JPH08311609A - Steel sheet for di can excellent in compressive strength and neck workability and its production - Google Patents

Steel sheet for di can excellent in compressive strength and neck workability and its production

Info

Publication number
JPH08311609A
JPH08311609A JP11501695A JP11501695A JPH08311609A JP H08311609 A JPH08311609 A JP H08311609A JP 11501695 A JP11501695 A JP 11501695A JP 11501695 A JP11501695 A JP 11501695A JP H08311609 A JPH08311609 A JP H08311609A
Authority
JP
Japan
Prior art keywords
less
steel
neck
steel sheet
pressure resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11501695A
Other languages
Japanese (ja)
Other versions
JP3471483B2 (en
Inventor
Seiichi Tanaka
聖市 田中
Akira Ishihara
明 石原
Yasuhiko Yamashita
康彦 山下
Senkichi Tsujimura
銑吉 辻村
Yoshimasa Hirowatari
美真 廣渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11501695A priority Critical patent/JP3471483B2/en
Publication of JPH08311609A publication Critical patent/JPH08311609A/en
Application granted granted Critical
Publication of JP3471483B2 publication Critical patent/JP3471483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To produce a steel sheet for DI cans excellent in pressure withstanding strength and neck workability and to provide a method for producing the same. CONSTITUTION: This steel sheet for DI cans is the one having a compsn. contg. 0.01 to 0.08% C, <=0.5% Mn, <=0.20% SolAl and <=0.01% N, furthermore contg., at need, at least one kind among Si, Cr, Cu and Ni by <=0.1% and/or at least one kind of Ti and Nb by <=0.1%, and in which the content of solid solution C is regulated to 5 to 25ppm, YP in the L direction is regulated to 30 to 44Kgf/ mm<2> , and the difference in YP between the L direction and C direction is regulated to <=2Kgf/mm<2> . As for the method for producing the same, the hot rolled sheet having the same components is subjected to cold rolling, is recrystallized, is thereafter cooled at >=60 deg.C/sec and is held at 300 to 450 deg.C for 30 to 180sec. After that, it is subjected to wet skinpass rolling of 3 to 12%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DI法による2ピース
缶(以下DI缶と呼ぶ)の胴部に使用される鋼板及びそ
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet used for a body of a two-piece can (hereinafter referred to as DI can) by the DI method and a method for manufacturing the steel sheet.

【0002】[0002]

【従来の技術】薄鋼板に錫メッキを施したブリキあるい
はクロム酸処理を施したティンフリースチールなどの缶
用鋼板は食缶やエアゾール缶、イージオープン缶に多用
されている。製缶法としては、蓋、胴、底の3部品から
なる3ピース缶及び、胴と底が一体となり、蓋と合わせ
て2部品からなる2ピース缶が使用されている。2ピー
ス缶の胴部の代表的な製法がDI(Drawing & Ironing)
法である。以下、DI缶に必要とされる特性を記述する
については、本発明が対象としている、缶体耐圧強度、
塗装焼き付け後のネックイン加工性などの厳しい特性を
要求される胴部について記述する。
2. Description of the Related Art Tin cans, which are tin-plated thin steel plates or tin-free steels that are treated with chromic acid, are widely used for food cans, aerosol cans, and easy open cans. As a method of making a can, there are used a three-piece can made up of three parts of a lid, a body, and a bottom, and a two-piece can made up of a body and a bottom integrally and two parts together with the lid. DI (Drawing & Ironing) is a typical manufacturing method for the body of a 2-piece can.
Is the law. Hereinafter, with respect to describing the characteristics required for the DI can, the pressure resistance of the can body, which is the object of the present invention,
This section describes the body that requires severe properties such as neck-in processability after baking.

【0003】DI法による胴部の製缶工程を簡単に説明
する。まず、鋼帯から円盤状のブランクを打ち抜き、ポ
ンチとダイスを用いて浅絞りのカップ成形を行う。つぎ
にDI加工機で、このカップの壁厚より薄いクリアラン
スのポンチとダイスを用いて側壁をしごいて所定深さの
カップ状の缶体胴部を成形し、缶底をドーム状に成形す
る。更に成形された胴部の端部を切り取り、胴部の上端
の高さを揃える。この後、洗浄、乾燥、塗装、乾燥焼き
付けを行い、更に缶体開口径を小さくするネッキング加
工を施した後、開口端部に直径方向外側に向かって伸出
するフランジ加工を行う。
A process for making a can of the body by the DI method will be briefly described. First, a disk-shaped blank is punched out from a steel strip, and shallow drawing cup molding is performed using a punch and a die. Next, with a DI processing machine, a side wall is squeezed by using a punch and a die having a clearance thinner than the wall thickness of the cup to form a cup-shaped body of a cup having a predetermined depth, and a can bottom is formed into a dome shape. . Further, the end of the formed body is cut off to make the height of the upper end of the body uniform. After that, cleaning, drying, coating, and dry baking are performed, and necking processing for reducing the opening diameter of the can body is further performed, and then flange processing is performed at the opening end portion so as to extend outward in the diametrical direction.

