP2004263959A JP2003055589A JP2003055589A JP2004263959A JP 2004263959 A JP2004263959 A JP 2004263959A JP 2003055589 A JP2003055589 A JP 2003055589A JP 2003055589 A JP2003055589 A JP 2003055589A JP 2004263959 A JP2004263959 A JP 2004263959A
Authority
JP
Japan
Prior art keywords
adhesive
adsorption
core
weight
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055589A
Other languages
Japanese (ja)
Inventor
Koji Inagaki
孝治 稲垣
Atsushi Kosaka
淳 小坂
Hiroshi Saegusa
弘 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003055589A priority Critical patent/JP2004263959A/en
Publication of JP2004263959A publication Critical patent/JP2004263959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance an absorption speed while securing the durability of an absorption core in an absorption type heat pump. <P>SOLUTION: The absorption speed required for the absorption core of the absorption type heat pump can be provided by using a material having a heat conductivity of 0.5 W/m × K to 2.0 W/m × K as an adhesive to adhere and fix an adsorbent 50 to a tube 33. The high heat conductivity of the adhesive can be obtained by using a material of including graphite or silicon carbide in resin as a filler for the adhesive. The content of the graphite is set to 5 wt.% to 40 wt.%; the content of the silicon carbide is set to 5 wt.% to 50 wt.%; the heat conductivity is set to 0.5 W/m × K to 2.0 W/m × K; and prescribed adhesive strength required from the viewpoint of securing the durability of the absorption cores 11 and 12 can be secured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤が冷却、加熱されることにより水などの吸着質が吸着、脱離されることを利用した吸着式ヒートポンプの吸着コアに関する。
【0002】
【従来の技術】
吸着式ヒートポンプの吸着コアでは、吸着剤(例えば、ゼオライトやシリカゲル)の温度を冷却温度(例えば、車両用の場合は外気温)と熱源温度(例えば、車両用の場合はエンジン冷却水温の約90℃)の間で往復させるが、装置の冷房能力はその間の吸着質(例えば、水)の吸脱着量の振幅と吸脱着速度により決定される。吸脱着量の振幅は吸着剤自体の吸水特性から決定されるが、吸着速度については、その他に吸着剤をいかに所定の温度に到達させるか、ということが重要となる。
【0003】
吸着コアは、チューブを有する熱交換部材に、吸着剤を粉体接着剤により接着しており、チューブ内を流れる熱交換流体の熱は、熱交換部材、接着剤、吸着剤の順番に伝わることになる。したがって、熱を吸着剤にできる限りすばやく伝えるためには、接着剤の熱伝導率の向上が必要である。
【0004】
【発明が解決しようとする課題】
ところで、従来の吸着式ヒートポンプの吸着コアでは、樹脂成分に適宜フィラーを含有させた接着剤が用いられている。一般に樹脂の熱伝導率は約0.2W/m・K程度であり、汎用接着剤の場合にはこれに適宜フィラー(例えば、炭酸カルシウム、酸化マグネシウムなど)を混入させて熱伝導率の向上を図っている。
【0005】
しかしながら、従来は吸着コア用の接着剤として要求される接着強度を満足しつつ、接着剤の熱伝導率を最も高めてもその値は0.4W/m・K程度であり、吸着コア用の接着剤として要求される接着強度を確保可能な範囲にフィラーの含有率を設定した場合には、熱伝導率の不足のために、必要な吸着速度を確保することができなかった。そのため、接着剤の接着強度を確保しつつ、吸着コアの吸着速度を高めることが困難であった。
【0006】
本発明は、上記点に鑑み、吸着コアの接着剤の接着強度を確保しつつ吸着速度を高めることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、熱交換流体が流れるチューブ(33)を有する熱交換部材(30)と、熱交換部材(30)の表面に接着剤にて接着され、熱交換流体により冷却および加熱されることで吸着質を吸着および脱離することができる吸着剤(50)とを備える吸着式ヒートポンプの吸着コア(11、12)であって、接着剤は、熱伝導率が0.5W/m・K以上2.0W/m・K以下であることを特徴とする。このような接着剤を用いた場合に吸着コアに要求される吸着速度を確保することが可能となった。
