JP4272450B2 - Adsorption type refrigerator and manufacturing method thereof - Google Patents

Adsorption type refrigerator and manufacturing method thereof Download PDF

Info

Publication number
JP4272450B2
JP4272450B2 JP2003056301A JP2003056301A JP4272450B2 JP 4272450 B2 JP4272450 B2 JP 4272450B2 JP 2003056301 A JP2003056301 A JP 2003056301A JP 2003056301 A JP2003056301 A JP 2003056301A JP 4272450 B2 JP4272450 B2 JP 4272450B2
Authority
JP
Japan
Prior art keywords
adsorbent
heat transfer
heat
transfer tube
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003056301A
Other languages
Japanese (ja)
Other versions
JP2004263970A (en
Inventor
秀治 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003056301A priority Critical patent/JP4272450B2/en
Publication of JP2004263970A publication Critical patent/JP2004263970A/en
Application granted granted Critical
Publication of JP4272450B2 publication Critical patent/JP4272450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱源流体が内部を通流する伝熱管の外側に固体吸着剤が装填されてなる吸着剤熱交換器を備え、前記伝熱管内の熱源流体を介しての吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、熱源流体から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機及びその製造方法に関する。
【0002】
【従来の技術】
吸着式冷凍機においては、固体吸着剤と、温水あるいは冷水等の熱源流体が内部を通流する伝熱管と、該吸着剤に吸着あるいは脱着されるとともに伝熱管内の熱源流体と熱交換する冷媒の通路とを備えた吸着剤熱交換器が用いられており、該吸着剤熱交換器における伝熱管と吸着剤と冷媒通路との組付け構成及び該吸着剤熱交換器の製造方法について種々の技術手段が提供されている。
【0003】
かかる技術手段の1つとして特許文献1(特開平10−286460号公報)の技術がある。
特許文献1(図2のもの)においては、成形用吸着剤を型成形して一体構造とした吸着剤熱交換器が開示されており、管体の外周面にろう付けあるいはかしめにて固着された板状のフィンの間にペースト状に成形された成形用吸着剤を挟み込んで固着し、このフィンと吸着剤との板状固着体を、これの板面が該伝熱管の軸心線と直角になるように、複数の伝熱管の外周面に該伝熱管の長手方向に沿って複数個連設し、該成形用吸着剤の両端面に冷媒の通路となる溝を形成している。
【0004】
また、特許文献2(特開2002−178742公報)には、吸着剤(シリカ)及び液冷媒が封入された吸着剤熱交換器に、該吸着剤及び冷媒加熱用の温水あるいは吸着剤及び冷媒冷却用の冷水が通流する伝熱管を通すように構成された吸着式冷凍機が開示されている。
【0005】
【特許文献1】
特開平10−286460号公報
【特許文献2】
特開2002−178742公報
【0006】
【発明が解決しようとする課題】
特許文献1記載の従来技術にあっては、管体の外周面にかしめにて固着された板状のフィンの間に成形用吸着剤を挟み込んで固着した板状固着体を、板面が伝熱管の軸心線と直角になるように該伝熱管の軸方向に沿って複数個連設して構成されていることから、伝熱管と吸着剤との間の熱伝達を該伝熱管の管体外周にろう付けあるいはかしめにて固着された板状のフィンを介して行うこととなるため、前記ろう付けあるいはかしめ部分が伝熱管側と冷媒側との間の熱遮断部となり、伝熱管側と冷媒側との間の熱接触抵抗が大きくならざるを得ず、良好な熱接触性が得られない。
【0007】
また、かかる従来技術にあっては、フィンの板面が伝熱管の軸心線と直角になるように該伝熱管の管体に固着されているため流動抵抗が大きく、冷媒がフィンの板面全体に亘って均等に流れ難い。また管体から離れたフィンの先端部は伝熱機能を果たし難く実質的な伝熱面積がフィンの表面面積に対して小さくなる。
【0008】
また、かかる従来技術にあっては、複数の管体の外周面にろう付けあるいはかしめにて板状のフィンを固着し、該板状のフィンの間に成形用吸着剤を挟み込んで固着して板状固着体を製作し、この板状固着体を板面が伝熱管の軸心線と直角になるように該伝熱管の長手方向に沿って複数個連続的に固着するという、3段階の工程で、かつろう付けあるいはかしめ作業を介在させて吸着剤熱交換器を製作しているため、多大な製造工数を要するとともに製造コストも高くなる。
等の問題点を有している。
さらに、特許文献2には、温水あるいは冷水等の熱源流体が通流する伝熱管の具体的構成は開示されていない。
【0009】
本発明はかかる従来技術の課題に鑑み、伝熱管と吸着剤との間における冷媒の流動を円滑化するとともに伝熱管側と吸着剤側との間の熱接触抵抗を低減することにより熱接触性を改善して冷媒及び吸着剤の加熱あるいは冷却効率を向上し、さらには製造工数を低減するとともに製造コストを低減した吸着剤冷凍機を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明はかかる目的を達成するもので、その第1発明は、温水あるいは冷水等の熱源流体が内部を通流する伝熱管の外側にシリカゲル、ゼオライト等からなり冷媒を吸着する固体吸着剤が装填されてなる吸着剤熱交換器を備え、該吸着剤熱交換器における前記伝熱管内の熱源流体を介しての前記吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、前記熱源流体から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機において、
前記伝熱管は管体の外周面に該管体の軸方向に沿って板状のフィンを摩擦圧接により固着してなり、前記吸着剤熱交換器は、該伝熱管を複数個列設するとともに各伝熱管の間に前記吸着剤を装填した吸着エレメントをカートリッジ形態にして構成し、
前記カートリッジ形態にした吸着エレメントを前記伝熱管列設方向と直交する方向に冷媒通路を介して複数個並設して配列し、各吸着エレメント間に冷媒通路を形成して構成されたことを特徴とする。
【0011】
また第1発明において好ましくは、前記冷媒通路を、前記冷媒が前記吸着エレメントにおける伝熱管の軸方向あるいは軸直角方向の両方向に選択流動可能に構成する。
【0012】
かかる発明によれば、吸着剤熱交換器の加熱用温水あるいは冷却用冷水が内部を通流する管体の外周面に板状のフィンを該管体の外周面から突出させ管体の軸方向に沿って摩擦圧接により固着した伝熱管を形成し、このフィン付き伝熱管を列状に複数個並べ各伝熱管の間に吸着剤を装填して吸着エレメントを構成し、この吸着エレメントを複数個並設し各吸着エレメントの間に冷媒通路を設けて吸着剤熱交換器を構成しており、フィンが管体の外周面の軸方向に沿って直接摩擦接着されて伝熱管を構成しているため、吸着剤間における冷媒の流れに、伝熱管の軸方向に沿って管体の外周面にフィンの伝熱面に沿った流れが形成されて、従来技術に係る伝熱管に直角に設けられたフィンを備えた吸着剤熱交換器に比べて冷媒の流動抵抗が低減される。また前記のように冷媒のフィンの伝熱面に沿った流れが形成されることによって、伝熱管内の加熱用温水あるいは冷却用冷水と冷媒との間の実質的な伝熱面積が増大する。
【0013】
また、伝熱管を、管体の外周面に板状のフィンを管体の軸方向に沿って摩擦圧接により固着して構成したので、管体とフィンとが一体化されて、従来技術に係る管体の外周面にアルミフィンをろう付けあるいはかしめにより固着したアルミフィン伝熱管のような熱遮断部分がなく、伝熱管側と冷媒側との間の熱接触抵抗が低減されて熱接触性が向上する。