【0004】DI缶用鋼板に要求される特性としては、
従来、DI加工性、フランジ加工性が主であったが、省
資源化のため、鋼板板厚が小さくなるに従い、ネック加
工性や缶体となった後の耐圧強度が重要となっている。
DI加工性とは、金型の磨耗が少なく、小加工エネルギ
ーで加工できること、加工時に材料の破断が生じないこ
となどの性能を指し、フランジ加工性とは、フランジ部
の張出し成形の際にフランジ割れと呼ばれる割れを生じ
にくい性能を指している。一方、ネック加工性とは、シ
ワなどの欠陥を発生せずに円滑にネック加工が可能な性
能であり、耐圧強度とは、特に胴部においては、例えば
缶底などの強度の低い部分が内圧によってバックリング
を生じる限界外力を指している。
The characteristics required for steel sheets for DI cans are as follows:
Conventionally, the DI workability and the flange workability have been mainly used, but for the purpose of resource saving, as the steel plate thickness becomes smaller, neck workability and pressure resistance after forming a can body become important.
DI processability refers to performance such as less wear of the die, processing with a small processing energy, and no material breakage during processing. Flanging processability refers to the flange when the flange part is stretch-formed. This refers to the performance called cracking, which is less likely to cause cracks. On the other hand, the neck workability is the ability to smoothly perform neck processing without causing defects such as wrinkles, and the pressure resistance is, for example, in the body part, a portion with low strength such as a can bottom has an internal pressure. It refers to the external force that causes buckling.

【0005】かかるDI缶用鋼板としては、かっては、
例えば素材をボロン添加アルミキルド鋼とし、バッチ焼
鈍法で焼鈍したもの(特開昭53−48913号公報参
照)、素材を銅添加低炭素鋼とし、バッチ焼鈍法で焼鈍
したもの(特公昭52−16965号公報参照)のよう
にバッチ焼鈍材が主に適用されていた。それはバッチ焼
鈍材が、伸び性、深絞り性などの点から、連続焼鈍材よ
りもDI加工性、フランジ加工性に優れていたからと考
えられる。しかし、最近では連続焼鈍方法の進展もあい
まって、素材をアルミキルド鋼とし、連続焼鈍法で焼鈍
した鋼板が使用されるようになってきている。(鉄と鋼
Vol.80 1994 No.11「焼付け硬化性鋼板の2ピース缶軽
量化への適用」参照)。
As a steel plate for such a DI can,
For example, a material made of boron-added aluminum killed steel and annealed by a batch annealing method (refer to Japanese Patent Laid-Open No. 53-48913), a material made of a copper-added low carbon steel and annealed by a batch annealing method (Japanese Patent Publication No. 52-16965). The batch annealed material has been mainly applied as described in Japanese Patent No. It is considered that the batch annealed material was superior to the continuous annealed material in DI processability and flange processability in terms of extensibility and deep drawability. However, recently, with the progress of the continuous annealing method, an aluminum killed steel is used as a material, and a steel sheet annealed by the continuous annealing method has been used. (Iron and steel
Vol.80 1994 No.11 “Applying bake hardenable steel sheet to lightweight 2-piece cans”).

【0006】この連続焼鈍鋼板は焼付け硬化性を有する
こと、特性の均一性がバッチ焼鈍を施した鋼板よりも優
れていること、製造費用が低減できること、などの優れ
た特徴を有し、かつ連続焼鈍における過時効処理の併用
によって、バッチ焼鈍材に劣らないDI加工性、フラン
ジ加工性を有するものである。
This continuous annealed steel sheet has excellent features such as bake hardenability, that the uniformity of properties is better than that of a steel sheet that has been subjected to batch annealing, and that the manufacturing cost can be reduced. The combined use of over-aging treatment in annealing has DI workability and flange workability comparable to those of batch annealed materials.

【0007】[0007]

【発明が解決しようとする課題】DI缶用鋼板の板厚は
近年大幅に減少してきており、かって0.30〜0.3
5mmが一般的であったが、0.22〜0.30mmをへ
て、0.22mm以下になりつつある。このような薄手化
は耐圧強度低下の問題、ネック加工性の低下の問題を引
き起こす。
The plate thickness of steel sheets for DI cans has been greatly reduced in recent years, and was once 0.30 to 0.3.
It was generally 5 mm, but it is becoming 0.22 mm or less from 0.22 to 0.30 mm. Such thinning causes problems of reduction in pressure strength and neck workability.

【0008】缶体の耐圧強度は、一般に(板厚)2 ×
(降伏強さ)で決定されるので、板厚の減少は降伏強さ
の大幅な増加を必要とする。この問題を解決するには、
軟質でDI加工性に有利な鋼板というだけでは不十分で
ある。この対策として、前述した連続焼鈍鋼板では焼き
付けによる硬化特性を活用しているが、0.22mm以下
の板厚の場合はこれだけでは十分でない。
The pressure resistance of the can is generally (plate thickness) 2 ×
The decrease in plate thickness requires a large increase in yield strength as determined by (yield strength). To solve this problem,
A steel sheet that is soft and advantageous for DI processability is not sufficient. As a measure against this, the above-mentioned continuous annealed steel sheet utilizes the hardening characteristics by baking, but this is not sufficient for a sheet thickness of 0.22 mm or less.

【0009】またネック加工性も板厚の影響が大きく、
板厚が薄くなるほどシワが発生しやすくなる。ネック加
工性の材料面からの改良としては、一般的には軟質で加
工硬化が少ない鋼板が有利であるが、このような特性は
耐圧強度と矛盾しており、薄手化の進展に伴い、この点
でも新たな鋼板が必要となってきている。
Further, neck workability is greatly influenced by the plate thickness,
The thinner the plate, the more easily wrinkles occur. As an improvement from the material side of neck workability, generally, a steel plate that is soft and has little work hardening is advantageous, but such characteristics contradict pressure resistance, and with the progress of thinning, In that respect, new steel plates are needed.

【0010】板厚の減少への対応として、強度元素の添
加による鋼板の高強度化が考えられるが、強化元素の使
用による製造コストの上昇、圧延工程における製造コス
トの上昇、加工硬化特性が高すぎることによるネック加
工性の低下、フランジ加工性の低下などの問題があり、
適切ではない。
As a measure to cope with the reduction of the plate thickness, it is conceivable to increase the strength of the steel sheet by adding a strength element. There are problems such as deterioration of neck workability and flange workability due to excess,
Not appropriate.