【0008】
また、このような高い熱伝導率と吸着コア用の接着剤として要求される接着強度確保の両立のためには、請求項2の発明のようにフィラーとして黒鉛および炭化珪素のうちのいずれか一方、もしくは両方を合わせて用いるのが望ましく、また請求項7の発明のように樹脂成分としてエポキシ樹脂を用いるのが望ましい。
【0009】
ところで、吸着コア用の接着剤として要求される接着強度を確保可能な範囲にフィラーの含有率を設定した場合、炭酸カルシウムをエポキシ樹に含有させた従来の接着剤の熱伝導率は0.4W/m・K程度であるのに対し、請求項3の発明の接着剤の熱伝導率は最大で2.0W/m・K程度まで向上し、これにより、吸着コアの耐久性を確保しつつ吸着速度を高めることが可能になった。
【0010】
請求項3に記載の発明のように、接着剤における黒鉛の含有率を5重量%以上40重量%以下にすることにより、高い熱伝導率を得ることができ、高い熱伝導率と吸着コア用の接着剤として要求される接着強度確保の両立を実現することができる。さらに高い熱伝導率と長期間にわたっての接着強度の保持を実現させるためには黒鉛の含有率を10重量%以上30重量%以下とすることが望ましい。
【0011】
また、請求項5に記載の発明のように、接着剤における炭化珪素の含有率を5重量%以上50重量%以下にすることにより、高い熱伝導率を得ることができ、高い熱伝導率と吸着コア用の接着剤として要求される接着強度確保の両立を実現することができる。さらに高い熱伝導率と長期間にわたっての接着強度の保持を実現させるためには炭化珪素の含有率を10重量%以上40重量%以下とすることが望ましい。
【0012】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。図1は吸着式ヒートポンプの概略全体構成図、図2は本発明に係る吸着式ヒートポンプの吸着コアの斜視図である。
【0014】
図1において、吸着式ヒートポンプ1は第1、第2吸着コア11、12を備えている。これら吸着コア11、12は、それぞれ密閉容器14及び15内に収容されており、密閉容器14及び15には、気体吸着質(本実施形態では水蒸気)の出入口部16、17が備えられている。
【0015】
これら出入口部16、17には、三方切換弁18、19が接続されており、この三方切換弁18、19の間には、吸着質を液化する凝縮器20、吸着質の気液分離及び液体吸着質の一時貯留を行うレシーバ21、液体吸着質を送るポンプ22、及び液体吸着質を気化させて外気との熱交換を行う蒸発器23が直列に接続され、もって吸着質回路25が構成されている。この吸着質回路25内には、所要量の吸着質、本実施形態の場合、例えば水が封入されている。
【0016】
次に、吸着コア11、12の構造について、図2を参照して詳述する。吸着コア11、12は、熱交換器(熱交換部材)30と、この熱交換器30の表面に接着された多数の粒子状の吸着剤50とから構成されている。
【0017】
熱交換器30は、両端にヘッダタンク31、32を備え、このヘッダタンク31、32の間には、熱交換流体が流れる複数の板状のチューブ33が並列的に所定距離を隔てて配置されている。チューブ33の間には、コルゲート状のフィン(伝熱フィン)34がろう付け、溶接、あるいは接着により固定されている。なお、ヘッダタンク31、32は成形性に優れた材料、例えば樹脂、アルミニウム、銅等からなり、チューブ33およびフィン34は、熱伝導に優れた材料、例えばアルミニウムや銅からなる。
【0018】
そして、入口側のヘッダタンク31、チューブ33、出口側のヘッダタンク32の順に、冷却流体(例えば室外熱交換器からの比較的低温な流体、請求項でいう熱交換流体)または加熱流体(例えばエンジン冷却水、請求項でいう熱交換流体)が流れるようになっている。
【0019】
多数の粒子状の吸着剤50は、例えば、ゼオライトやシリカゲルが用いられ、チューブ33とフィン34により構成される隙間に充填されている。また、吸着剤50の各粒子は、チューブ33及びフィン34に接着剤にて接着固定されている。
【0020】
吸着剤50は、冷却状態において吸着質(例えば水蒸気やアルコール水溶液等)を高能力で吸着し、また、吸着質の吸着に伴い吸着能力が次第に低下するが、加熱状態とされることにより、吸着していた吸着質を脱離して吸着能力が再生されるという性質を有している。
【0021】
従って、吸着剤50は、チューブ33及びフィン34を介した熱伝導により、チューブ33を流れる熱交換流体と熱交換を行い、冷却されることで気体吸着質(本実施形態では水蒸気)を吸着し、加熱されることで気体吸着質を脱離することができるようになっている。
【0022】
かかる構成において、第1、第2吸着コア11、12は、図示しないマイコン等の制御装置によって制御されることにより、一方が気体吸着質(水蒸気)を脱離させる脱離側となるとき、他方が蒸発器23からの気体吸着質を吸着する吸着側となるよう、交互に切換え可能に構成されている。
【0023】
具体的には、図1において、第1吸着コア11を脱離側とし、第2吸着コア12を吸着側として使用する場合、三方切替弁18、19が図1中実線位置とされて、吸着コア11側の密閉容器14の出入口部16と凝縮器20とが連通状態とされ、かつ、吸着コア12側の密閉容器15の出入口部17と蒸発器23とが連通状態とされる。また、吸着コア11側に加熱流体、吸着コア12側に冷却流体が供給される。
【0024】
また、第1吸着コア11を吸着側とし、第2吸着コア12を脱離側として使用する場合、三方切替弁18、19が図1中点線位置とされて、吸着コア11側の密閉容器14の出入口部16と蒸発器23とが連通状態とされ、かつ、吸着コア12側の密閉容器15の出入口部17と凝縮器20とが連通状態とされる。また、吸着コア11側に冷却流体、吸着コア12側に加熱流体が供給される。