これにより、吸着剤熱交換器における冷媒の温水あるいは冷水による加熱効率あるいは冷却効率が向上し、吸着式冷凍機の冷凍サイクル時間の短縮が可能となり、該吸着式冷凍機の総合効率が向上する。
【0014】
また、前記吸着剤熱交換器は、該伝熱管を複数個列設するとともに各伝熱管の間に前記吸着剤を装填した吸着エレメントをカートリッジ形態にして構成し、
前記吸着エレメントを前記伝熱管列設方向と直交する方向に冷媒通路を介して複数個並設して配列し、各吸着エレメント間に冷媒通路を形成して構成されたので、伝熱管を垂直配置あるいは水平配置の何れの構造にしても、従来技術のように吸着剤がその自重によって下方側に偏ることがなく、吸着剤熱交換器を形状、機能に自由度を持たせて最適設計できる。
【0015】
また、かかる発明によれば、前記吸着剤熱交換器内の冷媒通路を、冷媒が吸着エレメントにおける伝熱管の軸方向に流れるように、あるいは軸直角方向に流れるように、吸着エレメントの向きを90°変えるのみで自在に選択設計可能となり、伝熱管の方向に対して最適な冷媒通路を設定できる。
【0016】
さらに、かかる発明によれば、フィンを管体の外周面に摩擦圧接により固着して伝熱管を構成したので、一定の温度条件で吸着剤熱交換器を製作できて、従来技術に係るアルミフィンを管体外周面にろう付けしてなる伝熱管を用いた吸着剤熱交換器のように、伝熱管と吸着剤との一体化製作時に加熱、冷却を繰り返すことにより吸着剤層内において亀裂の発生をみることがなく、吸着剤熱交換器の耐久性が向上する。
【0017】
第2発明は前記吸着剤熱交換器を製作する方法に係り、温水あるいは冷水等の熱源流体が内部を通流する伝熱管の外側にシリカゲル、ゼオライト等からなり冷媒を吸着する固体吸着剤が装填されてなる吸着剤熱交換器を備え、該吸着剤熱交換器における前記伝熱管内の熱源流体を介しての前記吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、前記熱源流体から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機の製造方法において、
吸着剤熱交換器は、管体の外周面に該管体の軸方向に沿って板状のフィンを摩擦圧接により固着して前記伝熱管を製作し、該伝熱管を複数個列設して各伝熱管の間に吸着剤を装填してカートリッジ形態にした吸着エレメントを製作し、
前記カートリッジ形態にした吸着エレメントを前記伝熱管列設方向と直交する方向に冷媒通路を介して複数個配列して各吸着エレメント間に冷媒通路を形成するように組み立てることを特徴とする。
【0018】
かかる第2発明によれば、前記のような摩擦圧接により製作した伝熱管を複数個列設して各伝熱管の間に吸着剤を充填して吸着エレメントを製作し、吸着エレメントを複数個、カートリッジ形態にして、各吸着エレメント間に冷媒通路を形成するように組み立てるので、従来技術のように、複数の伝熱管に対してフィン及び板状の吸着剤が直角に固着された吸着剤熱交換器に比べて製作が容易であり、また前記特許文献1のような冷媒通路用の溝を加工形成するのが不要となって、製造工数が低減されるとともに製造コストの低減も可能となる。
【0019】
また、管体の外周面に該管体の軸方向に沿って板状のフィンを摩擦圧接により固着して伝熱管を製作するので、該伝熱管を所要の長さに切断して組付け、吸着剤熱交換器を構成することができて、該吸着剤熱交換器の大きさに自在に対応した伝熱管が得られる。
【0020】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0021】
図1は本発明の実施例に係る吸着剤熱交換器の正面構成図、図2は伝熱管の要部斜視図である。図3は本発明が適用される吸着式冷凍機の系統図である。
【0022】
本発明が適用される吸着式冷凍機の構成を示す図3において、1は真空容器で、仕切板2で区画された2室内に吸着剤熱交換器3a,3bを設置している。該吸着剤熱交換器3(3a及び3b)は伝熱管の伝熱面にシリカゲル、ゼオライト、活性炭等の固体吸着剤を充填した構成となっている。該吸着剤熱交換器3a,3bの伝熱管30(図1,2参照)に接続される供給管は、4つの切換弁8a、8b、9a、9bを備えた切換機構5を介して冷却水供給系統6及び温水供給系統7に接続している。
10は冷水系統12に連なる伝熱管13を備えた蒸発器、11は冷却水供給系統6に連なる伝熱管14を備えた凝縮器であり、該蒸発器10及び凝縮器11はそれぞれ冷媒蒸気経路を介して前記吸着剤熱交換器3a,3bに接続されている。また前記蒸発器10と凝縮器11との間には、膨張弁15が介装された冷媒供給管16を設置している。
【0023】
かかる吸着式冷凍機の運転時において、図3は吸着剤熱交換器3aを吸着器、吸着剤熱交換器3bを再生器として動作させているバッチサイクルの運転状態を示しており、冷却水供給系統6に対応する切換弁8a、8bは吸着器としての吸着剤熱交換器3a側に切り換えられ、温水供給系統7に対応する切換弁9a、9bは再生器(脱着器)としての吸着剤熱交換器3b側に切り換えられている。
また、前記吸着剤熱交換器3a側の開閉弁17aは閉、制御弁18aは開となっており、吸着剤熱交換器3b側の開閉弁17bは開、制御弁18bは閉となっている。
19はコントローラで、前記切換弁8a、8b、9a、9bを切換制御するとともに、開閉弁17a、17b、制御弁18a、18bを開閉制御するものである。
【0024】
かかるバッチサイクルにおいて、再生器(脱着器)としての吸着剤熱交換器3b内における水を吸着している吸着剤は、温水供給系統7から切換弁9a、9bを経て伝熱管に供給される温水により加熱されて脱着反応用の熱が与えられ、該吸着剤と水とが脱着して冷媒蒸気を発生せしめる。
この冷媒蒸気は図中矢印で示すように、開閉弁17bを経て凝縮器11に入る。そして該冷媒蒸気は、凝縮器11において伝熱管14内を流れる冷却水供給系統6の冷却水と熱交換をして凝縮し、この凝縮液は冷媒供給管16を通って膨張弁15に至り、該膨張弁15にて膨張、減圧されて蒸発器10に送り込まれる。このようにして、前記吸着剤熱交換器3b側において吸着剤の再生が行われる。
【0025】
該蒸発器10においては、前記膨張弁15を経た減圧凝縮液と冷水系統12の水とを熱交換することにより該減圧凝縮液を蒸発、気化して冷媒蒸気とするとともに、冷水系統12の水は冷却、降温されて図示しない冷却負荷側に送られる。一方、吸着器としての吸着剤熱交換器3aでは、吸着剤は前のバッチサイクルにおいて前述と同様な再生が行われているため、制御弁18aを介して蒸発器10内の冷媒蒸気を吸引して吸着する。
即ち、この吸着反応で吸着剤に発生する吸着熱を、切換弁8a、8bを経て冷却水供給系統6から供給される冷却水で奪うことによって、前記蒸発器10内の冷媒蒸気を吸引して吸着剤に吸着する吸着作用がなされる。
【0026】
本発明は、前記吸着剤熱交換器3(3a及び3b)の構造及び製造方法の改良に係るものである。
本発明の実施例を示す図1,2において、30は伝熱管で、図2に示すように、前記温水供給系統7からの温水あるいは冷却水供給系統6からの冷水が内部を通流する管体31の外周面に、該管体31の軸方向に沿って、板状のフィン32をV字状に(必ずしもV字状でなくてもよく、I字状、U字状に曲げるようにしてもよい)突出させて、摩擦圧接によって固着して構成される。前記摩擦圧接は、周知の方法で行えばよいので、詳細な施工方法の説明は省略する。
【0027】
図1において、3は図2の3a及び3bに相当する吸着剤熱交換器で、吸着エレメント40をこの例のように横方向(水平方向)に複数個並設し、各吸着エレメント40の間に冷媒通路34を形成して構成される。
また、前記各吸着エレメント40は、前記フィン32付きの伝熱管30を縦列状に複数個並べ各伝熱管30の間に成形吸着剤33を充填して構成される。
尚、前記吸着エレメント40を縦方向(垂直方向)に複数個並設し、前記フィン32付きの伝熱管30を横列状に複数個並べ各伝熱管30の間に成形吸着剤33を充填して構成してもよい。
前記冷媒通路34内を流動する冷媒の流動方向は、図1のAに示されるように、前記伝熱管30の軸方向に設定する。このようにすれば、成形吸着剤33間における冷媒の流れにフィン32に沿った流れが形成されて冷媒の流動抵抗が少なくなり、また伝熱管30内の加熱用温水あるいは冷却用冷水と冷媒との間の実質的な伝熱面積が増大する。
尚、前記冷媒通路34内を流動する冷媒の流動方向を、図1のBに示されるように、前記伝熱管30の軸直角方向に設定することもできる。
【0028】
要するに、かかる実施例においては、吸着エレメントの向きを90°変えるのみで、吸着剤熱交換器3内の冷媒通路34を、図1のAに示されるような冷媒が吸着エレメント40における伝熱管30の軸方向に流れるように、あるいは図1のBに示されるような軸直角方向に流れるように、自在に選択設計可能となり、伝熱管の方向に対して最適な冷媒通路を設定できる。
【0029】