【0011】本発明は、このような方法によらず、安価
に、薄手化に適した鋼板を与えるものである。すなわ
ち、本発明では、製造方法の骨格として、まず、バッチ
焼鈍法に比して均質で、かつ特に添加元素を用いなくて
も高硬度の鋼板を得やすく、製造コストに関しても有利
な連続焼鈍法で焼鈍を施す方法を採用する。本発明は、
その上で、本発明者らによる実験調査の知見に基づい
て、薄手化に適したDI缶用鋼板すなわち高強度でネッ
ク加工性が良好でかつ異方性の少ない鋼板及びその製造
方法を提供することを目的としている。
The present invention provides a steel plate suitable for thinning at a low cost regardless of such a method. That is, in the present invention, as the skeleton of the manufacturing method, first, a continuous annealing method that is more homogeneous than the batch annealing method, and is particularly easy to obtain a high hardness steel plate without using an additional element, and is advantageous in terms of manufacturing cost. The method of annealing is adopted. The present invention
Further, based on the findings of the experimental investigations by the present inventors, a steel sheet for DI cans suitable for thinning, that is, a steel sheet having high strength, good neck formability, and little anisotropy, and a method for producing the same are provided. Is intended.

【0012】[0012]

【課題を解決するための手段】すなわち本発明は、
(1)重量%で炭素:0.01〜0.08%、マンガ
ン:0.5%以下、酸可溶アルミニウム:0.20%以
下、窒素:0.01%以下を含有し、必要に応じ0.1
%以下の硫黄、クロム、銅、ニッケルの少なくとも1種
及び/又は0.1%以下のチタン、ニオブの少なくとも
1種を含有し、残部が鉄および不可避的不純物であり、
かつ固溶C量が5〜25ppm であり、L方向(圧延方
向)のYP(降伏強度)が30〜44Kgf/mm2 であり、
L方向とC方向(鋼板幅方向)のYP差が2Kgf/mm2
下であることを特徴とする、耐圧強度とネック加工性に
優れたDI缶用鋼板。および(2)重量%で炭素:0.
01〜0.08%、マンガン:0.5%以下、酸可溶ア
ルミニウム:0.20%以下、窒素:0.01%以下を
含有し、必要に応じ0.1%以下の硫黄、クロム、銅、
ニッケルの少なくとも1種及び/又は0.1%以下のチ
タン、ニオブの少なくとも1種を含有し残部が鉄および
不可避的不純物からなる鋼を、連続鋳造あるいは造塊−
分塊圧延で鋼片とし、熱間圧延を行い、脱スケールし、
次に常法の冷間圧延を施した後、連続焼鈍において再結
晶温度以上Ac1 点未満の温度に均熱し、60℃/秒以
上の冷却速度にて冷却し、300〜450℃の温度域で
30〜180秒保定する焼きなまし処理を行って鋼板中
の固溶炭素量を5〜25ppm とし、潤滑剤を用いた湿式
調質圧延にて圧下率3〜12%で調質圧延を行い、更に
錫またはニッケル、クロム等の缶用鋼板用メッキを施す
ことを特徴とする、耐圧強度とネックイン加工性に優れ
たDI缶用鋼板の製造方法である。
That is, the present invention is as follows.
(1) Carbon by weight%: 0.01 to 0.08%, manganese: 0.5% or less, acid-soluble aluminum: 0.20% or less, nitrogen: 0.01% or less, if necessary. 0.1
% Or less of at least one of sulfur, chromium, copper and nickel and / or 0.1% or less of at least one of titanium and niobium, and the balance being iron and unavoidable impurities,
In addition, the amount of solute C is 5 to 25 ppm, the YP (yield strength) in the L direction (rolling direction) is 30 to 44 Kgf / mm 2 ,
A steel plate for a DI can excellent in pressure resistance and neck workability, which has a YP difference of 2 Kgf / mm 2 or less in the L direction and the C direction (steel plate width direction). And (2) carbon by weight: 0.
01-0.08%, manganese: 0.5% or less, acid-soluble aluminum: 0.20% or less, nitrogen: 0.01% or less, and if necessary 0.1% or less of sulfur, chromium, copper,
Continuous casting or ingot-making of steel containing at least one kind of nickel and / or at least 0.1% of titanium and at least one kind of niobium, and the balance of iron and unavoidable impurities.
Slab rolling into billets, hot rolling, descaling,
Then, after performing cold rolling in a conventional method, the material is soaked at a temperature of recrystallization temperature or more and less than Ac 1 point in continuous annealing, cooled at a cooling rate of 60 ° C./second or more, and in a temperature range of 300 to 450 ° C. The steel plate is annealed for 30 to 180 seconds to reduce the amount of solute carbon in the steel sheet to 5 to 25 ppm, and is temper-rolled at a rolling reduction of 3 to 12% by wet temper rolling using a lubricant. A method for producing a steel plate for a DI can, which is excellent in pressure resistance and neck-in processability, is characterized by plating tin, nickel, chromium or the like for a steel plate for a can.