次に、吸着剤50をチューブ33及びフィン34に接着固定する接着剤について説明する。
【0025】
従来は、炭酸カルシウムをフィラーとして樹脂に含有させた接着剤が多用されている。本実施形態では、黒鉛をエポキシ樹脂に含有させた接着剤、または炭化珪素をエポキシ樹脂に含有させた接着剤を用いている。
【0026】
図3は、フィラー材質の異なる接着剤について、フィラー含有率と熱伝導率との関係を評価した結果を示す特性図である。この図3から明らかなように、黒鉛または炭化珪素をエポキシ樹脂に含有させた本実施形態の接着剤では、比較のために今回作成した炭酸カルシウムをエポキシ樹脂に含有させた接着剤よりも、熱伝導率が大幅に向上することが確認された。
【0027】
ところで、吸着式ヒートポンプ1の吸着コア11、12用の接着剤には、吸着コア11、12の耐久性確保の観点から、所定の接着強度が要求される。そして、この所定の接着強度を確保するためには、黒鉛を含有させた接着剤では黒鉛フィラーの含有率を40重量%以下に設定し、炭化珪素フィラーを含有させた接着剤では炭化珪素フィラーの含有率を50重量%以下に設定すればよいことが確認された。
【0028】
そこで、比較例として作成したエポキシ樹脂に33重量%の炭酸カルシウムを含有させた熱伝導率が0.4W/m・Kの接着剤にて吸着剤50を接着固定した吸着コア(以下、比較用吸着コアという)と、5重量%の黒鉛を含有させた熱伝導率が0.5W/m・Kの接着剤にて吸着剤50を接着固定した吸着コア(以下、評価吸着コア1という)と、エポキシ樹脂に40重量%の黒鉛を含有させた熱伝導率が2.0W/m・Kの接着剤にて吸着剤50を接着固定した吸着コア(以下、評価吸着コア2という)と、エポキシ樹脂に50重量%の炭化珪素を含有させた熱伝導率が2.0W/m・Kの接着剤にて吸着剤50を接着固定した吸着コア(以下、評価吸着コア3という)とを用意し、それらの吸着コアについて吸着速度を評価した。
【0029】
図4はその評価結果を示すもので、横軸は経過時間、縦軸は吸着質の吸着量を飽和吸着量によって規格化した値である。この図4から明らかなように、比較用吸着コアよりも評価吸着コア1では吸着量の増加の傾きが大きくなっており、吸着速度が吸着式ヒートポンプに要求される性能を確保できる程度にまで大きくなっている。また、評価吸着コア2、3の方は、評価吸着コア1よりもさらに吸着速度が大きくなっており、実使用での吸着、脱着の作動時間(60〜300秒)で特にその差が顕著に現れている。
【0030】
(他の実施形態)
なお、上記各実施形態においては、フィン34をコルゲートフィンとしているがフィン形状はこれに限定されるものではない。例えば、プレートフィンとしてもよい。また、熱交換器30はチューブ・フィンタイプでなく、フィンが無いチューブのみのタイプでもよい。
【0031】
また、樹脂に含有させるフィラーの黒鉛や炭化珪素の形状については、針状または鱗片状が望ましく、さらに望ましくはアスペクト比を2以上とすることにより、接着剤の熱伝導率をさらに向上させることができる。
【図面の簡単な説明】
【図1】吸着式ヒートポンプの概略全体構成図である。
【図2】本発明に係る吸着式ヒートポンプの吸着コアの斜視図である。
【図3】フィラー含有率と熱伝導率との関係を示す特性図である。
【図4】経過時間と吸着コアの吸着量との関係を示す特性図である。
【符号の説明】
11、12…吸着コア、30…熱交換器(熱交換部材)、33…チューブ、
50…吸着剤。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adsorption core of an adsorption heat pump that utilizes the fact that an adsorbate such as water is adsorbed and desorbed by cooling and heating an adsorbent.
[0002]
[Prior art]
In the adsorption core of the adsorption heat pump, the temperature of the adsorbent (for example, zeolite or silica gel) is reduced to a cooling temperature (for example, an outside air temperature for a vehicle) and a heat source temperature (for example, about 90% of an engine cooling water temperature for a vehicle). ° C), and the cooling capacity of the apparatus is determined by the amplitude of the amount of adsorption and desorption of the adsorbate (eg, water) and the adsorption and desorption rate during the period. The amplitude of the amount of adsorption and desorption is determined from the water absorption characteristics of the adsorbent itself, but it is important for the adsorption speed to determine how the adsorbent reaches a predetermined temperature.
[0003]