かかる実施例によれば、伝熱管30を、管体31の外周面に板状のフィン32を該管体31の軸方向に沿って直接摩擦圧接により固着して構成し、このフィン付き伝熱管30を列状に複数個並べるとともに各伝熱管30の間に成形吸着剤33を充填して吸着エレメント40を構成し、この吸着エレメント40を複数個並設して各吸着エレメント40の間に冷媒通路34を設けて吸着剤熱交換器3を構成している。
従って、前記フィン32が管体31の外周面に軸方向に沿って直接摩擦接着されて伝熱管30を構成しているため、成形吸着剤33間にをおける冷媒の流れに、伝熱管30の軸方向フィン32に沿った流れが形成されて、従来技術に係る伝熱管に直角に設けられたフィンを備えた吸着剤熱交換器に比べて冷媒の流動抵抗が低減され、また前記のように冷媒のフィン32に沿った流れが形成されることによって、伝熱管30内の加熱用温水あるいは冷却用冷水と冷媒との間の実質的な伝熱面積が増大する。
【0030】
また、前記伝熱管30を、管体31の外周面に板状のフィン32を管体の軸方向に沿って摩擦圧接により固着して構成したので、管体31とフィン32とが一体化されて、従来技術に係る管体の外周面にアルミフィンをろう付けあるいはかしめにより固着したアルミフィン伝熱管のような熱遮断部分がなく、伝熱管側と冷媒側との間の熱接触抵抗が低減されて熱接触性が向上する。
これにより、従来のアルミフィン式伝熱管を用いた吸着剤熱交換器に比べて伝熱管30側と吸着剤33側との間の熱接触抵抗が低減されて熱接触性が向上する。
【0031】
また、前記のように、フィン32を管体31の外周面に摩擦圧接により固着したフィン付き伝熱管30を列状に複数個並べ、各伝熱管30の間に成形吸着剤33を充填してなる吸着エレメント40を複数個並設して各吸着エレメント40の間に冷媒通路34を設けて吸着剤熱交換器3を構成したので、伝熱管30を垂直配置あるいは水平配置の何れの構造にしても、従来技術のように吸着剤33がその自重によって下方側に偏ることがない。これにより、吸着剤熱交換器3を形状、機能に自由度を持たせて最適設計できる。
【0032】
さらに、フィン32を管体31の外周面に摩擦圧接により固着して伝熱管30を構成したので、一定の温度条件で吸着剤熱交換器3を製作できる。従って、従来技術に係るアルミフィン式伝熱管を用いた吸着剤熱交換器のように、伝熱管と吸着剤との一体化製作時に加熱、冷却を繰り返すことにより吸着剤層内において亀裂の発生をみることがない。これにより、吸着剤熱交換器3の耐久性が向上する。
【0033】
次に、前記のように構成された吸着剤熱交換器3の製造方法について説明する。
先ず、管体31の外周面に、該管体31の軸方向に沿って、板状のフィン32を図2のようなV字状に突出させ、摩擦圧接によって固着してフィン32付きの伝熱管30を所要本数製作する。そして、各伝熱管30を吸着剤熱交換器3の組付け長さを勘案して、所要の長さに切断する。
【0034】
次いで、前記フィン32付きの伝熱管30を縦列状に複数個並べ、各伝管30の間に成形吸着剤33を充填して吸着エレメント40を製作する。
かかる吸着エレメント40の製作は、次のようにして行うのが好ましい。
即ち、42メッシュ以下のシリカゲル粉粒状のものと、セルローズ系有機バインダーと、セピオライトで繊維状の無機バインダーとを所定時間(15分程度)混合し、これに水を添加して所定時間(60分程度)分散混合を行い、ペースト状の成形吸着剤33を形成し、各伝熱管30の間に充填する。
そして、図1のように、前記吸着エレメント40を、横方向(水平方向)に複数個並設し、各吸着エレメント40の間に冷媒通路34を形成して吸着剤熱交換器3を製作する。
【0035】
かかる吸着剤熱交換器3は、前記のようにして製造されるので、摩擦圧接により製作した伝熱管30を複数個列設し各伝熱管30の間に成形吸着剤33を充填して吸着エレメント40を製作し、吸着エレメント40を複数個、カートリッジ形態にして、各吸着エレメント40間に冷媒通路34を形成するように組み立てることにより、前記特許文献1等の従来技術のように、複数の伝熱管に対してフィン及び板状の吸着剤が直角に固着された吸着剤熱交換器に比べて製作が容易であり、少ない製造工数での製作が可能となる。
【0036】
また、管体31の外周面に該管体31の軸方向に沿って板状のフィン32を摩擦圧接により固着して伝熱管30を製作するので、該伝熱管30を所要の長さに切断して組付け、吸着剤熱交換器3を構成することができることとなる。これにより、該吸着剤熱交換器3の大きさに自在に対応した伝熱管30が得られる。
【0037】
【発明の効果】
以上記載のごとく本発明によれば、フィンが管体の外周面の軸方向に沿って直接摩擦接着されて伝熱管を構成しているため、吸着剤間における冷媒の流れに、伝熱管の軸方向に沿って管体の外周面にフィンの伝熱面に沿った流れが形成されて、従来技術に係る伝熱管に直角に設けられたフィンを備えた吸着剤熱交換器に比べて冷媒の流動抵抗が低減され、また前記のように冷媒のフィンの伝熱面に沿った流れが形成されることによって、伝熱管内の加熱用温水あるいは冷却用冷水と冷媒との間の実質的な伝熱面積が増大する。
【0038】
また、伝熱管を、管体の外周面に板状のフィンを管体の軸方向に沿って摩擦圧接により固着して構成したので、管体とフィンとが一体化されて、従来技術に係る管体の外周面にアルミフィンをろう付けあるいはかしめにより固着したアルミフィン伝熱管のような熱遮断部分がなく、伝熱管側と冷媒側との間の熱接触抵抗が低減されて熱接触性が向上する。
これにより、吸着剤熱交換器における冷媒の温水あるいは冷水による加熱効率あるいは冷却効率が向上し、吸着式冷凍機の冷凍サイクル時間の短縮が可能となり、該吸着式冷凍機の総合効率が向上する。
【0039】
また、摩擦圧接により製作した伝熱管を複数個列設して各伝熱管の間に吸着剤を充填して吸着エレメントを製作し、吸着エレメントを複数個、カートリッジ形態にして、各吸着エレメント間に冷媒通路を形成するように組み立てるので、従来技術のような複数の伝熱管に対してフィン及び板状の吸着剤が直角に固着された吸着剤熱交換器に比べて製作が容易であり、製造工数が低減されるとともに製造コストの低減も可能となる。
【0040】
また、管体の外周面に該管体の長手方向に沿って板状のフィンを摩擦圧接により固着して伝熱管を製作するので、該伝熱管を所要の長さに切断して組付け吸着剤熱交換器を構成することができて、該吸着剤熱交換器の大きさに自在に対応した伝熱管が得られる。
【図面の簡単な説明】
【図1】 本発明の実施例に係る吸着剤熱交換器の正面構成図である。
【図2】 伝熱管の要部斜視図である。
【図3】 本発明が適用される吸着式冷凍機の系統図である。
【符号の説明】
3(3a、3b) 吸着剤熱交換器
11 凝縮器
15 膨張弁
30 伝熱管
31 管体
32 フィン
33 成形吸着剤
34 冷媒通路
40 吸着エレメント
[0001]
BACKGROUND OF THE INVENTION
The present invention comprises an adsorbent heat exchanger in which a solid adsorbent is loaded on the outside of a heat transfer tube through which a heat source fluid flows, and the adsorbent and the refrigerant through the heat source fluid in the heat transfer tube. The present invention relates to an adsorption refrigeration machine that generates heat by using heat supplied from a heat source fluid as a heat source, and a method for manufacturing the same.
[0002]
[Prior art]
In an adsorption refrigerator, a solid adsorbent, a heat transfer pipe through which a heat source fluid such as hot water or cold water flows, and a refrigerant that is adsorbed to or desorbed from the adsorbent and exchanges heat with the heat source fluid in the heat transfer pipe The adsorbent heat exchanger having a plurality of passages is used, and there are various methods for assembling the heat transfer tube, the adsorbent, and the refrigerant passage in the adsorbent heat exchanger, and for producing the adsorbent heat exchanger. Technical means are provided.