【0013】以下、本発明を詳細に説明する。薄手化に
伴って必要な強度を付与する方法として、発明者らは調
質圧延による強度の付与に着目した。調質圧延による強
度付与法自体は従来から知られている方法であるが、発
明者らは、単なる強度付与でなく、DI缶の耐圧強度は
鋼板の平均的な強度に強く支配されることは当然である
が、異方性を減少させることも耐圧強度の向上に重要で
あること、またネック加工においては、軟質で加工しや
すいこと以上に、円周方法で均一な特性が重要であるこ
とに着目し、方向均一性を保って強度を付与する方法を
検討した。
Hereinafter, the present invention will be described in detail. As a method of imparting the necessary strength with the reduction in thickness, the inventors have focused on imparting the strength by temper rolling. Although the strength imparting method itself by temper rolling is a conventionally known method, the inventors have found that not only the strength imparting but the pressure resistance strength of the DI can is strongly controlled by the average strength of the steel sheet. Of course, it is important to reduce the anisotropy in order to improve the compressive strength, and in neck processing, it is important to have uniform characteristics by the circumferential method in addition to being soft and easy to process. Focusing on the above, we investigated a method of imparting strength while maintaining directional uniformity.

【0014】図1はC:0.02%、Mn:0.025
%、酸可溶Al:0.05%、N:0.004%の素材
を使用し、巻取温度を670℃とし、焼鈍後の固溶炭素
量を15ppm となるように連続焼鈍を施した後、調質圧
延方法、圧下率を変更して、強度の異方性を調査したも
のである。図1より、強度の異方性を減少させるための
調質圧延率には最適点が存在し、それはこの材料におい
ては調質圧延率6%の近傍であることがわかる。
FIG. 1 shows C: 0.02%, Mn: 0.025.
%, Acid-soluble Al: 0.05%, N: 0.004%, a coiling temperature was 670 ° C., and continuous annealing was performed so that the amount of solute carbon after annealing was 15 ppm. After that, the temper rolling method and the rolling reduction were changed to investigate the anisotropy of strength. It can be seen from FIG. 1 that there is an optimum point in the temper rolling reduction for reducing the anisotropy of strength, which is near the temper rolling reduction of 6% in this material.

【0015】図2は、鋼板に含まれる炭素量の変更、ま
たは炭素の析出固定元素としてチタンを添加することに
より鋼板中の固溶炭素量を0.30ppm にそれぞれ変化
させた場合の調質圧延による異方性の変化を調査したも
のである。これらの場合については必ずしも最適点は存
在せず異方性の観点からは調質圧延率を高くすべきでな
いことがわかる。
FIG. 2 is a temper rolling in the case where the amount of solid solution carbon in the steel sheet was changed to 0.30 ppm by changing the amount of carbon contained in the steel sheet or adding titanium as a precipitation fixing element of carbon. This is a survey of changes in anisotropy due to. In these cases, the optimum point does not always exist, and it is understood that the temper rolling ratio should not be increased from the viewpoint of anisotropy.

【0016】発明者らは上記の調査検討により、固溶炭
素量を適切とした上で、異方性が小さい範囲で調質圧延
によって強度を付与することで強度と異方性の両立が可
能となることを知見した。必要な圧下率すなわち3〜1
2%の圧下率を付与するための調質圧延方法として湿式
調質圧延を行う必要がある。この場合調質圧延は、焼鈍
ラインと同一ラインで行っても別ラインで行ってもかま
わない。
According to the above investigations, the inventors have made it possible to achieve both strength and anisotropy by appropriately adjusting the amount of solute carbon and imparting strength by temper rolling in a range where anisotropy is small. It was discovered that Necessary rolling reduction, namely 3 to 1
It is necessary to perform wet temper rolling as a temper rolling method for giving a reduction rate of 2%. In this case, temper rolling may be performed in the same line as the annealing line or in a different line.

【0017】次に、温度200℃前後で行われる塗装後
の乾燥焼き付け処理による焼き付け硬化を強度向上に活
用することが、既述の文献からも知られるように、薄手
化に対応する材料として非常に重要であることから、図
1の調質圧延率を変化させた鋼板の210℃での30分
間保定による強度の変化を調査した。調査の結果を図3
に示す。図3より、210℃での処理前の強度の調質圧
延率による上昇に比べて、210℃での処理後の強度の
調質圧延率による上昇は小さいことがわかる。更に考察
を加えると、強度の上昇には調質圧延率を高くすること
が有利ではあるが、一方で調質圧延率による強度の上昇
は次第に飽和しており、また210℃での処理を前提に
考えると、調質圧延率が15%以上では飽和の傾向が顕
著になっている。
Next, as known from the above-mentioned literatures, it is extremely useful as a material for thinning, to utilize the bake hardening by the dry bake treatment after coating performed at a temperature of about 200 ° C. to improve the strength. Therefore, the change of the strength of the steel sheet with the temper rolling ratio of FIG. 1 changed by holding for 30 minutes at 210 ° C. was investigated. Figure 3 shows the results of the survey
Shown in From FIG. 3, it can be seen that the increase in the strength after the treatment at 210 ° C. due to the temper rolling reduction is smaller than the increase in the strength before the treatment at 210 ° C. due to the temper rolling reduction. Further consideration, it is advantageous to increase the temper rolling rate to increase the strength, but on the other hand, the increase in strength due to the temper rolling rate is gradually saturated, and it is premised on the treatment at 210 ° C. In consideration of the above, when the temper rolling ratio is 15% or more, the tendency of saturation becomes remarkable.

【0018】図1と図2の結果を総合させると、調質圧
延率を大幅に高めると方向均一性が失われて加工上不利
であり、一方、乾燥焼き付け処理を考慮した場合には、
調質圧延率を大幅に高めても強度上昇は飽和するので、
調質圧延率には適切な範囲があることがわかる。
When the results of FIG. 1 and FIG. 2 are combined, it is disadvantageous in terms of processing that the direction uniformity is lost when the temper rolling rate is significantly increased, while the dry baking treatment is taken into consideration.
Even if the temper rolling rate is significantly increased, the strength increase will be saturated, so
It can be seen that the temper rolling ratio has an appropriate range.

【0019】なお、缶の耐圧強度について、鋼板の強度
を指標にしている理由は、DI加工後の缶の胴部は板厚
としては薄くなるが、加工硬化によって強度は大幅に上
昇するため、DI加工において殆ど加工を受けない部分
である缶底の強度が実用上問題となるためである。
The reason for using the strength of the steel sheet as an index for the pressure resistance of the can is that the body portion of the can after DI processing has a thin plate thickness, but the strength increases significantly due to work hardening. This is because the strength of the bottom of the can, which is a portion that is hardly processed during DI processing, poses a practical problem.

【0020】焼鈍後の鋼板は結晶粒等の組織的な観点か
ら異方性を有している。一方調質圧延も一方向性であり
異方性を発生させるが、固溶Cが残留した場合、すべり
系が異なるためか両者の異方性が逆になる場合には、打
ち消しあう効果が生じる結果、図1のような特性を生じ
るものと考えられる。
The annealed steel sheet has anisotropy from a structural point of view such as crystal grains. On the other hand, temper rolling is also unidirectional and causes anisotropy, but when solid solution C remains and the anisotropies of the two are opposite, perhaps due to different slip systems, an effect of canceling each other occurs. As a result, it is considered that the characteristics shown in FIG. 1 are generated.

【0021】一方、調質圧延率を高くすると、転位密度
の上昇により硬質化するが、転位密度が上昇すると、焼
き付け硬化性の源である固溶Cが鋼板内で移動して転位
を固着することの強度への影響が小さくなるため、高調
質圧延率における焼き付け硬化量が低下するものと考え
られる。
On the other hand, when the temper rolling ratio is increased, the dislocation density rises to harden it. However, when the dislocation density rises, the solid solution C, which is the source of the bake hardenability, moves in the steel sheet to fix the dislocations. It is considered that the amount of bake-hardening at the high-quality rolling rate is reduced because the effect of this on strength is reduced.

【0022】次に本発明の限定理由について説明する。
鋼板成分としての全炭素量が0.01%より小さくなる
と、連続焼鈍での冷却過程におけるセメンタイト形成駆
動力が小さくなり、0.01%以上の場合と比べて固溶
炭素量はかえって増加し、30ppm よりも大きくなる。
成分炭素量が10〜20ppm の領域になれば、固溶炭素
量は低下して、上記の条件を満足するが、このような領
域では鋼板の強度が低下するので成分炭素量は0.01
%以上とする。一方、成分炭素量が0.08%を超える
と、形成されるセメンタイト量が多く、加工による割れ
の発生が生じやすくなり加工性が低下するため、成分炭
素量は0.08%以下とする。
Next, the reasons for limitation of the present invention will be described.
When the total carbon content as a steel sheet component is less than 0.01%, the cementite formation driving force in the cooling process in continuous annealing becomes small, and the solid solution carbon content increases rather than when it is 0.01% or more. Greater than 30 ppm.
When the amount of component carbon is in the range of 10 to 20 ppm, the amount of solid solution carbon decreases and the above conditions are satisfied, but the strength of the steel sheet decreases in such a region, so the amount of component carbon is 0.01
% Or more. On the other hand, if the amount of component carbon exceeds 0.08%, the amount of cementite formed is large, cracking is likely to occur during processing, and the workability deteriorates. Therefore, the amount of component carbon is set to 0.08% or less.

【0023】鋼板中の固溶炭素量がゼロになると、図2
より分かるように異方性はある値(0.8Kgf/mm2 )よ
り小さくならない。また、一方、固溶炭素量が増加して
30ppm となるとやはり、異方性は下限値を有し、1.
0Kgf/mm2 より小さくならない。すなわち固溶炭素量は
ゼロより大で30ppm 未満である必要がある。製造上の
バラツキも考慮して、固溶炭素量は5〜25ppm とし
た。固溶炭素量を連続焼鈍で5〜25ppm とするには均
熱後に60℃/秒以上の急速冷却して、300〜450
℃としこの温度で30〜180秒保定してセメンタイト
析出処理を行う方法が極めて望ましい。
When the amount of solute carbon in the steel plate becomes zero, the result of FIG.
As can be seen, the anisotropy does not become smaller than a certain value (0.8 Kgf / mm 2 ). On the other hand, when the amount of solute carbon increases to 30 ppm, the anisotropy also has a lower limit value.
It does not become smaller than 0 Kgf / mm 2 . That is, the amount of solute carbon must be greater than zero and less than 30 ppm. The amount of solute carbon was set to 5 to 25 ppm in consideration of manufacturing variations. In order to adjust the amount of solute carbon by continuous annealing to 5 to 25 ppm, after soaking, it is rapidly cooled to 60 ° C / sec or more, and 300 to 450
A method of carrying out cementite precipitation treatment by holding the temperature at 30 ° C. for 30 to 180 seconds at this temperature is extremely desirable.

【0024】成分マンガン量が0.5%を超えると、加
工硬化が大きくなるためDI加工に適さないため、成分
マンガン量は0.5%以下とする。酸化物の形態でない
アルミニウム量である酸可溶アルミニウム量は窒素の析
出固定のために添加されるが、アルミニウム量を0.2
%以上とするとアルミナ系介在物の増加、窒化アルミニ
ウムの析出に起因する結晶細粒化による硬質化、等の問
題を生じる。成分窒素量が0.01%を超えると、窒素
の析出固定のための添加元素の使用量が大きくなり、例
えばアルミニウムを使用した場合にはAINの析出、チ
タンを使用した場合にはTINの析出により加工性が低
下するため、窒素量は0.01%以下とする。
If the amount of component manganese exceeds 0.5%, the work hardening increases, which is not suitable for DI processing. Therefore, the amount of component manganese is set to 0.5% or less. The amount of acid-soluble aluminum, which is the amount of aluminum that is not in the form of oxide, is added to fix and fix the nitrogen.
If it is more than 100%, problems such as increase of alumina inclusions and hardening due to grain refinement due to precipitation of aluminum nitride occur. If the amount of the component nitrogen exceeds 0.01%, the amount of the additional element used for fixing the precipitation of nitrogen becomes large. For example, the precipitation of AIN when aluminum is used and the precipitation of TIN when titanium is used. Therefore, the workability is deteriorated, so the amount of nitrogen is made 0.01% or less.

【0025】調質圧延率が3%を下回ると図1の白丸の
ラインから分るように、YPが30Kgf/mm2 を下回る。
YPが30Kgf/mm2 を下回ると缶成形、焼き付け後に所
望の耐厚強度を確保できない。調質圧延率は12%を超
えると、図1、図3より異方性の増加、焼き付け処理後
の強度の飽和が生じるので12%以下とする。又調質圧
延率が12%となるとYPが44Kgf/mm2 となるが(図
1)YPがこの値を超えるとネック加工時しわが発生す
る。また図1の異方性最適点である6%を含み、湿式調
質圧延による強度付与の必要と製造上のバラツキを考慮
して、調質圧延率は3%以上とする。
When the temper rolling ratio is less than 3%, YP is less than 30 Kgf / mm 2, as can be seen from the white circle line in FIG.
If YP is less than 30 Kgf / mm 2 , desired thickness resistance cannot be secured after can forming and baking. When the temper rolling ratio exceeds 12%, the anisotropy increases and the strength is saturated after the baking treatment as shown in FIGS. 1 and 3, so the temper rolling ratio is set to 12% or less. When the temper rolling rate is 12%, the YP becomes 44 Kgf / mm 2 (Fig. 1), but when YP exceeds this value, wrinkles occur during neck processing. In addition, the temper rolling ratio is set to 3% or more in consideration of the need for strength imparting by wet temper rolling and variation in manufacturing, including 6% which is the optimum point of anisotropy in FIG.

【0026】メッキ法については通常、缶用鋼板に用い
られる錫メッキ、ニッケル、クロムメッキ等を使用す
る。DI加工用には、表面の潤滑性の点で錫メッキが使
用されることが多い。
As the plating method, tin plating, nickel, chrome plating or the like which is usually used for steel plates for cans is used. For DI processing, tin plating is often used in terms of surface lubricity.

【0027】缶用鋼板では内容物の種類によっては耐食
性の強化が必要な場合があり、強化元素として、硫黄、
クロム、ニッケル、銅が用いられることがある。これら
の元素が0.1%を超えると、加工硬化の上昇、析出物
の形成等によりDI加工にとって有害であるため、耐食
性強化元素を使用する場合は0.1%以下とする。
In the steel sheet for cans, it may be necessary to enhance the corrosion resistance depending on the type of contents.
Chromium, nickel, copper may be used. If the content of these elements exceeds 0.1%, it is harmful to DI processing due to an increase in work hardening, formation of precipitates, etc. Therefore, if a corrosion resistance enhancing element is used, the content should be 0.1% or less.

【0028】アルミニウムは上述のように、窒素を析出
させるために使用されるが、アルミニウムの一部に替え
てチタンなどの侵入型固溶元素の固定元素を使用するこ
とも可能である。しかしチタンを過剰に添加すると、T
iN、TiCなどを形成し、加工性を損なうとともに、
本発明の構成要素である固溶炭素量2〜25ppm を確保
することが困難になる。従って、チタンなどの侵入型固
溶元素の固定元素は添加する場合0.1%以下の添加に
止める。
Although aluminum is used for precipitating nitrogen as described above, it is also possible to use a fixed element of an interstitial solid solution element such as titanium in place of a part of aluminum. However, if titanium is added excessively, T
Forming iN, TiC, etc., impairs workability,
It becomes difficult to secure a solid solution carbon amount of 2 to 25 ppm which is a constituent element of the present invention. Therefore, when the fixed element of the interstitial solid solution element such as titanium is added, the addition is limited to 0.1% or less.

【0029】L方向、C方向の降伏強度差を2Kgf/mm2
以下とする理由は、実際、以下の実施例にも示すよう
に、降伏強度差を2Kgf/mm2 超の材料では、ネック成形
においてシワが発生するためである。なお、降伏強度差
2Kgf/mm2 は図1により調質圧延率12%で発生する異
方性に相当している。
The yield strength difference in the L and C directions is 2 Kgf / mm 2
The reason for the following is because, as shown in the following examples, in practice, wrinkles occur in neck forming in a material having a yield strength difference of more than 2 Kgf / mm 2 . The yield strength difference of 2 Kgf / mm 2 corresponds to the anisotropy that occurs at the temper rolling rate of 12% according to FIG.

【0030】[0030]

【実施例】表1記載の成分を有する鋼を転炉で溶製し、
連続鋳造で熱鋼片とした後、これを常温まで冷却し、1
250℃前後に再加熱し、Ar3 点以上の温度域で厚さ
2〜3mmまで熱間圧延し、630〜720℃で巻取っ
た。この熱間圧延鋼帯を酸洗し、冷間圧延し、この冷間
圧延鋼帯を700℃前後で再結晶焼鈍した後、調質圧延
を施して表1記載の板厚とし、これに錫メッキを施し
た。
EXAMPLE Steels having the components shown in Table 1 were melted in a converter,
After making hot steel billet by continuous casting, cool it to room temperature,
It was reheated to around 250 ° C, hot-rolled to a thickness of 2 to 3 mm in a temperature range of Ar 3 points or more, and wound at 630 to 720 ° C. This hot-rolled steel strip was pickled, cold-rolled, re-crystallized and annealed at around 700 ° C., and then temper-rolled to the plate thickness shown in Table 1 and tin. Plated.

【0031】表1の材料について製缶加工を行った結果
を表2に示す。実験製缶装置でネック成形までを行い、
その結果を判定し、フランジ加工性については、図4に
示すコーンテストにより判定した。表2に示すように、
本発明の鋼板については、DI加工後のネック加工、フ
ランジ成形、耐圧強度ともに合格したのに対し、他の材
料ではネック加工性、フランジ成形性、耐圧強度を同時
に満足したものはなかった。
Table 2 shows the results obtained by subjecting the materials in Table 1 to can manufacturing. Performs neck molding with an experimental can making device,
The result was judged, and the flange formability was judged by the cone test shown in FIG. As shown in Table 2,
With respect to the steel sheet of the present invention, the neck processing after the DI processing, the flange forming, and the compressive strength passed, whereas no other material simultaneously satisfied the neck forming property, the flange formability, and the compressive strength.

【0032】なお、表1において、硬さは、錫メッキ後
のDI缶用鋼板から試料を採取し、JISに準拠して測
定した。引張り強さは、錫メッキ後のDI缶用鋼板から
試料を採取し、JISに準拠して測定した。表2におけ
るネック加工での不合格の理由は、シワの発生である。
フランジ加工性を測定したコーンテスト法は図4に示す
ように、DI缶の開口部に円錐型のコーンを押しつけ、
割れが生じるまでのストローク長を測定するもので、ス
トローク長が7mm以上であれば、フランジ割れの発生し
にくい良フランジ加工性の材料と判定している。耐圧強
度の合格不合格は、DI加工によって製作した缶体内部
に圧縮空気を導入して缶底がバックリングを生じるか否
かで判定している。
In Table 1, the hardness was measured according to JIS by taking a sample from a steel plate for DI can after tin plating. The tensile strength was measured according to JIS by taking a sample from the tin-plated steel sheet for DI cans. The reason for the failure in the neck processing in Table 2 is the occurrence of wrinkles.
The cone test method for measuring the flange formability is as shown in FIG. 4, in which a cone-shaped cone is pressed against the opening of the DI can,
It measures the stroke length until cracking occurs, and if the stroke length is 7 mm or more, it is judged that the material is of good flange formability that does not easily cause flange cracking. The pass / fail of the compressive strength is judged by whether or not compressed air is introduced into the can body manufactured by DI processing to cause buckling of the can bottom.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明は薄手のDI缶用鋼板に対し、従
来の技術では両立出来なかった缶強度とDI缶としての
成形加工性、特にネック加工性を共に満足する鋼板とそ
の製造方法を与えるものであり、薄手材の使用を可能に
することによる省資源効果は極めて大きい。
EFFECTS OF THE INVENTION The present invention provides a steel sheet for a thin DI can and a method of producing the same which satisfies both the strength of the can and the formability of the DI can, especially the neck formability, which cannot be achieved by the conventional techniques. The resource-saving effect by allowing the use of thin materials is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】固溶炭素15ppm となるように焼鈍後の鋼板に
ついての調質圧延率と降伏強度異方性(=C方向YP−
L方向YP)との関係を示す図。
FIG. 1 is a temper rolling ratio and a yield strength anisotropy (= C direction YP−) of a steel sheet which has been annealed so as to have a solute carbon content of 15 ppm.
The figure which shows the relationship with L direction YP).

【図2】固溶炭素が異る場合の調質圧延率と、降伏強度
異方性との関係を示す図。
FIG. 2 is a diagram showing a relationship between a temper rolling ratio and a yield strength anisotropy when solid solution carbons are different.

【図3】調質圧延率と焼き付けによる降伏強度の上昇を
示す図。
FIG. 3 is a view showing a temper rolling rate and an increase in yield strength due to baking.