The adsorption core adheres the adsorbent to the heat exchange member having the tube with a powder adhesive, and the heat of the heat exchange fluid flowing in the tube is transmitted in the order of the heat exchange member, the adhesive, and the adsorbent. become. Therefore, in order to transfer heat to the adsorbent as quickly as possible, it is necessary to improve the thermal conductivity of the adhesive.
[0004]
[Problems to be solved by the invention]
By the way, in an adsorption core of a conventional adsorption heat pump, an adhesive in which a resin component appropriately contains a filler is used. Generally, the thermal conductivity of a resin is about 0.2 W / m · K. In the case of a general-purpose adhesive, a filler (for example, calcium carbonate, magnesium oxide, or the like) is mixed with the adhesive to improve the thermal conductivity. I'm trying.
[0005]
However, conventionally, the value of the thermal conductivity of the adhesive is about 0.4 W / m · K even when the thermal conductivity of the adhesive is maximized while satisfying the adhesive strength required for the adhesive for the adsorption core. When the content of the filler was set within a range where the adhesive strength required for the adhesive could be secured, the required adsorption rate could not be secured due to insufficient thermal conductivity. Therefore, it has been difficult to increase the suction speed of the suction core while securing the adhesive strength of the adhesive.
[0006]
In view of the above, an object of the present invention is to increase the suction speed while securing the adhesive strength of the adhesive of the suction core.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a heat exchange member (30) having a tube (33) through which a heat exchange fluid flows, and a surface of the heat exchange member (30) are bonded with an adhesive. And an adsorbent (50) capable of adsorbing and desorbing adsorbates by being cooled and heated by a heat exchange fluid, wherein the adhesive is: The thermal conductivity is 0.5 W / m · K or more and 2.0 W / m · K or less. When such an adhesive is used, it is possible to secure the suction speed required for the suction core.
[0008]
Further, in order to achieve such a high thermal conductivity and to secure the bonding strength required for the adhesive for the adsorption core, either one of graphite and silicon carbide as the filler as in the invention of claim 2 is used. , Or a combination of the two, and it is desirable to use an epoxy resin as the resin component as in the invention of claim 7.