[0003]
As one of such technical means, there is a technique disclosed in Japanese Patent Application Laid-Open No. 10-286460.
Patent Document 1 (the one shown in FIG. 2) discloses an adsorbent heat exchanger in which a molding adsorbent is molded to form an integral structure, and is fixed to the outer peripheral surface of a tubular body by brazing or caulking. The adsorbent for molding formed in a paste shape is sandwiched and fixed between the plate-shaped fins, and the plate-shaped fixed body of the fin and the adsorbent is fixed to the plate center of the heat transfer tube. A plurality of heat transfer tubes are continuously provided along the longitudinal direction of the heat transfer tubes so as to be perpendicular to each other, and grooves serving as refrigerant passages are formed on both end surfaces of the molding adsorbent.
[0004]
Patent Document 2 (Japanese Patent Laid-Open No. 2002-178742) discloses an adsorbent heat exchanger in which an adsorbent (silica) and a liquid refrigerant are sealed, and hot water or adsorbent and refrigerant cooling for heating the adsorbent and the refrigerant. An adsorption refrigeration machine configured to pass a heat transfer tube through which cold water flows is disclosed.
[0005]
[Patent Document 1]
JP-A-10-286460 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-178742
[Problems to be solved by the invention]
In the prior art described in Patent Document 1, the plate surface is transferred to the plate-like fixed body in which the adsorbent for molding is fixed between the plate-like fins fixed to the outer peripheral surface of the tube body by caulking. Since a plurality of the heat transfer tubes are continuously arranged along the axial direction of the heat transfer tube so as to be perpendicular to the axial center line of the heat tube, heat transfer between the heat transfer tube and the adsorbent is performed. Since it is performed through plate-like fins fixed to the outer periphery of the body by brazing or caulking, the brazing or caulking portion serves as a heat shield between the heat transfer tube side and the refrigerant side, and the heat transfer tube side The thermal contact resistance between the refrigerant and the refrigerant side must be increased, and good thermal contact properties cannot be obtained.
[0007]
Further, in such a conventional technique, since the fin plate surface is fixed to the tube of the heat transfer tube so as to be perpendicular to the axis of the heat transfer tube, the flow resistance is large, and the refrigerant is the plate surface of the fin. It is difficult to flow evenly throughout. Further, the tip portion of the fin that is away from the tube body hardly performs the heat transfer function, and the substantial heat transfer area becomes smaller than the surface area of the fin.
[0008]
Further, in such a conventional technique, plate-like fins are fixed to the outer peripheral surfaces of a plurality of tubular bodies by brazing or caulking, and a molding adsorbent is sandwiched and fixed between the plate-like fins. A plate-like fixing body is manufactured, and a plurality of the plate-like fixing bodies are fixed continuously along the longitudinal direction of the heat transfer tube so that the plate surface is perpendicular to the axial center line of the heat transfer tube. In the process, the adsorbent heat exchanger is manufactured by interposing brazing or caulking work, which requires a large number of manufacturing steps and increases the manufacturing cost.
And so on.
Furthermore, Patent Document 2 does not disclose a specific configuration of a heat transfer tube through which a heat source fluid such as hot water or cold water flows.