【図4】フランジ加工性を判定するコーンテスト法の概
略を示す図。
FIG. 4 is a diagram showing an outline of a cone test method for determining flange formability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻村 銑吉 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 廣渡 美真 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shikichi Tsujimura 1-1 Tobahata-cho, Tobata-ku, Kitakyushu City, Fukuoka Prefecture (72) Inside the Yawata Works (72) Inventor Mima Hiroto Tobata, Kitakyushu City, Fukuoka Prefecture 1-1 Hibata-cho, Shin-Nippon Steel Co., Ltd., Yawata Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で 炭素:0.01〜0.08%、 マンガン:0.5%以下、 酸可溶アルミニウム:0.20%以下、 窒素:0.01%以下を含有し、残部が鉄および不可避
的不純物からなり、かつ固溶C量が5〜25ppm であ
り、L方向(圧延方向)のYP(降伏強度)が30〜4
4Kgf/mm2 であり、L方向とC方向(鋼板幅方向)のY
P差が2Kgf/mm2 以下であることを特徴とする、耐圧強
度とネック加工性に優れたDI缶用鋼板。
1. By weight%, carbon: 0.01 to 0.08%, manganese: 0.5% or less, acid-soluble aluminum: 0.20% or less, nitrogen: 0.01% or less, and the balance. Is iron and unavoidable impurities, the amount of dissolved C is 5 to 25 ppm, and the YP (yield strength) in the L direction (rolling direction) is 30 to 4
4 Kgf / mm 2 , Y in the L and C directions (steel width direction)
A steel plate for a DI can, which is excellent in pressure resistance and neck workability, and has a P difference of 2 Kgf / mm 2 or less.
【請求項2】 鋼成分として、更に0.1%以下の硫
黄、クロム、銅、ニッケルの少なくとも1種を含有させ
ることを特徴とする請求項1記載の耐圧強度とネック加
工性に優れたDI缶用鋼板。
2. The DI excellent in pressure resistance and neck formability according to claim 1, further comprising 0.1% or less of at least one of sulfur, chromium, copper and nickel as a steel component. Steel plate for cans.
【請求項3】 鋼成分として、更に0.1%以下のチタ
ン、ニオブの少なくとも1種を含有させることを特徴と
する請求項1又は2記載の耐圧強度とネック加工性に優
れたDI缶用鋼板。
3. A DI can excellent in pressure resistance and neck workability according to claim 1 or 2, further comprising 0.1% or less of at least one of titanium and niobium as a steel component. steel sheet.
【請求項4】 重量%で 炭素:0.01〜0.08%、 マンガン:0.5%以下、 酸可溶アルミニウム:0.20%以下、 窒素:0.01%以下を含有し、残部が鉄および不可避
的不純物からなる鋼を、連続鋳造あるいは造塊−分塊圧
延で鋼片とし、熱間圧延を行い、脱スケールし、次に常
法の冷間圧延を施した後、連続焼鈍において再結晶温度
以上Ac1 点未満の温度に均熱し、60℃/秒以上の冷
却速度にて冷却し、300〜450℃の温度域で30〜
180秒保定する焼きなまし処理を行って鋼板中の固溶
炭素量を5〜25ppm とし、潤滑剤を用いた湿式調質圧
延にて圧下率3〜12%で調質圧延を行い、更に錫また
はニッケル、クロム等の缶用鋼板用メッキを施すことを
特徴とする耐圧強度とネックイン加工性に優れたDI缶
用鋼板の製造方法。
4. By weight%, carbon: 0.01 to 0.08%, manganese: 0.5% or less, acid-soluble aluminum: 0.20% or less, nitrogen: 0.01% or less, and the balance. Steel consisting of iron and unavoidable impurities is made into a billet by continuous casting or ingot-slump rolling, hot rolling is performed, descaling is performed, and then cold rolling is performed by a conventional method, followed by continuous annealing. At a temperature above the recrystallization temperature and below the Ac 1 point, and cooled at a cooling rate of 60 ° C./sec or higher, in the temperature range of 300 to 450 ° C. for 30 to
Annealing for 180 seconds is performed to make the amount of solute carbon in the steel sheet 5 to 25 ppm, and temper rolling is performed by wet temper rolling using a lubricant at a reduction rate of 3 to 12%. A method for producing a steel plate for a DI can, which is excellent in pressure resistance and neck-in processability, characterized by plating a steel plate for a can with chrome or the like.
【請求項5】 鋼成分として、更に0.1%以下の硫
黄、クロム、銅、ニッケルの少なくとも1種を含有させ
ることを特徴とする請求項4記載の耐圧強度とネックイ
ン加工性に優れたDI缶用鋼板の製造方法。
5. A steel component further containing 0.1% or less of at least one of sulfur, chromium, copper, and nickel, which is excellent in pressure resistance and neck-in workability. Manufacturing method of steel sheet for DI can.
【請求項6】 鋼成分として、更に0.1%以下のチタ
ン、ニオブの少なくとも1種を含有させることを特徴と
する請求項4又は5記載の耐圧強度とネックイン加工性
に優れたDI缶用鋼板の製造方法。
6. A DI can excellent in pressure resistance and neck-in workability according to claim 4 or 5, further comprising 0.1% or less of at least one of titanium and niobium as a steel component. Method for manufacturing steel sheet.
JP11501695A 1995-05-12 1995-05-12 Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same Expired - Lifetime JP3471483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11501695A JP3471483B2 (en) 1995-05-12 1995-05-12 Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11501695A JP3471483B2 (en) 1995-05-12 1995-05-12 Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08311609A true JPH08311609A (en) 1996-11-26
JP3471483B2 JP3471483B2 (en) 2003-12-02

Family

ID=14652172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11501695A Expired - Lifetime JP3471483B2 (en) 1995-05-12 1995-05-12 Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3471483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092154A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
WO2012124823A1 (en) 2011-03-17 2012-09-20 Jfeスチール株式会社 Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
EP2794935B1 (en) * 2011-12-22 2017-01-11 ThyssenKrupp Rasselstein GmbH Easy-open lid for cans and method to produce an easy-open lid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092154A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
WO2012124823A1 (en) 2011-03-17 2012-09-20 Jfeスチール株式会社 Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
JP2012207305A (en) * 2011-03-17 2012-10-25 Jfe Steel Corp Steel sheet for aerosol can bottom having high compressive strength and excellent workability, and method for producing the same
US9506131B2 (en) 2011-03-17 2016-11-29 Jfe Steel Corporation Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
EP2794935B1 (en) * 2011-12-22 2017-01-11 ThyssenKrupp Rasselstein GmbH Easy-open lid for cans and method to produce an easy-open lid

Also Published As

Publication number Publication date
JP3471483B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
EP0556834A2 (en) Method of producing high-strength steel sheet used for can
JPS6330368B2 (en)
JP2001107186A (en) High strength steel sheet for can and its producing method
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
US20220074031A1 (en) Steel sheet for cans and method of producing same
JP3471483B2 (en) Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP3292034B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP3224265B2 (en) Non-aging steel plate for container with excellent necked-in workability
JPH0629465B2 (en) Method for producing steel plate for DI can having good bakeability and bake hardenability
JP3351284B2 (en) Manufacturing method of ultra-thin steel sheet for welded can with excellent neck formability
JPS63140039A (en) Production of steel sheet for di can
JPH05345925A (en) Production of extra thin steel sheet for dwi can excellent in flange workability
JP4091717B2 (en) Manufacturing method of high strength and high ductility steel sheet for containers
JPH0711333A (en) Manufacture of non-aging/low earing steel sheet for container

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term