[0009]
By the way, when the content of the filler is set within a range capable of securing the adhesive strength required as the adhesive for the adsorption core, the thermal conductivity of the conventional adhesive containing calcium carbonate in the epoxy resin is 0.4 W / M · K, whereas the thermal conductivity of the adhesive according to the third aspect of the invention is improved to a maximum of about 2.0 W / m · K, thereby ensuring the durability of the adsorption core. It has become possible to increase the adsorption speed.
[0010]
By setting the content of graphite in the adhesive to 5% by weight or more and 40% by weight or less as in the invention according to claim 3, a high thermal conductivity can be obtained, and a high thermal conductivity and a high adsorbent core can be obtained. Can achieve both of securing the adhesive strength required for the adhesive of the present invention. In order to realize a higher thermal conductivity and maintain the adhesive strength for a long period of time, the graphite content is desirably 10% by weight or more and 30% by weight or less.
[0011]
Further, as in the invention according to claim 5, by setting the content of silicon carbide in the adhesive to 5% by weight or more and 50% by weight or less, high thermal conductivity can be obtained, and high thermal conductivity can be obtained. It is possible to achieve both of securing the adhesive strength required as the adhesive for the suction core. In order to realize a higher thermal conductivity and maintain the adhesive strength for a long period of time, it is desirable that the content of silicon carbide be 10% by weight or more and 40% by weight or less.
[0012]
In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means described in embodiment mentioned later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention shown in the drawings will be described. FIG. 1 is a schematic overall configuration diagram of an adsorption heat pump, and FIG. 2 is a perspective view of an adsorption core of the adsorption heat pump according to the present invention.
[0014]
In FIG. 1, the adsorption heat pump 1 includes first and second adsorption cores 11 and 12. These adsorption cores 11 and 12 are accommodated in closed containers 14 and 15, respectively, and the closed containers 14 and 15 are provided with entrances and exits 16 and 17 for gas adsorbate (steam in this embodiment). .
[0015]
Three-way switching valves 18 and 19 are connected to the entrances and exits 16 and 17, respectively. Between the three-way switching valves 18 and 19, a condenser 20 for liquefying the adsorbate, gas-liquid separation of the adsorbate, and liquid A receiver 21 that temporarily stores the adsorbate, a pump 22 that sends the liquid adsorbate, and an evaporator 23 that evaporates the liquid adsorbate and exchanges heat with the outside air are connected in series, thereby forming an adsorbate circuit 25. ing. The adsorbate circuit 25 is filled with a required amount of adsorbate, for example, water in the case of the present embodiment.
[0016]
Next, the structure of the suction cores 11 and 12 will be described in detail with reference to FIG. The adsorption cores 11 and 12 each include a heat exchanger (heat exchange member) 30 and a number of particulate adsorbents 50 adhered to the surface of the heat exchanger 30.
[0017]
The heat exchanger 30 includes header tanks 31 and 32 at both ends, and a plurality of plate-like tubes 33 through which a heat exchange fluid flows are arranged in parallel at a predetermined distance between the header tanks 31 and 32. ing. Corrugated fins (heat transfer fins) 34 are fixed between the tubes 33 by brazing, welding, or bonding. The header tanks 31 and 32 are made of a material having excellent moldability, such as resin, aluminum, and copper, and the tube 33 and the fins 34 are made of a material having excellent heat conductivity, such as aluminum and copper.
[0018]
Then, in the order of the header tank 31 on the inlet side, the tube 33, and the header tank 32 on the outlet side, a cooling fluid (for example, a relatively low-temperature fluid from an outdoor heat exchanger, a heat exchange fluid in the claims) or a heating fluid (for example, Engine cooling water (a heat exchange fluid in the claims) flows.
[0019]
A large number of particulate adsorbents 50 are made of, for example, zeolite or silica gel, and are filled in gaps formed by the tubes 33 and the fins 34. Each particle of the adsorbent 50 is bonded and fixed to the tube 33 and the fin 34 with an adhesive.
[0020]
The adsorbent 50 adsorbs an adsorbate (for example, water vapor or an aqueous alcohol solution) with a high capacity in a cooled state, and the adsorption capacity gradually decreases with the adsorbate being adsorbed. It has the property that the adsorbate that has been desorbed is desorbed to regenerate the adsorption capacity.