[0009]
In view of the problems of the prior art, the present invention smoothes the flow of the refrigerant between the heat transfer tube and the adsorbent and reduces the thermal contact resistance between the heat transfer tube side and the adsorbent side. It is an object of the present invention to provide an adsorbent refrigerator that improves the heating or cooling efficiency of the refrigerant and the adsorbent, further reduces the number of manufacturing steps and the manufacturing cost.
[0010]
[Means for Solving the Problems]
The present invention achieves such an object. The first invention is that a solid adsorbent made of silica gel, zeolite or the like is adsorbed on the outside of a heat transfer tube through which a heat source fluid such as hot water or cold water flows. An adsorbent heat exchanger formed using the heat generation and endothermic phenomena associated with the reversible reaction between the adsorbent and the refrigerant through the heat source fluid in the heat transfer tube in the adsorbent heat exchanger, In the adsorption refrigeration machine that generates cold using the heat supplied from the heat source fluid as a heat source,
The heat transfer tube is formed by fixing plate-like fins on the outer peripheral surface of the tube body along the axial direction of the tube body by friction welding, and the adsorbent heat exchanger has a plurality of the heat transfer tubes arranged in a row. An adsorbing element loaded with the adsorbent between the heat transfer tubes is configured in the form of a cartridge,
A plurality of adsorbing elements in the form of cartridges are arranged side by side through a refrigerant passage in a direction orthogonal to the heat transfer tube arrangement direction, and a refrigerant passage is formed between the adsorbing elements. And
[0011]
In the first aspect of the invention, preferably, the refrigerant passage is configured so that the refrigerant can selectively flow in both the axial direction or the direction perpendicular to the axial direction of the heat transfer tube in the adsorption element.
[0012]
According to this invention, plate-like fins are projected from the outer peripheral surface of the tubular body on the outer peripheral surface of the tubular body through which the hot water for cooling or cold water for cooling of the adsorbent heat exchanger flows, and the axial direction of the tubular body A heat transfer tube fixed by friction welding is formed, a plurality of finned heat transfer tubes are arranged in a line, and an adsorbent is loaded between the heat transfer tubes to form an adsorption element. Adsorbent heat exchangers are configured by arranging refrigerant passages between the adsorbing elements in parallel, and fins are directly friction-bonded along the axial direction of the outer peripheral surface of the tube to form a heat transfer tube. Therefore, in the refrigerant flow between the adsorbents, a flow along the heat transfer surface of the fin is formed on the outer peripheral surface of the tube along the axial direction of the heat transfer tube, and is provided at a right angle to the heat transfer tube according to the prior art. The flow resistance of the refrigerant is reduced compared to an adsorbent heat exchanger equipped with open fins. That. Moreover, the flow along the heat transfer surface of the fin of the refrigerant is formed as described above, so that the substantial heat transfer area between the hot water for heating or the cold water for cooling and the refrigerant in the heat transfer tube increases.
[0013]
In addition, since the heat transfer tube is configured by adhering plate-like fins to the outer peripheral surface of the tube body by friction welding along the axial direction of the tube body, the tube body and the fins are integrated, and according to the related art There is no heat blocking part like an aluminum fin heat transfer tube in which aluminum fins are fixed to the outer peripheral surface of the tube by brazing or caulking, and the thermal contact resistance between the heat transfer tube side and the refrigerant side is reduced and thermal contact properties are improved. improves.
As a result, the heating efficiency or cooling efficiency of the refrigerant in the adsorbent heat exchanger with hot or cold water can be improved, the refrigeration cycle time of the adsorption refrigeration machine can be shortened, and the overall efficiency of the adsorption refrigeration machine can be improved.
[0014]
Further, the adsorbent heat exchanger comprises a plurality of the heat transfer tubes arranged in a row and an adsorbing element loaded with the adsorbent between the heat transfer tubes in the form of a cartridge.
Wherein arranged in juxtaposed plurality through the refrigerant passage adsorption element in a direction perpendicular to the heat transfer tube bank arrangement direction, so constructed to form a refrigerant passage between the suction element, vertically arranged heat transfer tube Alternatively, regardless of the horizontal arrangement, the adsorbent is not biased downward due to its own weight as in the prior art, and the adsorbent heat exchanger can be optimally designed with a degree of freedom in shape and function.
[0015]
According to this invention, the direction of the adsorbing element is adjusted so that the refrigerant flows in the refrigerant passage in the adsorbent heat exchanger in the axial direction of the heat transfer tube in the adsorbing element or in the direction perpendicular to the axis. It is possible to select and design freely by simply changing the angle, and the optimum refrigerant path can be set for the direction of the heat transfer tube.
[0016]
Furthermore, according to this invention, since the heat transfer tube is configured by fixing the fin to the outer peripheral surface of the tube body by friction welding, the adsorbent heat exchanger can be manufactured under a certain temperature condition, and the aluminum fin according to the prior art Like an adsorbent heat exchanger using a heat transfer tube that is brazed to the outer peripheral surface of the pipe body, repeated heating and cooling during the integrated production of the heat transfer tube and the adsorbent results in cracks in the adsorbent layer. The durability of the adsorbent heat exchanger is improved without any occurrence.
[0017]
The second invention relates to a method of manufacturing the adsorbent heat exchanger, wherein a solid adsorbent made of silica gel, zeolite or the like is adsorbed outside the heat transfer tube through which a heat source fluid such as hot water or cold water flows. An adsorbent heat exchanger formed using the heat generation and endothermic phenomena associated with the reversible reaction between the adsorbent and the refrigerant through the heat source fluid in the heat transfer tube in the adsorbent heat exchanger, In the manufacturing method of the adsorption refrigeration machine that generates cold using the heat supplied from the heat source fluid as a heat source,
In the adsorbent heat exchanger, a plate-like fin is fixed to the outer peripheral surface of the tube body along the axial direction of the tube body by friction welding to manufacture the heat transfer tube, and a plurality of the heat transfer tubes are arranged in a row. Adsorbent is loaded between each heat transfer tube to produce an adsorption element in the form of a cartridge ,
A plurality of adsorbing elements in the form of a cartridge are arranged through a refrigerant passage in a direction orthogonal to the direction in which the heat transfer tubes are arranged, and assembled so as to form a refrigerant passage between the adsorbing elements.
[0018]
According to the second aspect of the present invention, a plurality of heat transfer tubes manufactured by friction welding as described above are arranged, and an adsorbent is manufactured by filling an adsorbent between the heat transfer tubes. Adsorbent heat exchange with fins and plate-like adsorbents fixed at right angles to a plurality of heat transfer tubes, as in the prior art, because it is assembled in a cartridge form so that a refrigerant passage is formed between each adsorbing element Manufacture is easier compared to the container, and it is not necessary to process and form the groove for the refrigerant passage as in Patent Document 1, so that the number of manufacturing steps can be reduced and the manufacturing cost can be reduced.
[0019]
In addition, a plate-like fin is fixed to the outer peripheral surface of the tube body by friction welding along the axial direction of the tube body, so that the heat transfer tube is manufactured, and the heat transfer tube is cut to a required length and assembled. An adsorbent heat exchanger can be configured, and a heat transfer tube that freely corresponds to the size of the adsorbent heat exchanger can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0021]
FIG. 1 is a front view of an adsorbent heat exchanger according to an embodiment of the present invention, and FIG. 2 is a perspective view of a main part of a heat transfer tube. FIG. 3 is a system diagram of an adsorption refrigerator to which the present invention is applied.
[0022]
In FIG. 3 which shows the structure of the adsorption type refrigerator to which the present invention is applied, reference numeral 1 denotes a vacuum vessel, and adsorbent heat exchangers 3 a and 3 b are installed in two chambers partitioned by a partition plate 2. The adsorbent heat exchanger 3 (3a and 3b) is configured such that the heat transfer surface of the heat transfer tube is filled with a solid adsorbent such as silica gel, zeolite or activated carbon. Supply pipes connected to the heat transfer pipes 30 (see FIGS. 1 and 2) of the adsorbent heat exchangers 3a and 3b are supplied with cooling water via a switching mechanism 5 having four switching valves 8a, 8b, 9a and 9b. It is connected to a supply system 6 and a hot water supply system 7.
Reference numeral 10 denotes an evaporator including a heat transfer pipe 13 connected to the cold water system 12, and 11 denotes a condenser including a heat transfer pipe 14 connected to the cooling water supply system 6. The evaporator 10 and the condenser 11 each have a refrigerant vapor path. To the adsorbent heat exchangers 3a and 3b. Between the evaporator 10 and the condenser 11, a refrigerant supply pipe 16 having an expansion valve 15 interposed is installed.
[0023]
FIG. 3 shows the operating state of a batch cycle in which the adsorbent heat exchanger 3a is operated as an adsorber and the adsorbent heat exchanger 3b as a regenerator during operation of the adsorption refrigerator. The switching valves 8a and 8b corresponding to the system 6 are switched to the adsorbent heat exchanger 3a side as an adsorber, and the switching valves 9a and 9b corresponding to the hot water supply system 7 are adsorbent heat as a regenerator (desorber). It is switched to the exchanger 3b side.
The on-off valve 17a on the adsorbent heat exchanger 3a side is closed, the control valve 18a is open, the on-off valve 17b on the adsorbent heat exchanger 3b side is open, and the control valve 18b is closed. .
A controller 19 controls the switching of the switching valves 8a, 8b, 9a, and 9b, and controls the opening and closing of the on-off valves 17a and 17b and the control valves 18a and 18b.
[0024]
In such a batch cycle, the adsorbent adsorbing water in the adsorbent heat exchanger 3b as a regenerator (desorber) is hot water supplied from the hot water supply system 7 to the heat transfer tubes via the switching valves 9a and 9b. Heat is applied to the desorption reaction, and the adsorbent and water are desorbed to generate refrigerant vapor.
This refrigerant vapor enters the condenser 11 through the on-off valve 17b as indicated by an arrow in the figure. The refrigerant vapor is condensed by exchanging heat with the cooling water of the cooling water supply system 6 flowing in the heat transfer pipe 14 in the condenser 11, and this condensate reaches the expansion valve 15 through the refrigerant supply pipe 16. The air is expanded and depressurized by the expansion valve 15 and fed into the evaporator 10. In this way, the adsorbent is regenerated on the adsorbent heat exchanger 3b side.
[0025]
In the evaporator 10, the reduced pressure condensate that has passed through the expansion valve 15 and water in the cold water system 12 are heat-exchanged to evaporate and vaporize the reduced pressure condensate into refrigerant vapor. Is cooled and cooled, and sent to a cooling load (not shown). On the other hand, in the adsorbent heat exchanger 3a as an adsorber, since the adsorbent is regenerated in the same manner as described above in the previous batch cycle, the refrigerant vapor in the evaporator 10 is sucked through the control valve 18a. Adsorb.
That is, the heat of adsorption generated in the adsorbent by this adsorption reaction is taken away by the cooling water supplied from the cooling water supply system 6 via the switching valves 8a and 8b, thereby sucking the refrigerant vapor in the evaporator 10. Adsorption action to adsorb to the adsorbent is performed.
[0026]
The present invention relates to an improvement in the structure and manufacturing method of the adsorbent heat exchanger 3 (3a and 3b).
In FIGS. 1 and 2 showing an embodiment of the present invention, reference numeral 30 denotes a heat transfer pipe, as shown in FIG. 2, a pipe through which hot water from the hot water supply system 7 or cold water from the cooling water supply system 6 flows. On the outer peripheral surface of the body 31, along the axial direction of the tubular body 31, a plate-like fin 32 is bent in a V shape (not necessarily in a V shape, but in an I shape or a U shape). It may be configured to protrude and adhere by friction welding. Since the friction welding may be performed by a known method, a detailed description of the construction method is omitted.
[0027]
In FIG. 1, 3 is an adsorbent heat exchanger corresponding to 3a and 3b in FIG. 2, and a plurality of adsorbing elements 40 are juxtaposed in the horizontal direction (horizontal direction) as in this example. The refrigerant passage 34 is formed in the above.
Each of the adsorption elements 40 is configured by arranging a plurality of heat transfer tubes 30 with the fins 32 in a vertical row and filling a formed adsorbent 33 between the heat transfer tubes 30.
A plurality of the adsorbing elements 40 are arranged in the vertical direction (vertical direction), a plurality of heat transfer tubes 30 with the fins 32 are arranged in a row, and a molded adsorbent 33 is filled between the heat transfer tubes 30. It may be configured.
The flow direction of the refrigerant flowing in the refrigerant passage 34 is set in the axial direction of the heat transfer tube 30 as shown in FIG. In this way, a flow along the fins 32 is formed in the flow of the refrigerant between the molded adsorbents 33 to reduce the flow resistance of the refrigerant, and the heating hot water or the cooling cold water in the heat transfer tube 30 and the refrigerant The substantial heat transfer area during increases.
The flow direction of the refrigerant flowing in the refrigerant passage 34 can also be set in the direction perpendicular to the axis of the heat transfer tube 30 as shown in FIG.
[0028]
In short, in this embodiment, only by changing the direction of the adsorption element by 90 °, the refrigerant as shown in FIG. 1A passes through the refrigerant passage 34 in the adsorbent heat exchanger 3 and the heat transfer tube 30 in the adsorption element 40. It is possible to select and design freely so as to flow in the axial direction of the pipe or in a direction perpendicular to the axis as shown in FIG. 1B, and an optimum refrigerant passage can be set with respect to the direction of the heat transfer tube.
[0029]
According to this embodiment, the heat transfer tube 30 is configured by fixing the plate-like fins 32 to the outer peripheral surface of the tube body 31 by direct friction welding along the axial direction of the tube body 31. The adsorbing elements 40 are formed by arranging a plurality of adsorbing elements 33 in a line and filling the adsorbents 33 between the heat transfer tubes 30. A plurality of adsorbing elements 40 are juxtaposed to form a refrigerant between the adsorbing elements 40. The adsorbent heat exchanger 3 is configured by providing a passage 34.
Accordingly, since the fin 32 is directly frictionally bonded to the outer peripheral surface of the tube body 31 along the axial direction to form the heat transfer tube 30, the flow of the refrigerant between the molded adsorbents 33 is influenced by the flow of the heat transfer tube 30. The flow along the axial fins 32 is formed, and the flow resistance of the refrigerant is reduced as compared with the adsorbent heat exchanger having fins provided at right angles to the heat transfer tubes according to the prior art. By forming the flow of the refrigerant along the fins 32, the substantial heat transfer area between the hot water for heating or the cold water for cooling in the heat transfer tube 30 and the refrigerant increases.