[0021]
Therefore, the adsorbent 50 exchanges heat with the heat exchange fluid flowing through the tube 33 by heat conduction through the tube 33 and the fins 34, and adsorbs gas adsorbate (water vapor in the present embodiment) by being cooled. The gas adsorbate can be desorbed by heating.
[0022]
In such a configuration, the first and second adsorption cores 11 and 12 are controlled by a control device such as a microcomputer (not shown) so that when one is on the desorption side for desorbing the gas adsorbate (water vapor), the other is. Are alternately switchable so that is on the adsorption side for adsorbing the gas adsorbate from the evaporator 23.
[0023]
Specifically, in FIG. 1, when the first suction core 11 is used as the desorption side and the second suction core 12 is used as the suction side, the three-way switching valves 18 and 19 are set to the solid line positions in FIG. The inlet / outlet section 16 of the closed vessel 14 on the core 11 side is in communication with the condenser 20, and the inlet / outlet section 17 of the closed vessel 15 on the adsorption core 12 side is in communication with the evaporator 23. Further, a heating fluid is supplied to the suction core 11 side, and a cooling fluid is supplied to the suction core 12 side.
[0024]
When the first suction core 11 is used as the suction side and the second suction core 12 is used as the desorption side, the three-way switching valves 18 and 19 are set to the dotted line positions in FIG. And the evaporator 23 are in communication with each other, and the entrance and exit 17 of the closed vessel 15 on the adsorption core 12 side are in communication with the condenser 20. A cooling fluid is supplied to the suction core 11 and a heating fluid is supplied to the suction core 12.
Next, an adhesive for adhesively fixing the adsorbent 50 to the tube 33 and the fin 34 will be described.
[0025]
Conventionally, an adhesive containing calcium carbonate as a filler in a resin is often used. In this embodiment, an adhesive containing graphite in an epoxy resin or an adhesive containing silicon carbide in an epoxy resin is used.
[0026]
FIG. 3 is a characteristic diagram showing the results of evaluating the relationship between the filler content and the thermal conductivity for adhesives having different filler materials. As is apparent from FIG. 3, the adhesive of the present embodiment in which graphite or silicon carbide is contained in the epoxy resin has a higher thermal effect than the adhesive in which calcium carbonate prepared in this case is contained in the epoxy resin for comparison. It was confirmed that the conductivity was significantly improved.
[0027]
Incidentally, the adhesive for the suction cores 11 and 12 of the suction heat pump 1 is required to have a predetermined adhesive strength from the viewpoint of ensuring the durability of the suction cores 11 and 12. In order to ensure this predetermined adhesive strength, the content of the graphite filler is set to 40% by weight or less for the adhesive containing graphite, and the content of the silicon carbide filler is set for the adhesive containing the silicon carbide filler. It was confirmed that the content should be set to 50% by weight or less.
[0028]
Therefore, an adsorption core (hereinafter referred to as a comparative example) in which an adsorbent 50 is adhered and fixed with an adhesive having a thermal conductivity of 0.4 W / m · K in which 33% by weight of calcium carbonate is added to an epoxy resin prepared as a comparative example. An adsorbing core) and an adsorbing core (hereinafter referred to as evaluation adsorbing core 1) in which the adsorbent 50 is bonded and fixed with an adhesive containing 5% by weight of graphite and having a thermal conductivity of 0.5 W / m · K. An adsorption core (hereinafter referred to as an evaluation adsorption core 2) in which an adsorbent 50 is adhered and fixed with an adhesive containing 40% by weight of graphite in an epoxy resin and having a thermal conductivity of 2.0 W / m · K; An adsorption core (hereinafter referred to as an evaluation adsorption core 3) is prepared by adhering and fixing the adsorbent 50 with an adhesive having a thermal conductivity of 2.0 W / m · K in which resin contains 50% by weight of silicon carbide. The adsorption speed of each of the adsorption cores was evaluated.
[0029]
FIG. 4 shows the evaluation results, in which the horizontal axis represents the elapsed time and the vertical axis represents the value obtained by standardizing the amount of adsorbate adsorbed by the saturated amount of adsorbate. As is clear from FIG. 4, the slope of the increase in the amount of adsorption is larger in the evaluation adsorption core 1 than in the comparative adsorption core, and the adsorption speed is large enough to ensure the performance required for the adsorption heat pump. Has become. In addition, the suction speed of the evaluation suction cores 2 and 3 is higher than that of the evaluation suction core 1, and the difference is particularly remarkable in the operation time (60 to 300 seconds) of the suction and desorption in actual use. Is appearing.
[0030]
(Other embodiments)
In each of the above embodiments, the fin 34 is a corrugated fin, but the fin shape is not limited to this. For example, it may be a plate fin. Further, the heat exchanger 30 is not limited to the tube / fin type, but may be a type having only tubes without fins.
[0031]
In addition, the shape of graphite or silicon carbide as a filler to be contained in the resin is desirably acicular or scaly, and more desirably, the aspect ratio is 2 or more, thereby further improving the thermal conductivity of the adhesive. it can.
[Brief description of the drawings]
FIG. 1 is a schematic overall configuration diagram of an adsorption heat pump.
FIG. 2 is a perspective view of a suction core of the suction heat pump according to the present invention.
FIG. 3 is a characteristic diagram showing a relationship between a filler content and a thermal conductivity.
FIG. 4 is a characteristic diagram showing a relationship between an elapsed time and a suction amount of a suction core.
[Explanation of symbols]
11, 12: adsorption core, 30: heat exchanger (heat exchange member), 33: tube,
50 ... adsorbent.

Claims (7)

熱交換流体が流れるチューブ(33)を有する熱交換部材(30)と、前記熱交換部材(30)の表面に接着剤にて接着され、前記熱交換流体により冷却および加熱されることで吸着質を吸着および脱離することができる吸着剤(50)とを備える吸着式ヒートポンプの吸着コア(11、12)であって、前記接着剤は、熱伝導率が0.5W/m・K以上2.0W/m・K以下であることを特徴とする吸着式ヒートポンプの吸着コア。A heat exchange member (30) having a tube (33) through which a heat exchange fluid flows, and an adhesive adhering to the surface of the heat exchange member (30) with an adhesive, and being cooled and heated by the heat exchange fluid; An adsorbent core (11, 12) comprising an adsorbent (50) capable of adsorbing and desorbing the adsorbent, wherein the adhesive has a thermal conductivity of 0.5 W / m · K or more. An adsorption core for an adsorption heat pump, wherein the adsorption core has a pressure of not more than 0.0 W / m · K. 前記接着剤は、樹脂成分に黒鉛および炭化珪素のいずれか一方をフィラーとして含有させたものであることを特徴とする請求項1に記載の吸着式ヒートポンプの吸着コア。2. The adsorption core of the adsorption heat pump according to claim 1, wherein the adhesive includes a resin component containing one of graphite and silicon carbide as a filler. 3. 前記接着剤は、前記黒鉛の含有率が5重量%以上40重量%以下であることを特徴とする請求項2に記載の吸着式ヒートポンプの吸着コア。The adsorption core according to claim 2, wherein the adhesive has a graphite content of 5% by weight or more and 40% by weight or less. 前記接着剤は、前記黒鉛の含有率が10重量%以上30重量%以下であることを特徴とする請求項2に記載の吸着式ヒートポンプの吸着コア。The adsorption core of the adsorption heat pump according to claim 2, wherein the content of the graphite in the adhesive is 10% by weight or more and 30% by weight or less. 前記接着剤は、前記炭化珪素の含有率が5重量%以上50重量%以下であることを特徴とする請求項2に記載の吸着式ヒートポンプの吸着コア。The adsorption core according to claim 2, wherein the adhesive has a content of the silicon carbide of 5% by weight or more and 50% by weight or less. 前記接着剤は、前記炭化珪素の含有率が10重量%以上40重量%以下であることを特徴とする請求項2に記載の吸着式ヒートポンプの吸着コア。The adsorption core according to claim 2, wherein the adhesive has a content of the silicon carbide of 10% by weight or more and 40% by weight or less. 前記接着剤は、前記樹脂成分がエポキシ樹脂であることを特徴とする請求項3ないし6に記載の吸着式ヒートポンプの吸着コア。7. The suction core of the suction heat pump according to claim 3, wherein the resin component of the adhesive is an epoxy resin.
JP2003055589A 2003-03-03 2003-03-03 Absorption core of absorption type heat pump Pending JP2004263959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055589A JP2004263959A (en) 2003-03-03 2003-03-03 Absorption core of absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055589A JP2004263959A (en) 2003-03-03 2003-03-03 Absorption core of absorption type heat pump

Publications (1)

Publication Number Publication Date
JP2004263959A true JP2004263959A (en) 2004-09-24

Family

ID=33119560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055589A Pending JP2004263959A (en) 2003-03-03 2003-03-03 Absorption core of absorption type heat pump

Country Status (1)

Country Link
JP (1) JP2004263959A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
JP2007132614A (en) * 2005-11-11 2007-05-31 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing process
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
JP2011007395A (en) * 2009-06-24 2011-01-13 Ohbayashi Corp Underground heat exchanger and filler
WO2013021994A1 (en) * 2011-08-09 2013-02-14 三菱樹脂株式会社 Adsorption heat pump
JP2015183931A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Adsorption type heat pump
CN105916569A (en) * 2014-01-27 2016-08-31 日本爱克兰工业株式会社 Hygroscopic polymer particles, as well as sheet, element, and total heat exchanger having said particles
JP2017521571A (en) * 2014-07-01 2017-08-03 オムヤ インターナショナル アーゲー Multifilament polyester fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
US7704305B2 (en) 2005-01-21 2010-04-27 Japan Exlan Company Limited Heat exchange module of a sorptive type and a method for the manufacture thereof
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
JP2007132614A (en) * 2005-11-11 2007-05-31 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing process
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
JP2011007395A (en) * 2009-06-24 2011-01-13 Ohbayashi Corp Underground heat exchanger and filler
WO2013021994A1 (en) * 2011-08-09 2013-02-14 三菱樹脂株式会社 Adsorption heat pump
CN105916569A (en) * 2014-01-27 2016-08-31 日本爱克兰工业株式会社 Hygroscopic polymer particles, as well as sheet, element, and total heat exchanger having said particles
JP2015183931A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Adsorption type heat pump
JP2017521571A (en) * 2014-07-01 2017-08-03 オムヤ インターナショナル アーゲー Multifilament polyester fiber
US11208738B2 (en) 2014-07-01 2021-12-28 Omya International Ag Multifilament polyester fibres

Similar Documents

Publication Publication Date Title
JP4347066B2 (en) Solid adsorption heat pump
US6102107A (en) Apparatus for use in sorption cooling processes
US6973963B2 (en) Adsorber generator for use in sorption heat pump processes
JP2004263959A (en) Absorption core of absorption type heat pump
WO2010095452A1 (en) Heat pump
JP5966745B2 (en) Adsorption heat pump
US20080028787A1 (en) Adsorption type heat exchanger and method of manufacturing the same
WO2013083992A1 (en) A sorption device
JP3921820B2 (en) Adsorption module of adsorption refrigerator
JPH10185353A (en) Adsorption type refrigerating device
JP3820713B2 (en) Method for manufacturing adsorption core of adsorption refrigeration system
JP2550768B2 (en) Adsorption heat exchanger
JP2007218504A (en) Adsorber
JPH10185348A (en) Manufacture of adsorbent module
JPH0765819B2 (en) Adsorption refrigerator with circulation of adsorbent
JPH1089805A (en) Adsorption core for adsorption refrigerator
JP4272450B2 (en) Adsorption type refrigerator and manufacturing method thereof
JP2007064573A (en) Adsorber and its manufacturing method
JPH08271085A (en) Adsorber and adsorption refrigerating machine
JPH09189459A (en) Adsorbing device and its manufacture
JP2005111425A (en) Adsorption element and humidity controller
JP2508308B2 (en) Adsorption refrigerator
JP6578876B2 (en) Adsorber for refrigerator
JPH0541324Y2 (en)
JPS61147133A (en) Heat energy sensor and device utilizing said sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225