[0030]
Further, since the heat transfer tube 30 is configured by fixing plate-like fins 32 to the outer peripheral surface of the tube body 31 by friction welding along the axial direction of the tube body, the tube body 31 and the fins 32 are integrated. In addition, there is no heat-blocking part like an aluminum fin heat transfer tube with aluminum fins fixed to the outer peripheral surface of the tube according to the prior art by brazing or caulking, and the thermal contact resistance between the heat transfer tube side and the refrigerant side is reduced As a result, the thermal contact property is improved.
Thereby, compared with the adsorbent heat exchanger using the conventional aluminum fin type heat transfer tube, the thermal contact resistance between the heat transfer tube 30 side and the adsorbent 33 side is reduced, and the thermal contact property is improved.
[0031]
In addition, as described above, a plurality of finned heat transfer tubes 30 in which the fins 32 are fixed to the outer peripheral surface of the tube body 31 by friction welding are arranged in a line, and the molded adsorbent 33 is filled between the heat transfer tubes 30. Since the adsorbent heat exchanger 3 is configured by arranging a plurality of adsorbing elements 40 arranged in parallel and providing the refrigerant passages 34 between the adsorbing elements 40, the heat transfer tube 30 has either a vertical arrangement or a horizontal arrangement. However, unlike the prior art, the adsorbent 33 is not biased downward due to its own weight. Thereby, the adsorbent heat exchanger 3 can be optimally designed with a degree of freedom in shape and function.
[0032]
Furthermore, since the heat transfer tube 30 is configured by fixing the fins 32 to the outer peripheral surface of the tube body 31 by friction welding, the adsorbent heat exchanger 3 can be manufactured under a constant temperature condition. Therefore, like an adsorbent heat exchanger using an aluminum fin heat transfer tube according to the prior art, cracks are generated in the adsorbent layer by repeating heating and cooling during the integrated production of the heat transfer tube and the adsorbent. I can't see it. Thereby, the durability of the adsorbent heat exchanger 3 is improved.
[0033]
Next, a manufacturing method of the adsorbent heat exchanger 3 configured as described above will be described.
First, a plate-like fin 32 is projected on the outer peripheral surface of the tubular body 31 along the axial direction of the tubular body 31 in a V shape as shown in FIG. The required number of heat tubes 30 are produced. Then, each heat transfer tube 30 is cut into a required length in consideration of the assembly length of the adsorbent heat exchanger 3.
[0034]
Next, a plurality of heat transfer tubes 30 with the fins 32 are arranged in a column , and the adsorbing element 40 is manufactured by filling the formed adsorbent 33 between the tubes 30.
The adsorption element 40 is preferably manufactured as follows.
That is, silica gel powder having a mesh size of 42 mesh or less, cellulose organic binder, and sepiolite fibrous inorganic binder are mixed for a predetermined time (about 15 minutes), and water is added thereto for a predetermined time (60 minutes). About) Dispersion and mixing are performed to form a paste-like molded adsorbent 33, which is filled between the heat transfer tubes 30.
As shown in FIG. 1, a plurality of the adsorbing elements 40 are arranged side by side in the lateral direction (horizontal direction), and a refrigerant passage 34 is formed between the adsorbing elements 40 to manufacture the adsorbent heat exchanger 3. .
[0035]
Since the adsorbent heat exchanger 3 is manufactured as described above, a plurality of heat transfer tubes 30 manufactured by friction welding are arranged in rows, and the adsorbing element 33 is filled with the formed adsorbent 33 between the heat transfer tubes 30. 40, and a plurality of adsorption elements 40 are formed in a cartridge form and assembled so as to form a refrigerant passage 34 between the adsorption elements 40. Compared to an adsorbent heat exchanger in which fins and a plate-like adsorbent are fixed at right angles to the heat pipe, the manufacture is easy, and the manufacture can be performed with a small number of manufacturing steps.
[0036]
Further, since the plate-like fins 32 are fixed to the outer peripheral surface of the tube body 31 by friction welding along the axial direction of the tube body 31 to manufacture the heat transfer tube 30, the heat transfer tube 30 is cut to a required length. As a result, the adsorbent heat exchanger 3 can be constructed. Thereby, the heat transfer tube 30 corresponding to the size of the adsorbent heat exchanger 3 is obtained.
[0037]
【The invention's effect】
As described above, according to the present invention, since the fins are directly friction-bonded along the axial direction of the outer peripheral surface of the tube body to constitute the heat transfer tube, the flow of the refrigerant between the adsorbents is affected by the shaft of the heat transfer tube. The flow along the heat transfer surface of the fin is formed on the outer peripheral surface of the tube along the direction, and the refrigerant is compared with an adsorbent heat exchanger having fins provided at right angles to the heat transfer tube according to the prior art. The flow resistance is reduced, and the flow along the heat transfer surface of the refrigerant fin is formed as described above, so that substantial heat transfer between the hot water for heating or the cold water for cooling and the refrigerant in the heat transfer tube is achieved. The thermal area increases.
[0038]
In addition, since the heat transfer tube is configured by adhering plate-like fins to the outer peripheral surface of the tube body by friction welding along the axial direction of the tube body, the tube body and the fins are integrated, and according to the related art There is no heat blocking part like an aluminum fin heat transfer tube in which aluminum fins are fixed to the outer peripheral surface of the tube by brazing or caulking, and the thermal contact resistance between the heat transfer tube side and the refrigerant side is reduced and thermal contact properties are improved. improves.
As a result, the heating efficiency or cooling efficiency of the refrigerant in the adsorbent heat exchanger with hot or cold water can be improved, the refrigeration cycle time of the adsorption refrigeration machine can be shortened, and the overall efficiency of the adsorption refrigeration machine can be improved.
[0039]
In addition, a plurality of heat transfer tubes manufactured by friction welding are arranged in rows and filled with an adsorbent between the heat transfer tubes to produce an adsorption element. Since it is assembled so as to form a refrigerant passage, it is easier to manufacture and manufacture than an adsorbent heat exchanger in which fins and plate-like adsorbents are fixed at right angles to a plurality of heat transfer tubes as in the prior art. Man-hours can be reduced and manufacturing costs can be reduced.
[0040]
In addition, a heat transfer tube is manufactured by attaching plate-like fins to the outer peripheral surface of the tube along the longitudinal direction of the tube by friction welding, so the heat transfer tube is cut to a required length and assembled and adsorbed. An adsorbent heat exchanger can be configured, and a heat transfer tube that can freely correspond to the size of the adsorbent heat exchanger can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view of an adsorbent heat exchanger according to an embodiment of the present invention.
FIG. 2 is a perspective view of a main part of a heat transfer tube.
FIG. 3 is a system diagram of an adsorption chiller to which the present invention is applied.
[Explanation of symbols]
3 (3a, 3b) Adsorbent heat exchanger 11 Condenser 15 Expansion valve 30 Heat transfer tube 31 Tube 32 Fin 33 Molded adsorbent 34 Refrigerant passage 40 Adsorption element

Claims (3)

温水あるいは冷水等の熱源流体が内部を通流する伝熱管の外側にシリカゲル、ゼオライト等からなり冷媒を吸着する固体吸着剤が装填されてなる吸着剤熱交換器を備え、該吸着剤熱交換器における前記伝熱管内の熱源流体を介しての前記吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、前記熱源流体から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機において、
前記伝熱管は管体の外周面に該管体の軸方向に沿って板状のフィンを摩擦圧接により固着してなり、前記吸着剤熱交換器は、該伝熱管を複数個列設するとともに各伝熱管の間に前記吸着剤を装填した吸着エレメントをカートリッジ形態にして構成し、
前記カートリッジ形態にした吸着エレメントを前記伝熱管列設方向と直交する方向に冷媒通路を介して複数個並設して配列し、各吸着エレメント間に冷媒通路を形成して構成されたことを特徴とする吸着式冷凍機。
An adsorbent heat exchanger comprising a solid adsorbent made of silica gel, zeolite or the like and adsorbed on the outside of a heat transfer tube through which a heat source fluid such as hot water or cold water flows is provided, and the adsorbent heat exchanger An adsorption type that uses the heat generated by the reversible reaction between the adsorbent and the refrigerant through the heat source fluid in the heat transfer tube and the endothermic phenomenon to generate cold using the heat supplied from the heat source fluid as a heat source In the refrigerator,
The heat transfer tube is formed by fixing plate-like fins on the outer peripheral surface of the tube body along the axial direction of the tube body by friction welding, and the adsorbent heat exchanger has a plurality of the heat transfer tubes arranged in a row. An adsorbing element loaded with the adsorbent between the heat transfer tubes is configured in the form of a cartridge,
A plurality of adsorbing elements in the form of cartridges are arranged side by side through a refrigerant passage in a direction orthogonal to the heat transfer tube arrangement direction, and a refrigerant passage is formed between the adsorbing elements. Adsorption type refrigerator.
前記冷媒通路を、冷媒が前記吸着エレメントにおける伝熱管の軸方向あるいは軸直角方向の両方向に選択流動可能に構成したことを特徴とする請求項記載の吸着式冷凍機。It said refrigerant passage, adsorption type refrigerating machine according to claim 1, wherein the refrigerant is characterized by being selected flowable configured in both the axial direction or the direction perpendicular to the axis of the heat transfer tube in the suction element. 温水あるいは冷水等の熱源流体が内部を通流する伝熱管の外側にシリカゲル、ゼオライト等からなり冷媒を吸着する固体吸着剤が装填されてなる吸着剤熱交換器を備え、該吸着剤熱交換器における前記伝熱管内の熱源流体を介しての前記吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、前記熱源流体から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機の製造方法において、
吸着剤熱交換器は、管体の外周面に該管体の軸方向に沿って板状のフィンを摩擦圧接により固着して前記伝熱管を製作し、該伝熱管を複数個列設して各伝熱管の間に吸着剤を装填してカートリッジ形態にした吸着エレメントを製作し、
前記カートリッジ形態にした吸着エレメントを前記伝熱管列設方向と直交する方向に冷媒通路を介して複数個配列して各吸着エレメント間に冷媒通路を形成するように組み立てることを特徴とする吸着式冷凍機の製造方法。
An adsorbent heat exchanger comprising a solid adsorbent made of silica gel, zeolite or the like and adsorbed on the outside of a heat transfer tube through which a heat source fluid such as hot water or cold water flows is provided, and the adsorbent heat exchanger An adsorption type that uses the heat generated by the reversible reaction between the adsorbent and the refrigerant through the heat source fluid in the heat transfer tube and the endothermic phenomenon to generate cold using the heat supplied from the heat source fluid as a heat source In the manufacturing method of the refrigerator,
In the adsorbent heat exchanger, a plate-like fin is fixed to the outer peripheral surface of the tube body along the axial direction of the tube body by friction welding to manufacture the heat transfer tube, and a plurality of the heat transfer tubes are arranged in a row. Adsorbent is loaded between each heat transfer tube to produce an adsorption element in the form of a cartridge ,
Adsorption refrigeration characterized in that a plurality of adsorbing elements in the form of a cartridge are arranged through a refrigerant passage in a direction orthogonal to the heat transfer tube arrangement direction so as to form a refrigerant passage between the adsorbing elements. Machine manufacturing method.
JP2003056301A 2003-03-03 2003-03-03 Adsorption type refrigerator and manufacturing method thereof Expired - Fee Related JP4272450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056301A JP4272450B2 (en) 2003-03-03 2003-03-03 Adsorption type refrigerator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056301A JP4272450B2 (en) 2003-03-03 2003-03-03 Adsorption type refrigerator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004263970A JP2004263970A (en) 2004-09-24
JP4272450B2 true JP4272450B2 (en) 2009-06-03

Family

ID=33120050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056301A Expired - Fee Related JP4272450B2 (en) 2003-03-03 2003-03-03 Adsorption type refrigerator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4272450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
DE102006011409B4 (en) * 2005-12-07 2008-02-28 Sortech Ag Adsorption machine with heat recovery
JP4760669B2 (en) * 2006-10-30 2011-08-31 株式会社デンソー Adsorption module and method of manufacturing adsorption module
US8544294B2 (en) * 2011-07-11 2013-10-01 Palo Alto Research Center Incorporated Plate-based adsorption chiller subassembly

Also Published As

Publication number Publication date
JP2004263970A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP5470039B2 (en) Heat exchanger
US4199959A (en) Solid adsorption air conditioning apparatus and method
US6973963B2 (en) Adsorber generator for use in sorption heat pump processes
US4138861A (en) Solid adsorption air conditioning apparatus and method
WO1995014898A1 (en) Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same
WO2013038708A1 (en) Humidity control module, and humidity control device
US10101066B2 (en) Adsorber and adsorption refrigerator
JP4462093B2 (en) Adsorption core operation method
KR101407660B1 (en) adsorption bed having plate heat exchanger shape
JP4272450B2 (en) Adsorption type refrigerator and manufacturing method thereof
JP2007218504A (en) Adsorber
JP2007010175A (en) Adsorber for adsorption type refrigerating machine
JP3358372B2 (en) Adsorber and adsorption refrigeration system
JP4211737B2 (en) Adsorber for adsorption type refrigerator and method of manufacturing the adsorber for adsorption type refrigerator
JP2002340490A (en) Heat exchanger
US20160131400A1 (en) Adsorption system heat exchanger
JP3831962B2 (en) Adsorber and manufacturing method thereof
JP2004321885A (en) Humidity control element
JP2001201211A (en) Adsorber for adsorption refrigerating machine
JPH08271085A (en) Adsorber and adsorption refrigerating machine
JP4379881B2 (en) Plate fin type adsorber and manufacturing method thereof
JPH11108499A (en) Adsorber and adsorption refrigerator
JP6980337B2 (en) Air conditioner for vehicles with adsorption refrigeration system and adsorption refrigeration system
KR101929915B1 (en) Adsorption heat exchanger
JP2003021430A (en) Absorption core and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees