JPH08311000A - Production of methylamine - Google Patents

Production of methylamine

Info

Publication number
JPH08311000A
JPH08311000A JP12140495A JP12140495A JPH08311000A JP H08311000 A JPH08311000 A JP H08311000A JP 12140495 A JP12140495 A JP 12140495A JP 12140495 A JP12140495 A JP 12140495A JP H08311000 A JPH08311000 A JP H08311000A
Authority
JP
Japan
Prior art keywords
methylamine
tma
ammonia
mixture
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12140495A
Other languages
Japanese (ja)
Inventor
Takeshi Yasutake
剛 安武
Tokuyuki Iwanaga
徳幸 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12140495A priority Critical patent/JPH08311000A/en
Publication of JPH08311000A publication Critical patent/JPH08311000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To provide a production method for methylamine simplified in production process with no need of the operation for separating trimethylamine. CONSTITUTION: In this method for producing methylamine by vapor phase catalytic reaction among methanol, ammonia and a methylamine mixture, the following processes or operations are interrelatively linked: disproportionation process designed to subject both the ammonia and methylamine mixture to catalytic reaction in the presence of a solid acid catalyst <=15Å in average pore diameter to reduce trimethylamine quantity; main reaction process designed to subject the methanol, ammonia and part or the whole of a methylamine-contg. mixture from the disproportionation process in the presence of a silylated solid acid catalyst while suppressing the maximum temperature in the catalyst bed to <=350 deg.C; and the operation of a 1st distillation column designed to distillate a methylamine mixture from the main reaction process (and part of the methylamine mixture from the disproportionation process) under a pressure of 10-25kg/cm<2> G, distill off virtually the whole trimethylamine in the above mixture in the form of an azeotropic mixture with the ammonia from the column head, and feed this whole trimethylamine to the disproportionation process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタノールとアンモニ
アの反応によりメチルアミンを製造する方法に関する。
より詳しくは、需要の低いトリメチルアミンを製造しな
いメチルアミンの製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing methylamine by reacting methanol with ammonia.
More specifically, it relates to a method for producing methylamine that does not produce trimethylamine, which is in low demand.

【0002】[0002]

【従来の技術】メチルアミンは一般的には、固体酸触媒
の存在下、メタノールとアンモニアを気相中300℃〜
400℃で反応させることにより下記の(1)〜(3)
の反応式に従って製造され、メチル基の置換数の相違に
よりモノ、ジ、トリの3種類が混合して生成する。
Methylamine is generally used in the presence of a solid acid catalyst in the gas phase of methanol and ammonia at 300 ° C to 300 ° C.
By reacting at 400 ° C, the following (1) to (3)
It is produced according to the reaction formula (1), and three kinds of mono, di, and tri are mixed and produced due to the difference in the number of substitution of methyl groups.

【0003】 NH+CHOH→CHNH+HO (1) CHNH+CHOH→(CHNH+HO (2) (CHNH+CHOH→(CHN+HO (3) CHNH:モノメチルアミン(以下、MMAと略記) (CHNH:ジメチルアミン(以下、DMAと略記) (CHN:トリメチルアミン(以下、TMAと略記)NH 3 + CH 3 OH → CH 3 NH 2 + H 2 O (1) CH 3 NH 2 + CH 3 OH → (CH 3 ) 2 NH + H 2 O (2) (CH 3 ) 2 NH + CH 3 OH → (CH 3 ) 3 N + H 2 O (3) CH 3 NH 2 : monomethylamine (hereinafter abbreviated as MMA) (CH 3 ) 2 NH: dimethylamine (hereinafter abbreviated as DMA) (CH 3 ) 3 N: trimethylamine (hereinafter TMA) Abbreviated)

【0004】反応で得られた含メチルアミン混合物は、
その後の精製工程で分離精製され、それぞれ、化学薬品
や農薬、医薬、飼料等の原料として広く利用されてい
る。しかしながら、これらメチルアミン類の需要は一様
ではなく、その市場の95%以上をMMAとDMAが占
め、TMAは5%程度に過ぎない。また、メチルアミン
混合物の分離精製は一般に蒸留により行われるが、MM
A及びDMAとTMAとの沸点差が小さい、及びTMA
がMMA、DMAと共沸するという理由から3種類のメ
チルアミンを効率的に分離することは容易ではないた
め、合理的なメチルアミンの製造プロセスを確立するた
めにはこれらの点を考慮する必要がある。
The methylamine-containing mixture obtained by the reaction is
It is separated and refined in the subsequent refining process, and is widely used as a raw material for chemicals, agricultural chemicals, medicines, feeds, and the like. However, the demand for these methylamines is not uniform, and MMA and DMA occupy 95% or more of the market, and TMA accounts for only about 5%. The separation and purification of the methylamine mixture is generally carried out by distillation.
Small difference in boiling point between A and DMA and TMA, and TMA
It is not easy to efficiently separate three kinds of methylamines because they azeotrope with MMA and DMA, so it is necessary to consider these points in order to establish a rational methylamine production process. There is.

【0005】従来の一般的なメチルアミンの製造方法に
よれば、主反応工程に於いて固体酸触媒の存在下に生成
したメチルアミンと過剰に供給したアンモニア、未反応
のメタノール、及び副生成物の水を含む混合物は、第一
蒸留操作に於いてアンモニアまたは、アンモニアとメチ
ルアミンの一部が留出し、その留出物は主反応工程、ま
たは不均化工程に循環される。第二蒸留塔では先に述べ
たようにMMA、DMAとTMAとの沸点差が小さい、
TMAがMMA、DMAと共沸するという理由から水に
よる抽出蒸留でTMAを留出させ、缶出液を第三蒸留塔
に供給しMMAとDMAの混合物を留出させ、この留出
物を第四蒸留塔に供給し、塔頂からMMAを塔底からD
MAを分離するプロセスをたどる。
According to the conventional general method for producing methylamine, methylamine produced in the presence of a solid acid catalyst in the main reaction step, ammonia supplied in excess, unreacted methanol, and by-products. In the first distillation operation of the water-containing mixture, ammonia or a part of ammonia and methylamine is distilled, and the distillate is recycled to the main reaction step or the disproportionation step. In the second distillation column, the boiling point difference between MMA, DMA and TMA is small as described above.
Since TMA is azeotropically distilled with MMA and DMA, TMA is distilled by extractive distillation with water, the bottom liquid is supplied to a third distillation column to distill a mixture of MMA and DMA, and this distillate is removed. (4) Supply to the distillation column, and from the top of the tower, add MMA to the bottom of the tower.
Follow the process of separating the MA.

【0006】[0006]

【発明が解決しようとする課題】従来の製造方法に於け
る問題点は、主反応工程で生成する各メチルアミンの生
成比率は熱力学的に決定されるものに近いものであり、
反応条件によって自由に制御ができるものではないとい
う点、より具体的に言えば、市場の需要量よりもTMA
の生成比率が高くなるため、過剰に生成するTMAは再
度反応工程に循環する必要があるという点と、第二蒸留
塔(第二蒸留塔以降図面に記載なし)で行う抽出蒸留は
MMAとDMAに対して数倍量の抽出水を必要とするた
め排水量の増大を招き、また第三蒸留塔に於いてその多
量の抽出水を含む液の蒸留を行うことから、莫大な回収
エネルギーを必要とするという点である。
The problem with the conventional production method is that the production ratio of each methylamine produced in the main reaction step is close to that determined thermodynamically,
It is not possible to control it freely depending on the reaction conditions, more specifically, TMA rather than market demand.
The TMA produced in excess is required to be circulated again in the reaction step because the production ratio of MMA and DMA is high, and the extractive distillation performed in the second distillation column (not shown in the drawings after the second distillation column) is performed by MMA and DMA. Since it requires several times the amount of extracted water, it causes an increase in the amount of drainage, and since the liquid containing the large amount of extracted water is distilled in the third distillation column, enormous recovery energy is required. The point is to do.

【0007】先にも述べたようにTMAは需要が低く、
これを分離するために抽出蒸留のようなエネルギー原単
位の悪い操作を施すことは、決して合理的な方法である
とはいえない。これらを考えると、合理的なメチルアミ
ン製造プロセスとは、TMAの生成量を抑制し、MMA
とDMAの生成比率を高めるプロセス、またその反応生
成物を効率的に精製分離することができるプロセスとい
うことができる。ここで効率的な精製分離とは、プロセ
スを簡略化し、エネルギー原単位を向上して安価に精製
を行うことを意味する。具体的には、TMAの分離操作
をなくし、エネルギー原単位の向上や排水量削減等を目
指す方法である。
As mentioned above, the demand for TMA is low,
It is not a rational method to carry out a bad operation of energy intensity such as extractive distillation to separate this. Considering these, the rational methylamine production process is to suppress the production amount of TMA,
It can be said that it is a process of increasing the production ratio of and DMA, and a process of efficiently purifying and separating the reaction product. Here, the efficient purification separation means that the process is simplified, the energy consumption rate is improved, and the purification is performed at low cost. Specifically, it is a method aimed at improving the energy intensity and reducing the amount of wastewater by eliminating the TMA separation operation.

【0008】しかしながら、TMAの生成量抑制に関し
ていえば、先にも述べたように各メチルアミンの生成比
率は熱力学的に決定されるものに近いものであり、例え
ばアンモニアとメタノールからメチルアミンの生成反応
を行った場合、TMAの生成比率は、反応温度や反応器
入口に於ける原料の窒素/炭素mol比(以下単にN/
C比と略記する)の条件によって異なるが、概ね40〜
60重量%の範囲となる。即ち、条件によって自由に制
御ができるものではない。
However, regarding the suppression of the amount of TMA produced, as described above, the production ratio of each methylamine is close to that which is determined thermodynamically, and for example, from ammonia and methanol to methylamine. When the production reaction is carried out, the production ratio of TMA depends on the reaction temperature and the nitrogen / carbon molar ratio of the raw material at the reactor inlet (hereinafter simply referred to as N /
It is approximately 40-
It is in the range of 60% by weight. That is, it cannot be freely controlled depending on the conditions.

【0009】これに対し、特公昭62−47172号公
報では、平均細孔径20Å以上の多孔質固体酸触媒の存
在下に於いてTMA量を減少させる第一工程と、有効細
孔径10Å以下の多孔質固体酸触媒の存在下でメチルア
ミンの生成反応を行う第二工程との結合により、メチル
アミンの製造を行う方法が開示されている。
On the other hand, in Japanese Patent Publication No. 62-47172, the first step of reducing the amount of TMA in the presence of a porous solid acid catalyst having an average pore diameter of 20 Å or more, and a pore having an effective pore diameter of 10 Å or less. Disclosed is a method for producing methylamine by combining with a second step of carrying out a reaction for producing methylamine in the presence of a solid acid catalyst.

【0010】この方法によれば、第二工程に使用する触
媒の立体的な障害によって生成物中で最も分子径の大き
いTMAの細孔内からの離脱を妨げ、この結果TMA生
成反応を抑制し、MMAとDMAを高収率で得ることが
できる。従って、DMAの精製工程のエネルギー原単位
の向上、及び装置の小型化が達成できる。また需要の少
ないTMAは第一工程にリサイクルし、ここでメチルア
ミン混合物及びアンモニアと反応して、その量を減少さ
せ、再度原料として第二工程に付与するという方法であ
り、需要に見合った比率で各メチルアミンの製造をなす
方法である。
According to this method, steric hindrance of the catalyst used in the second step prevents the TMA having the largest molecular diameter in the product from leaving the pores, and as a result, suppresses the TMA forming reaction. , MMA and DMA can be obtained in high yield. Therefore, it is possible to improve the energy consumption rate in the DMA refining process and downsize the device. In addition, TMA, which is in low demand, is recycled to the first step, where it reacts with the methylamine mixture and ammonia to reduce the amount and re-apply it as a raw material to the second step. Is a method for producing each methylamine.

【0011】しかしながらこの方法に於いてもなお、主
反応工程に於けるTMAの生成比率は約20〜30重量
%程度に低減できるに過ぎず、理由の詳細は後述するが
同公報に記載の如く、TMAの分離のために水による抽
出蒸留を必要とするため、エネルギー原単位の悪化や排
水量増大といった課題を解決することはできない。ここ
に、主反応工程に於けるTMAの生成比率とは、主反応
工程に於いて反応により増加した全メチルアミン中のT
MAの重量比率と定義する。
However, even in this method, the production ratio of TMA in the main reaction step can only be reduced to about 20 to 30% by weight, and the details of the reason will be described later, but as described in the publication. , TMA requires extractive distillation with water to separate it, and therefore problems such as deterioration of energy intensity and increase of wastewater cannot be solved. Here, the production ratio of TMA in the main reaction step means T in total methylamine increased by the reaction in the main reaction step.
It is defined as the weight ratio of MA.

【0012】その後、メチルアミンの生成をなす触媒を
更に限定し、熱力学的に計算される平衡値よりもTMA
の生成量をはるかに低減し、MMAやDMAを高収率で
得る方法が種々開示されている。例えば、天然産のモル
デナイトを触媒として使用する方法(特公平2−273
35号公報)、ランタンイオンでイオン交換したモルデ
ナイトを触媒として使用する方法(特公平3−2237
8号公報)、アルカリ金属の含有量を特定の範囲に限定
したモルデナイトを触媒として使用する方法(特公平2
−16743号公報)、ゼオライト触媒をスティーム処
理して使用する方法(特公平2−2876号公報)、バ
インダーを実質的に含まないA型ゼオライトを触媒とし
て使用する方法(特公平3−8331号公報)等が挙げ
られる。
After that, the catalyst for forming methylamine was further limited, and the TMA was more than the equilibrium value calculated thermodynamically.
Various methods have been disclosed in which MMA and DMA are obtained in a high yield by significantly reducing the production amount of. For example, a method using natural mordenite as a catalyst (Japanese Patent Publication No. 2-273).
No. 35), a method of using mordenite ion-exchanged with lanthanum ions as a catalyst (Japanese Patent Publication No. 3237/1990).
No. 8), a method of using mordenite with the content of alkali metal limited to a specific range as a catalyst (Japanese Patent Publication No. 2).
No. 16743), a method of steam-treating a zeolite catalyst (JP-B-2-2876), and a method of using an A-type zeolite substantially containing no binder as a catalyst (JP-B-3-8331). ) And the like.

【0013】これらの触媒を用いれば、TMAの生成量
を低減することができる。しかしながらこれらの方法に
於いてもなお、主反応工程に於けるTMAの生成比率は
約10重量%程度までしか低減することはできない。ま
た、特開平3−262540号公報には、モルデナイト
を四塩化炭素の気相化学反応で修飾する方法が開示され
ている。この方法によれば、TMAの生成量を更に低減
することができるが、工業的に安価に触媒を調製するこ
とは困難であり、更に、これらいずれの方法に於いても
反応生成物から効率的にメチルアミンを精製する方法に
まで言及したものではなかった。
By using these catalysts, the amount of TMA produced can be reduced. However, even in these methods, the production ratio of TMA in the main reaction step can only be reduced to about 10% by weight. Further, JP-A-3-262540 discloses a method of modifying mordenite by a gas phase chemical reaction of carbon tetrachloride. According to this method, the amount of TMA produced can be further reduced, but it is difficult to industrially prepare a catalyst at low cost, and in any of these methods, the reaction product can be efficiently produced from the reaction product. It did not mention the method for purifying methylamine.

【0014】本発明の目的は、単に需要の高いMMAと
DMAを高収率で得ることにとどまらず、メチルアミン
を効率的に、かつ安価に製造する方法を提供することに
ある。更に具体的にいえば、エネルギー原単位の悪化や
排水量増大といった問題を招くTMAの分離操作を省略
し、工程を簡略化したメチルアミンの製造方法を提供す
ることにある。
An object of the present invention is not only to obtain MMA and DMA, which are in high demand, in high yield, but also to provide a method for efficiently and inexpensively producing methylamine. More specifically, it is an object of the present invention to provide a method for producing methylamine that simplifies the steps by omitting the TMA separation operation that causes problems such as deterioration in energy consumption rate and increase in wastewater amount.

【0015】[0015]

【課題を解決するための手段】本発明者らは、主反応工
程に於けるTMAの生成量を低減すること、TMAの分
離操作を省略しエネルギー原単位を向上すること等、合
理的なメチルアミン製造プロセスを確立するため鋭意検
討を進めてきた。この結果、不均化工程に特定の細孔径
の固体酸触媒を、主反応工程にシリル化処理した固体酸
触媒を用いかつ、触媒層内の最高温度を350℃以下に
抑制しながら反応を行い、更に特定の圧力で蒸留操作を
行えば上記目的を達成できることを見出だした。
[Means for Solving the Problems] The inventors of the present invention reasonably reduce the amount of TMA produced in the main reaction step, omit the TMA separation operation, and improve the energy consumption rate. We have been earnestly studying to establish the amine production process. As a result, the solid acid catalyst having a specific pore size is used in the disproportionation step, the solid acid catalyst subjected to the silylation treatment is used in the main reaction step, and the reaction is performed while suppressing the maximum temperature in the catalyst layer to 350 ° C or less. It has been found that the above object can be achieved by further performing a distillation operation at a specific pressure.

【0016】即ち、本発明はメタノール、アンモニア及
びメチルアミン混合物を気相接触反応に付してメチルア
ミンを製造する方法に於いて、アンモニアとメチルアミ
ン混合物とを平均細孔径15Å以下の固体酸触媒の存在
下に於いて接触反応に付し、トリメチルアミン量を減少
させる不均化工程、及び不均化工程から得られる含メチ
ルアミン混合物の全量または一部とメタノール及びアン
モニアとをシリル化処理した固体酸触媒の存在下に於い
て接触反応に付し、かつ触媒層内の最高温度を350℃
以下に抑制しながら反応を行う主反応工程、及び主反応
工程から得られる含メチルアミン混合物、または、主反
応工程から得られる含メチルアミン混合物と不均化工程
から得られる含メチルアミン混合物の一部を10〜25
Kg/cmGで蒸留し、該混合物中のトリメチルアミ
ンを実質的に全量塔頂よりアンモニアとの共沸混合物と
して留出させ、これを不均化工程に供給する第一蒸留塔
の操作の結合を特徴とするメチルアミンの製造方法に関
する。
That is, the present invention provides a method for producing methylamine by subjecting a mixture of methanol, ammonia and methylamine to a gas phase catalytic reaction, wherein the mixture of ammonia and methylamine is a solid acid catalyst having an average pore diameter of 15 Å or less. In the presence of methane, a disproportionation step for reducing the amount of trimethylamine, and a solid obtained by silylating methanol or ammonia with all or part of the methylamine-containing mixture obtained from the disproportionation step. Subjected to catalytic reaction in the presence of an acid catalyst, and the maximum temperature in the catalyst layer is 350 ° C.
One of the main reaction step in which the reaction is carried out while suppressing the following, and the methylamine-containing mixture obtained from the main reaction step, or the methylamine-containing mixture obtained from the main reaction step and the methylamine-containing mixture obtained from the disproportionation step 10 to 25 parts
Distillation at Kg / cm 2 G to distill substantially all of the trimethylamine in the mixture as an azeotrope with ammonia from the top of the column, and feed it to the disproportionation step. And a method for producing methylamine.

【0017】本発明を詳細に説明する。本発明によるメ
チルアミンの製造方法の骨格は、メチルアミンの合成反
応を行う主反応工程と、主反応工程から得られる含メチ
ルアミン混合物中のアンモニアとTMAを蒸留操作の塔
頂から回収し、塔底からは実質的にTMAを含まない液
を得る第一蒸留塔と、回収されたTMAを不均化反応に
より消費する不均化工程より構成される。
The present invention will be described in detail. The skeleton of the method for producing methylamine according to the present invention comprises a main reaction step for carrying out a synthetic reaction of methylamine, and ammonia and TMA in a methylamine-containing mixture obtained from the main reaction step, which are recovered from the top of a distillation operation. The bottom is composed of a first distillation column for obtaining a liquid containing substantially no TMA, and a disproportionation step of consuming the recovered TMA by a disproportionation reaction.

【0018】ここに、本発明でいうメチルアミン混合物
とは、MMA、DMA、TMAの混合物を、また、含メ
チルアミン混合物とは、アンモニアやメタノールのよう
なメチルアミン以外の成分を含むメチルアミン混合物と
定義する。原料であるメタノールは主反応工程の入口
に、アンモニアは不均化工程、及び/または、主反応工
程の入口にそれぞれ供給する。メチルアミンの合成反応
は一般に固体酸触媒の存在下で行われるが、本発明では
主反応工程に於いて使用する固体酸触媒をシリル化処理
した固体酸触媒に限定する。
The term "methylamine mixture" as used herein means a mixture of MMA, DMA and TMA, and the term "methylamine-containing mixture" means a methylamine mixture containing components other than methylamine such as ammonia and methanol. It is defined as The raw material methanol is supplied to the inlet of the main reaction step, and the ammonia is supplied to the inlet of the disproportionation step and / or the main reaction step. The synthesis reaction of methylamine is generally carried out in the presence of a solid acid catalyst, but in the present invention, the solid acid catalyst used in the main reaction step is limited to the silylated solid acid catalyst.

【0019】本発明でいうシリル化処理とは、特願平5
−185908号公報開示の方法で処理する。即ち、固
体酸触媒を酸処理、洗浄、乾燥したものを数百℃で一旦
焼成後、3〜40重量%の水を含有するように調湿し、
これを、例えばテトラメトキシオルソシリケート等の珪
素のアルコキサイドやトリメチルクロロシランを溶媒中
に溶解した液相中で処理し、表面を珪素酸化物で修飾す
る方法である。
The silylation treatment referred to in the present invention is Japanese Patent Application No.
The method disclosed in Japanese Patent Laid-Open No. 185908 is used. That is, the solid acid catalyst treated with acid, washed and dried is once calcined at several hundreds of degrees Celsius and then conditioned to contain 3 to 40% by weight of water.
This is a method of treating this in a liquid phase in which alkoxide of silicon such as tetramethoxyorthosilicate or trimethylchlorosilane is dissolved in a solvent and modifying the surface with silicon oxide.

【0020】従来技術では、触媒に付加した立体的な障
害によってTMA生成反応を抑制する旨が示されている
が、本発明の目的は主反応工程に於けるTMAの生成量
を最小限に抑制し、第一蒸留操作に於いて実質的にTM
Aの全量をアンモニアとの共沸混合物として塔頂から留
出させることにより、繁雑なTMA分離操作を省略する
ことにあり、これはシリル化処理を施した固体酸触媒の
下で、触媒層内の最高温度を350℃以下に抑制しなが
ら反応を行い、TMAの生成量を所定量以下に抑制する
ことによって達成される。この理由は、シリル化処理を
行うことにより細孔の入口径が制御され、立体障害によ
りTMAの生成反応が抑制される効果と、固体酸触媒表
面もシリル化により活性点が被毒されるため、触媒表面
に於けるTMA生成反応も抑制されるという効果であ
り、また触媒層内の最高温度を350℃以下に抑制する
ことにより、これらの効果が十分に発揮されることによ
るものと考えられる。
The prior art has shown that the steric hindrance added to the catalyst suppresses the TMA formation reaction, but the object of the present invention is to minimize the amount of TMA formation in the main reaction step. However, in the first distillation operation, the TM
By distilling the entire amount of A as an azeotrope with ammonia from the top of the column, a complicated TMA separation operation is omitted. This is because in the catalyst layer under the solid acid catalyst subjected to the silylation treatment. It is achieved by carrying out the reaction while suppressing the maximum temperature of 3 to 350 ° C. or lower and suppressing the amount of TMA generated to a predetermined amount or lower. The reason for this is that the silylation treatment controls the inlet diameter of the pores and the steric hindrance suppresses the TMA formation reaction, and the surface of the solid acid catalyst is poisoned by the silylation active sites. It is considered that this is because the TMA generation reaction on the catalyst surface is also suppressed, and these effects are sufficiently exhibited by suppressing the maximum temperature in the catalyst layer to 350 ° C. or lower. .

【0021】更に主反応工程の触媒層内の最高温度を3
50℃以下に抑制しながら反応を行うことの重要性につ
いて詳細に説明する。メチルアミンの生成反応は、下記
の(4)〜(6)式に示す如く発熱反応であり、反応熱
によって反応器内の温度が上昇する。本発明者らがこの
メチルアミン生成の反応熱から、反応器内の断熱温度上
昇を計算すると、反応条件によっても異なるが、概ね8
0〜120℃に到達するほどの熱量である。
Further, the maximum temperature in the catalyst layer in the main reaction step is set to 3
The importance of carrying out the reaction while suppressing the temperature to 50 ° C or lower will be described in detail. The methylamine formation reaction is an exothermic reaction as shown in the following formulas (4) to (6), and the temperature in the reactor rises due to the heat of reaction. When the present inventors calculated the adiabatic temperature rise in the reactor from the reaction heat of the methylamine formation, it was about 8 depending on the reaction conditions.
The amount of heat is such that it reaches 0 to 120 ° C.

【0022】 NH+CHOH→CHNH+HO+4.0kcal/mol (4) CHNH+CHOH→(CHNH+HO+8.1kcal/mo l (5) (CHNH+CHOH→(CHN+HO+10.3kcal/ mol (6)NH 3 + CH 3 OH → CH 3 NH 2 + H 2 O + 4.0 kcal / mol (4) CH 3 NH 2 + CH 3 OH → (CH 3 ) 2 NH + H 2 O + 8.1 kcal / mol (5) (CH 3 ) 2 NH + CH 3 OH → (CH 3 ) 3 N + H 2 O + 10.3 kcal / mol (6)

【0023】熱力学的に計算される平衡値からいえば、
温度の上昇はTMAの生成量が減少する方向となるが、
本発明者らの実験によれば、先に例を挙げたようにTM
Aの生成比率を熱力学的平衡値よりも少ない比率になる
ように限定した触媒を用いた場合には、温度の上昇に伴
ってTMAの生成量は急激に増加する傾向がある。更
に、メチルアミンの生成比率や副生成物量は、主反応工
程の触媒層の入口温度や出口温度よりもむしろ最高到達
温度の方が支配的であることが明らかとなっている。
From the equilibrium value calculated thermodynamically,
The rise in temperature tends to decrease the amount of TMA produced,
According to the experiments conducted by the present inventors, as described above, TM
When a catalyst in which the production ratio of A is limited to a ratio lower than the thermodynamic equilibrium value is used, the production amount of TMA tends to rapidly increase as the temperature rises. Further, it has been clarified that the maximum attainable temperature is more dominant than the inlet temperature and the outlet temperature of the catalyst layer in the main reaction step in the production ratio of methylamine and the amount of by-products.

【0024】実験室規模の反応装置では、放熱量が極め
て大きいため、反応熱による温度上昇は特に問題とはな
らないが、工業的に製造を行う場合には、この反応熱に
よる温度上昇を十分に考慮しなければ、各メチルアミン
の生成比率は主反応工程の触媒層の入口温度から予想さ
れるものとは大きく異なったものになる。また、温度が
必要以上に高くなると、ホルムアルデヒド、エチルアミ
ン、アセトニトリルといった副生成物が生成し、これら
が製品に混入するため、純度の高いメチルアミンを得る
ことができなくなる。従って、主反応工程に於けるTM
Aの生成比率を抑制し、純度の高いメチルアミンを得る
ためには、メチルアミン生成反応の反応熱は積極的に除
去する必要があり、本発明を達成するためには、主反応
工程の触媒層内の最高温度を350℃以下に、好ましく
は330℃以下に抑制しながら反応を行わなければなら
ない。
In a laboratory-scale reactor, the amount of heat released is extremely large, so that the temperature rise due to the heat of reaction does not pose a particular problem, but in the case of industrial production, this temperature rise due to the heat of reaction is sufficient. If not taken into consideration, the production ratio of each methylamine will be significantly different from that expected from the inlet temperature of the catalyst layer in the main reaction step. Further, if the temperature becomes higher than necessary, by-products such as formaldehyde, ethylamine, and acetonitrile are generated, and these are mixed in the product, so that it is not possible to obtain highly pure methylamine. Therefore, TM in the main reaction process
In order to suppress the production ratio of A and obtain highly pure methylamine, it is necessary to actively remove the reaction heat of the methylamine production reaction. In order to achieve the present invention, the catalyst of the main reaction step is used. The reaction must be carried out while controlling the maximum temperature in the layer to 350 ° C or lower, preferably 330 ° C or lower.

【0025】ここにいう温度とは熱電対温度計や抵抗測
温体等で測定しうる巨視的な温度とし、触媒の表面や細
孔内に見られるいわゆる微視的な温度とは区別する。実
際、反応の進行中に触媒表面や細孔内が微視的に如何な
る温度に到達しているかについては、本発明者らは明ら
かにはし得ていないが、熱電対温度計の指示値で原料の
触媒層内の最高温度を350℃以下に抑制すれば、TM
Aの生成量は第一蒸留操作でアンモニアとの共沸組成と
して全量を留出できる程度に抑制でき、また副生成物の
量もメチルアミン換算で100ppm以下に抑制でき、
本発明が達成できることを確認している。このような条
件を満たす主反応器の型式としては、例えばジャッケッ
トを有する固定層反応器やインタークーラーを有する流
動層反応器、多管式反応器等が挙げられるが、何れにし
ても反応速度、伝熱速度、伝熱面積等を十分に考慮して
反応器を設計する必要がある。
The temperature referred to here is a macroscopic temperature that can be measured with a thermocouple thermometer, a resistance thermometer, or the like, and is distinguished from the so-called microscopic temperature found on the surface or pores of the catalyst. In fact, the inventors have not been able to clarify what temperature the surface of the catalyst and the inside of the pores have reached microscopically during the progress of the reaction. If the maximum temperature in the catalyst layer of the raw material is suppressed to 350 ° C or lower, TM
The amount of A produced can be suppressed to such an extent that the entire amount can be distilled as an azeotropic composition with ammonia in the first distillation operation, and the amount of by-products can be suppressed to 100 ppm or less in terms of methylamine.
It is confirmed that the present invention can be achieved. Examples of the type of the main reactor that satisfies such conditions include a fixed bed reactor having a jacket, a fluidized bed reactor having an intercooler, a multitubular reactor, and the like. It is necessary to design the reactor with due consideration of heat velocity, heat transfer area, etc.

【0026】シリル化処理した固体酸触媒は主反応器に
充填し、ここでメチルアミンの合成反応を行う。この際
の触媒層の入口温度は250℃〜340℃、入口原料の
N/C比は1.5〜5.0の範囲が好ましい。入口温度
が250℃未満では、触媒の活性が低いためメタノール
の転化が不十分で効率が悪くなるので好ましくない。ま
た、340℃を超えると反応熱による温度上昇のため、
触媒層内の最高温度を350℃以下に抑制することが困
難となり、本発明の目的が達成されない。
The silylation-treated solid acid catalyst is charged into the main reactor, where the synthetic reaction of methylamine is carried out. At this time, the inlet temperature of the catalyst layer is preferably 250 ° C to 340 ° C, and the N / C ratio of the inlet raw material is preferably in the range of 1.5 to 5.0. If the inlet temperature is less than 250 ° C., the catalyst activity is low and the conversion of methanol is insufficient, resulting in poor efficiency, which is not preferable. Also, if the temperature exceeds 340 ° C, the temperature rises due to the heat of reaction,
It becomes difficult to suppress the maximum temperature in the catalyst layer to 350 ° C. or less, and the object of the present invention is not achieved.

【0027】また、主反応器入口原料N/C比を1.5
未満では、アンモニアの不足により第一蒸留塔でTMA
の全量をアンモニアとの共沸混合物として回収すること
ができなくなるので好ましくない。また5.0を超える
とアンモニアの循環量が不要に高くアンモニアを回収す
るエネルギーが増大し、効率的ではないので好ましくな
い。
The N / C ratio of the raw material at the main reactor inlet is 1.5
Below 1, TMA in the first distillation column due to lack of ammonia
Is not preferable because it becomes impossible to recover the entire amount of the above as an azeotropic mixture with ammonia. On the other hand, when it exceeds 5.0, the circulation amount of ammonia is unnecessarily high and the energy for recovering ammonia increases, which is not preferable because it is not efficient.

【0028】主反応工程から得られる含メチルアミン混
合物は、必要に応じて不均化工程から得られる含メチル
アミン混合物の一部と混合し、精製分離のため第一蒸留
塔に供給して、ここでTMAの実質的に全量アンモニア
との共沸混合物として塔頂から留出させる。
The methylamine-containing mixture obtained from the main reaction step is optionally mixed with a part of the methylamine-containing mixture obtained from the disproportionation step and supplied to the first distillation column for purification separation. The TMA is distilled off at the top as an azeotrope with substantially all of the ammonia.

【0029】ここで必要な条件の一つは、需要の少ない
TMAを製品として製造しないためには、第一蒸留塔に
供給する原料のTMAのアンモニアに対する重量比率
(ここでTMAのアンモニアに対する重量比率とは、混
合物中のTMA重量/アンモニア重量×100で定義
し、以下、TMA/NH比と略記する)が13重量%
以下、好ましくは10重量%以下に抑制することであ
る。
One of the conditions required here is that in order not to produce TMA, which is in low demand, as a product, the weight ratio of TMA of the raw material supplied to the first distillation column to ammonia (here, the weight ratio of TMA to ammonia). Is defined as TMA weight / ammonia weight × 100 in the mixture, and hereinafter, abbreviated as TMA / NH 3 ratio) is 13% by weight.
Hereafter, the amount is preferably suppressed to 10% by weight or less.

【0030】主反応工程に於けるTMAの生成比率が高
い場合、この条件を満たすためにはそれに見合う過剰の
アンモニアを循環する必要がある。しかしながら、過剰
のアンモニアを循環することは、第一蒸留塔の大型化や
アンモニア回収のためにエネルギー原単位の悪化を招く
ことを意味し、事実上工業的には操業ができなくなる。
そこで、主反応工程の触媒としてシリル化処理した固体
酸触媒を使用し、触媒層内の最高温度を350℃以下に
制御すれば、主反応工程に於けるTMAの生成比率を7
重量%以下に抑制することができ、工業的に操業が可能
な範囲で第一蒸留塔の塔頂から実質的にTMAの全量を
アンモニアとの共沸混合物として留出させることができ
るのである。
When the production ratio of TMA in the main reaction step is high, it is necessary to circulate an excessive amount of ammonia to meet this condition. However, circulating excess ammonia means that the first distillation column is upsized and the energy consumption is deteriorated due to ammonia recovery, and it is practically impossible to operate industrially.
Therefore, if a silylated solid acid catalyst is used as the catalyst in the main reaction step and the maximum temperature in the catalyst layer is controlled to 350 ° C. or lower, the TMA production ratio in the main reaction step will be 7%.
The amount can be suppressed to less than or equal to wt%, and substantially the entire amount of TMA can be distilled out as an azeotropic mixture with ammonia from the top of the first distillation column within a range where industrial operation is possible.

【0031】PEP Report 138には、アン
モニアとTMAが210psig(約15Kg/cm
G)に於いてアンモニア82重量%(TMA/NH
=22重量%)で共沸組成を形成することが示されてい
る。しかしながら、第一蒸留塔で行う蒸留は、アンモニ
ア、MMA、DMA、TMA、メタノール、水等の多成
分系の蒸留であり、この系でTMAの実質的に全量をア
ンモニアとの共沸混合物として塔頂から留出させるため
には、原料中のTMA/NH比を13重量%以下、好
ましくは10重量%以下としなければならないことは、
本発明者らが実験的に確認した点である。
PEP Report 138 contains 210 psig of ammonia and TMA (about 15 Kg / cm 2
In G) it is shown that 82% by weight of ammonia (TMA / NH 3 ratio = 22% by weight) forms an azeotropic composition. However, the distillation performed in the first distillation column is a multi-component system distillation of ammonia, MMA, DMA, TMA, methanol, water, etc. In this system, substantially all of TMA is converted into an azeotropic mixture with ammonia as a column. In order to distill from the top, the TMA / NH 3 ratio in the raw material must be 13% by weight or less, preferably 10% by weight or less.
This is the point that the present inventors experimentally confirmed.

【0032】二つ目の条件は、第一蒸留塔の操作圧力を
選定することである。一般的にアンモニアのように沸点
の低い成分の蒸留を行う場合、圧力が高い条件の方が、
高い温度で凝縮できるため操業上は有利になるが、本発
明者らは、25〜30Kg/cmGの範囲でTMAが
実質的にアンモニアと共沸組成を形成しなくなることを
確認しており、操作圧力が25Kg/cmGを超える
と、第一蒸留塔の塔頂からTMAの全量を留出させるこ
とができなくなり、本発明を遂行することはできない。
また10Kg/cmG未満では塔頂の沸点が30℃以
下となり効率的ではないため、主反応器出口組成と操業
効率を考慮して10〜25Kg/cmGの範囲で条件
を選択する必要がある。ここに圧力単位に使用するKg
/cmGはゲージ圧であることを示す。
The second condition is to select the operating pressure of the first distillation column. Generally, when distilling a low boiling point component such as ammonia, the condition under high pressure is
Although it is advantageous in operation because it can be condensed at a high temperature, the present inventors have confirmed that TMA substantially does not form an azeotropic composition with ammonia in the range of 25 to 30 Kg / cm 2 G. If the operating pressure exceeds 25 Kg / cm 2 G, the total amount of TMA cannot be distilled off from the top of the first distillation column, and the present invention cannot be carried out.
If it is less than 10 kg / cm 2 G, the boiling point at the top of the column will be 30 ° C. or less, which is not efficient. Therefore, it is necessary to select the condition in the range of 10 to 25 kg / cm 2 G in consideration of the composition of the outlet of the main reactor and the operation efficiency. There is. Kg used here for pressure unit
/ Cm 2 G indicates a gauge pressure.

【0033】以上の条件を満たしたうえで、第一蒸留操
作を行えば、実質的にTMAの全量をアンモニアとの共
沸混合物として塔頂から留出させることができ、缶出液
からは実質的にTMAを含まない含メチルアミン混合物
を回収することができる。
When the first distillation operation is carried out after satisfying the above conditions, substantially the whole amount of TMA can be distilled off from the top of the column as an azeotropic mixture with ammonia, and the bottom liquid is substantially removed. It is possible to recover a TMA-free methylamine-containing mixture.

【0034】従って、従来のメチルアミンの製造方法で
は、TMAの分離及び回収のために必要であった抽出蒸
留操作が不要となり、これに伴って抽出水も不要となる
ため、エネルギー原単位の向上や排水量の削減等さまざ
まな効果が得られるのである。第一蒸留塔の塔頂から得
られる含メチルアミン混合物は、必要に応じてアンモニ
アと混合し、固体酸触媒を充填した不均化反応器に供給
する。ここでは、下記(7)〜(9)式に従って不均化
反応を進め、主反応工程に於けるTMAの生成見合い量
のTMAを消費する。
Therefore, in the conventional method for producing methylamine, the extractive distillation operation required for the separation and recovery of TMA is not necessary, and the extracted water is also unnecessary, so that the energy consumption rate is improved. It is possible to obtain various effects such as reduction of wastewater and drainage. The methylamine-containing mixture obtained from the top of the first distillation column is mixed with ammonia as necessary and supplied to a disproportionation reactor filled with a solid acid catalyst. Here, the disproportionation reaction proceeds according to the following equations (7) to (9), and the amount of TMA produced in the main reaction step is consumed in a proportionate amount.

【0035】 [0035]

【0036】ここで使用する固体酸触媒としては、平均
細孔径15Å未満のものとし、ゼオライトが特に好まし
い。この理由は、平均細孔径15Åを超えると、エチル
アミンやアセトニトリルといった副生成物が生成しやす
く、メチルアミンの純度が低下することによる。また、
不均化工程で使用する固体酸触媒の役割は主反応工程で
使用する触媒の役割とは異なり、TMAを消費すること
であるため、触媒の平均細孔径はTMAが立体的な障害
を受けないもの、好ましくは5Å以上のものを用いる。
The solid acid catalyst used here has an average pore size of less than 15Å, and zeolite is particularly preferable. The reason for this is that when the average pore diameter exceeds 15 Å, by-products such as ethylamine and acetonitrile are likely to be generated, and the purity of methylamine is reduced. Also,
The role of the solid acid catalyst used in the disproportionation step is to consume TMA, unlike the role of the catalyst used in the main reaction step, so that the average pore size of the catalyst does not cause steric hindrance to TMA. , Preferably 5 Å or more.

【0037】不均化反応は主反応工程とは逆に総合的に
はわずかな吸熱反応であるため、反応器の型式には特に
制限はなく、同様に通常の固定層反応器や流動層反応器
等が好適に使用可能である。
Since the disproportionation reaction is a slight endothermic reaction as opposed to the main reaction step, there is no particular limitation on the type of reactor, and similarly, a fixed bed reactor or a fluidized bed reaction can be used. A container or the like can be suitably used.

【0038】本発明の不均化反応では、触媒層の入口温
度は280〜450℃の範囲が好ましい。入口温度が2
80℃未満では、触媒の活性が不十分であり、また45
0℃を超えると副反応が著しくなることと触媒の経時劣
化が速く進行するため好ましくない。
In the disproportionation reaction of the present invention, the inlet temperature of the catalyst layer is preferably in the range of 280 to 450 ° C. Inlet temperature is 2
Below 80 ° C, the activity of the catalyst is insufficient, and
When the temperature exceeds 0 ° C, side reactions become significant and deterioration of the catalyst with time progresses rapidly, which is not preferable.

【0039】通常は、できるだけ低い温度で操業を行っ
た方が、上述のように副生成物、触媒の劣化及びエネル
ギー面で有利であるが、しかしながら、本発明ではTM
Aを製品として製造しないため、物質収支上不均化工程
に於いて、主反応工程で新たに生成するTMA量と同量
を消費する必要がある。即ち、反応条件を上述の範囲で
自由に選定できるものではなく、主反応工程で多量のT
MAが生成すると、不均化工程に於いてそれだけ多量の
TMAを消費しなければならない。これはより高い温度
条件で不均化反応を行わなければならないことを意味
し、従って、主反応工程に於けるTMAの生成量を最小
限に抑制することは、不均化反応をも有利な条件で進め
ることにつながるのである。不均化工程から得られた含
メチルアミン混合物の全量もしくは一部は、主反応工程
にリサイクルされ、主反応工程の原料の一部として利用
される。
Generally, it is advantageous to operate at a temperature as low as possible in terms of by-products, catalyst deterioration and energy as described above, however, in the present invention, TM is used.
Since A is not manufactured as a product, it is necessary to consume the same amount of TMA newly generated in the main reaction step in the disproportionation step in terms of mass balance. That is, the reaction conditions cannot be freely selected within the above range, and a large amount of T
The formation of MA requires the consumption of that much TMA in the disproportionation process. This means that the disproportionation reaction must be carried out under higher temperature conditions. Therefore, minimizing the amount of TMA produced in the main reaction step also favors the disproportionation reaction. It will lead to advancement under certain conditions. All or part of the methylamine-containing mixture obtained from the disproportionation step is recycled to the main reaction step and used as a part of the raw material for the main reaction step.

【0040】以上のような一連の操作により、第一蒸留
塔の缶出液としてTMAを含まないMMA、DMA、未
反応のメタノール、副生成物の水の混合物を回収するこ
とができる。これら混合物の精製分離は公知の方法に従
って、第二蒸留塔に於いて、MMAとDMAの混合物を
塔頂から留出、缶出液からはメタノールと水を回収し、
第三蒸留塔に於いてMMAとDMAの分離を行って製品
として回収すればよい。
By the series of operations as described above, a mixture of MMA not containing TMA, DMA, unreacted methanol, and water as a by-product can be recovered as a bottom product of the first distillation column. Purification and separation of these mixtures according to a known method, a mixture of MMA and DMA is distilled from the top of the second distillation column, and methanol and water are recovered from the bottom liquid,
MMA and DMA may be separated in the third distillation column and recovered as a product.

【0041】[0041]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 主反応器(ア)及び不均化反応器(ウ)は共に、6Bの
ジャケットを有する1Bの反応管で、全長5mの反応器
を用い、管内部には触媒、ジャケット側には有機熱媒を
充填し、その外側から電気ヒーターで加熱する方式とし
た。第一蒸留塔(イ)は2B、全長5mで充填高3mの
充填塔とし、図1に示すように主反応器(ア)、不均化
反応器(ウ)、第一蒸留塔(イ)を接続した。なお、反
応器、配管等すべてステンレス製の材質のものを使用し
た。平均細孔径10Åのモルデナイトを2N塩酸で酸処
理洗浄後、水分を10wt%含有するように調湿し、
1.5mol%テトラエトキシシリケートのトルエン溶
液中で、テトラエトキシシリケートとモルデナイトの割
合が0.33mol/kg−モルデナイトとなる量でシ
リル化処理を行った。この触媒を主反応器(ア)に2.
5kg充填し、また不均化反応器(ウ)には上述の天然
産モルデナイトを2N塩酸で酸処理洗浄を行ったのみの
触媒を1.5kg充填した。系内の圧力を18Kg/c
G、主反応器(ア)の有機熱媒内部温度300〜3
05℃、不均化反応器の有機熱媒内部温度335〜34
0℃とし、メタノール1を1000g/hの速度で供
給、主反応器入口に於けるN/C比が2.5となるよう
にアンモニア2の流量を調節しつつ、連続で反応を行
い、定常状態を待った。反応開始後、約35時間で定常
状態に到達し、その際の触媒層の温度分布を測定したと
ころ、入口温度は282℃、最高温度を示したのは入口
から約1.2mの位置であり温度は318℃であった。
また、各ラインの流体流量を測定したところ表1に示す
結果が得られた。200時間経過後も温度分布及び流体
流量に大きな変動はなく、第一蒸留塔缶出液6からはT
MAを含有しないメチルアミン混合物を安定的に回収す
ることができた。ガスクロマトグラフィーで缶出液の組
成分析を行ったところ、TMAの含有量は100ppm
以下であった。
The present invention will be described below in detail with reference to examples. Example 1 Both the main reactor (a) and the disproportionation reactor (c) are 1B reaction tubes having a 6B jacket, a reactor having a total length of 5 m is used, and a catalyst is provided inside the tubes and a jacket side is provided. A system was used in which an organic heating medium was filled and heating was performed from outside with an electric heater. The first distillation column (a) is a packed column having a length of 2 m, a total length of 5 m, and a filling height of 3 m. As shown in FIG. 1, a main reactor (a), a disproportionation reactor (c), and a first distillation column (a). Connected. All the reactors and piping used were made of stainless steel. Mordenite having an average pore diameter of 10 Å was washed with 2N hydrochloric acid by acid treatment and then conditioned to contain 10 wt% of water.
The silylation treatment was performed in a toluene solution of 1.5 mol% tetraethoxysilicate at an amount such that the ratio of tetraethoxysilicate and mordenite was 0.33 mol / kg-mordenite. This catalyst in the main reactor (a) 2.
The disproportionation reactor (c) was charged with 5 kg, and 1.5 kg of the catalyst obtained by only acid-washing the above natural mordenite with 2N hydrochloric acid was charged. Pressure in the system is 18 Kg / c
m 2 G, internal heat medium internal temperature of main reactor (a) 300 to 3
05 ℃, the internal temperature of the organic heat medium of the disproportionation reactor 335-34
At 0 ° C., methanol 1 was supplied at a rate of 1000 g / h, the flow rate of ammonia 2 was adjusted so that the N / C ratio at the inlet of the main reactor was 2.5, and the reaction was continuously performed to achieve steady state. I waited for the condition. A steady state was reached about 35 hours after the reaction was started, and the temperature distribution of the catalyst layer at that time was measured. As a result, the inlet temperature was 282 ° C, and the highest temperature was at a position of about 1.2 m from the inlet. The temperature was 318 ° C.
When the fluid flow rate of each line was measured, the results shown in Table 1 were obtained. Even after 200 hours, the temperature distribution and the fluid flow rate did not change significantly, and the T
The methylamine mixture containing no MA could be recovered stably. When the composition of the bottom liquid was analyzed by gas chromatography, the content of TMA was 100 ppm.
It was below.

【0042】実施例2 系内の圧力を13Kg/cmGに変更した以外は、実
施例1と同様の条件として連続反応を行い定常状態を待
った。反応開始後、約40時間で定常状態に到達し、そ
の際の触媒層入口温度は、290℃、最高温度は入口か
ら約1.2mで324℃であった。また各ラインの流体
流量を測定したところ表2に示す結果が得られた。15
0時間経過後も流体流量に大きな変動はなく、第一蒸留
塔缶出液6からはTMAを含有しないメチルアミン混合
物を安定的に回収することができた。ガスクロマトグラ
フィーで、缶出液の組成分析を行ったところ、TMAの
含有量は100ppm以下であった。
Example 2 A continuous reaction was carried out under the same conditions as in Example 1 except that the pressure in the system was changed to 13 Kg / cm 2 G, and a steady state was awaited. A steady state was reached about 40 hours after the start of the reaction. At that time, the catalyst layer inlet temperature was 290 ° C, and the maximum temperature was 324 ° C, about 1.2 m from the inlet. When the fluid flow rate of each line was measured, the results shown in Table 2 were obtained. 15
The fluid flow rate did not change significantly even after 0 hour, and the methylamine mixture containing no TMA could be stably recovered from the bottom liquid 6 of the first distillation column. When the composition of the bottom liquid was analyzed by gas chromatography, the TMA content was 100 ppm or less.

【0043】実施例3 系内の圧力を23Kg/cmGに変更した以外は、実
施例1と同様の条件として連続反応を行い定常状態を待
った。反応開始後、約40時間で定常状態に到達し、そ
の際の触媒層入口温度は、296℃、最高温度は入口か
ら約1.2mで329℃であった。また各ラインの流体
流量を測定したところ表3に示す結果が得られた。22
0時間経過後も流体流量に大きな変動はなく、第一蒸留
塔缶出液6からはTMAを含有しないメチルアミン混合
物を安定的に回収することができた。ガスクロマトグラ
フィーで、缶出液の組成分析を行ったところ、TMAの
含有量は100ppm以下であった。
Example 3 A continuous reaction was carried out under the same conditions as in Example 1 except that the pressure in the system was changed to 23 Kg / cm 2 G, and a steady state was awaited. A steady state was reached about 40 hours after the start of the reaction. At that time, the catalyst layer inlet temperature was 296 ° C, and the maximum temperature was 329 ° C at about 1.2 m from the inlet. When the fluid flow rate of each line was measured, the results shown in Table 3 were obtained. 22
The fluid flow rate did not change significantly even after 0 hour, and the methylamine mixture containing no TMA could be stably recovered from the bottom liquid 6 of the first distillation column. When the composition of the bottom liquid was analyzed by gas chromatography, the TMA content was 100 ppm or less.

【0044】[0044]

【表1】
(単位=g/h) 主反応器TMA 生成比率=5.3% 第一蒸留塔原料 TMA/NH×100=8.3%
[Table 1]
(Unit = g / h) Main reactor TMA production ratio = 5.3% First distillation column raw material TMA / NH 3 × 100 = 8.3%

【0045】[0045]

【表2】
(単位=g/h) 主反応器TMA 生成比率=4.9% 第一蒸留塔原料 TMA/NH×100=7.9%
[Table 2]
(Unit = g / h) Main reactor TMA production ratio = 4.9% First distillation column raw material TMA / NH 3 × 100 = 7.9%

【0046】[0046]

【表3】
(単位=g/h) 主反応器TMA 生成比率=6.2% 第一蒸留塔原料 TMA/NH×100=9.5%
[Table 3]
(Unit = g / h) Main reactor TMA production ratio = 6.2% First distillation column raw material TMA / NH 3 × 100 = 9.5%

【0047】比較例1 主反応器(ア)の有機熱媒内部温度340〜345℃に
変更した以外は実施例1と同様の条件とし、連続反応を
行い定常状態を待った。反応開始後、約70時間で定常
状態に到達し、その際の触媒層入口温度は、319℃、
最高温度を示したのは入口から約1.0mの位置で、温
度は362℃であった。また各ラインの流体流量を測定
したところ表4に示す結果が得られた。180時間経過
後も流体流量に大きな変動はなく、第一蒸留塔缶出液6
から回収されるメチルアミン中のTMAをなくすことは
できなかった。
Comparative Example 1 Under the same conditions as in Example 1 except that the internal temperature of the organic heating medium in the main reactor (a) was changed to 340 to 345 ° C., the continuous reaction was carried out and the steady state was awaited. About 70 hours after the start of the reaction, the steady state was reached, and the catalyst layer inlet temperature at that time was 319 ° C.
The highest temperature was shown about 1.0 m from the inlet, and the temperature was 362 ° C. When the fluid flow rate of each line was measured, the results shown in Table 4 were obtained. After 180 hours, the fluid flow rate did not change significantly, and the first distilling column bottoms 6
It was not possible to eliminate the TMA in the methylamine recovered from.

【0048】比較例2 主反応器に充填する触媒として平均細孔径10Åのモル
デナイトを2N塩酸で酸処理洗浄行ったのみでシリル化
処理を行っていない触媒を充填し、実施例1と同様の条
件で連続反応を行い定常状態を待った。反応開始後、約
60時間で定常状態に到達し、その際の触媒層入口温度
は、286℃、最高温度を示したのは入口から約1.2
mの位置で、温度はは328℃であった。また各ライン
の流体流量を測定したところ表5に示す結果が得られ
た。220時間経過後も流体流量に大きな変動はなく、
第一蒸留塔缶出液6から回収されるメチルアミン中のT
MAをなくすことはできなかった。
Comparative Example 2 As a catalyst to be charged in the main reactor, mordenite having an average pore size of 10 Å was acid-washed with 2N hydrochloric acid, and a catalyst not subjected to silylation was charged, and the same conditions as in Example 1 were used. The continuous reaction was carried out at and the steady state was awaited. About 60 hours after the start of the reaction, a steady state was reached. At that time, the catalyst layer inlet temperature was 286 ° C, and the maximum temperature was about 1.2 from the inlet.
At m, the temperature was 328 ° C. When the fluid flow rate of each line was measured, the results shown in Table 5 were obtained. After 220 hours, there is no big change in the fluid flow rate,
T in methylamine recovered from the first distillation column bottoms liquid 6
I couldn't get rid of MA.

【0049】[0049]

【表4】
(単位=g/h) 主反応器TMA 生成比率=20.5% 第一蒸留塔原料 TMA/NH×100=19.1%
[Table 4]
(Unit = g / h) Main reactor TMA production ratio = 20.5% First distillation column raw material TMA / NH 3 × 100 = 19.1%

【0050】[0050]

【表5】
(単位=g/h) 主反応器TMA 生成比率=21.9% 第一蒸留塔原料 TMA/NH×100=18.0%
[Table 5]
(Unit = g / h) Main reactor TMA production ratio = 21.9% First distillation column raw material TMA / NH 3 × 100 = 18.0%

【0051】[0051]

【発明の効果】以上詳細に説明した如く、本発明によれ
ば、シリル化処理した固体酸触媒の存在下に於いて触媒
層内の最高温度を350℃以下に抑制することにより、
第一蒸留塔の原料である含メチルアミン混合物中のTM
Aの実質的に全量を第一蒸留塔の塔頂から共沸混合物と
して留出させ、缶出液からは実質的にTMAを含有しな
いメチルアミン混合物を回収するため、従来法の如き繁
雑な操作を行ってTMAの分離を行う必要がない。従っ
て、プロセスを簡略化できると共に、TMA分離工程と
TMAタンクの省略及び第二蒸留塔(脱水塔)の縮小化
による設備費の削減、抽出水の省略とこれに伴う第二蒸
留塔(脱水塔)に於けるエネルギー原単位の向上による
変動費の削減、及び環境面に於ける排水量の低減等数多
くの利点が得られる。これにより、需要の高いMMAと
DMAの回収比率を高く、かつ安価に効率的に回収する
ことができるため、その効果は大きい。
As described in detail above, according to the present invention, by suppressing the maximum temperature in the catalyst layer to 350 ° C. or lower in the presence of the silylated solid acid catalyst,
TM in the methylamine-containing mixture that is the raw material for the first distillation column
Since a substantially total amount of A is distilled as an azeotropic mixture from the top of the first distillation column and a methylamine mixture containing substantially no TMA is recovered from the bottom liquid, a complicated operation such as the conventional method is performed. It is not necessary to perform TMA separation by performing Therefore, it is possible to simplify the process, reduce the equipment cost by omitting the TMA separation step and the TMA tank, and reducing the size of the second distillation column (dehydration column), omitting the extracted water and the accompanying second distillation column (dehydration column). There are many advantages such as reduction of variable costs by improvement of energy consumption per unit in (1) and reduction of wastewater amount in terms of environment. As a result, MMA and DMA, which are in high demand, can be efficiently recovered at a high recovery ratio at a low cost, which is a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるメチルアミン製造の工程図FIG. 1 is a process diagram of the production of methylamine according to the present invention.

【符号の説明】[Explanation of symbols]

ア 主反応器 イ 第一蒸留塔 ウ 不均化反応器 1 メタノール 2 アンモニア 3 主反応原料 4 メチルアミン混合物 5 第一蒸留塔留出液 6 第一蒸留塔缶出液 7 不均化反応原料 A Main reactor a 1st distillation tower c Disproportionation reactor 1 Methanol 2 Ammonia 3 Main reaction raw material 4 Methylamine mixture 5 1st distillation tower distillate 6 1st distillation tower bottoms 7 Disproportionation reaction raw material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メタノール、アンモニア及びメチルア
ミン混合物を気相接触反応に付してメチルアミンを製造
する方法に於いて、アンモニアとメチルアミン混合物と
を平均細孔径15Å以下の固体酸触媒の存在下に於いて
接触反応に付し、トリメチルアミン量を減少させる不均
化工程、及び不均化工程から得られる含メチルアミン混
合物の全量または一部とメタノール及びアンモニアとを
シリル化処理した固体酸触媒の存在下に於いて接触反応
に付し、かつ触媒層内の最高温度を350℃以下に抑制
しながら反応を行う主反応工程、及び主反応工程から得
られる含メチルアミン混合物、または、主反応工程から
得られる含メチルアミン混合物と不均化工程から得られ
る含メチルアミン混合物の一部を10〜25Kg/cm
Gで蒸留し、該混合物中のトリメチルアミンを実質的
に全量塔頂よりアンモニアとの共沸混合物として留出さ
せ、これを不均化工程に供給する第一蒸留塔の操作の結
合を特徴とするメチルアミンの製造方法。
1. A method for producing methylamine by subjecting a mixture of methanol, ammonia and methylamine to a gas phase catalytic reaction, wherein the mixture of ammonia and methylamine is present in the presence of a solid acid catalyst having an average pore size of 15Å or less. Of the solid acid catalyst obtained by subjecting the disproportionation step of reducing the amount of trimethylamine to a catalytic reaction in the above step, and all or a part of the methylamine-containing mixture obtained from the disproportionation step and methanol and ammonia to silylation treatment. A main reaction step in which the reaction is carried out in the presence of the catalyst while suppressing the maximum temperature in the catalyst layer to 350 ° C. or lower, and a methylamine-containing mixture obtained from the main reaction step, or a main reaction step 10 to 25 kg / cm of a portion of the methylamine-containing mixture obtained from the above and the methylamine-containing mixture obtained from the disproportionation step.
Characterized by the combined operation of the first distillation column, which is distilled at 2 G to distill substantially all of the trimethylamine in the mixture as an azeotrope with ammonia from the top of the column and feed it to the disproportionation step. A method for producing methylamine.
【請求項2】 主反応工程の入口に於ける原料の窒素
/炭素のモル比が1.5〜5.0の範囲である請求項1
に記載のメチルアミンの製造方法。
2. The nitrogen / carbon molar ratio of the raw material at the inlet of the main reaction step is in the range of 1.5 to 5.0.
The method for producing methylamine according to 1.
【請求項3】 主反応工程に於ける触媒層の入口温度
が250〜340℃の範囲である請求項1に記載のメチ
ルアミンの製造方法。
3. The method for producing methylamine according to claim 1, wherein the inlet temperature of the catalyst layer in the main reaction step is in the range of 250 to 340 ° C.
【請求項4】 不均化工程に於ける触媒層の入口温度
が280〜450℃、入口原料の窒素/炭素のモル比が
5以上の範囲である請求項1に記載のメチルアミンの製
造方法。
4. The method for producing methylamine according to claim 1, wherein the inlet temperature of the catalyst layer in the disproportionation step is 280 to 450 ° C., and the nitrogen / carbon molar ratio of the inlet raw material is 5 or more. .
【請求項5】 シリル化処理した固体酸触媒が、液相
中でシリル化剤で処理したゼオライトである請求項1に
記載のメチルアミンの製造方法。
5. The method for producing methylamine according to claim 1, wherein the silylation-treated solid acid catalyst is a zeolite treated with a silylating agent in a liquid phase.
【請求項6】 シリル化処理した固体酸触媒が、液相
中でシリル化剤で処理したモルデナイトである請求項1
に記載のメチルアミンの製造方法。
6. The silylation-treated solid acid catalyst is mordenite treated with a silylating agent in a liquid phase.
The method for producing methylamine according to 1.
JP12140495A 1995-05-19 1995-05-19 Production of methylamine Pending JPH08311000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12140495A JPH08311000A (en) 1995-05-19 1995-05-19 Production of methylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12140495A JPH08311000A (en) 1995-05-19 1995-05-19 Production of methylamine

Publications (1)

Publication Number Publication Date
JPH08311000A true JPH08311000A (en) 1996-11-26

Family

ID=14810344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12140495A Pending JPH08311000A (en) 1995-05-19 1995-05-19 Production of methylamine

Country Status (1)

Country Link
JP (1) JPH08311000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161637A (en) * 2005-12-13 2007-06-28 Mitsui Chemicals Inc Method for producing methylamine
CN113842852A (en) * 2021-10-29 2021-12-28 聊城鲁西甲胺化工有限公司 Process and system for annual production of 20 ten thousand tons of methylamine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161637A (en) * 2005-12-13 2007-06-28 Mitsui Chemicals Inc Method for producing methylamine
CN113842852A (en) * 2021-10-29 2021-12-28 聊城鲁西甲胺化工有限公司 Process and system for annual production of 20 ten thousand tons of methylamine

Similar Documents

Publication Publication Date Title
JP6434077B2 (en) Process for the hydrofluorination of 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane
US3923913A (en) Process for obtaining chlorinated derivatives of ethylene
TWI337600B (en) A method for separating and manufacturing cyclohexene
WO2014025065A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
EP2447238A1 (en) Method for producing chlorinated hydrocarbon
US9346724B2 (en) Method for preparing 2,3,3,3-tetrafluoropropene
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JPS6247172B2 (en)
JP3656030B2 (en) Method for producing tertiary butyl alcohol
KR101392944B1 (en) Manufacturing method for trichlorosilane from silicon tetrachloride and Trickle bed reactor for the method
JPS61209903A (en) Post-purification method of hydrogen chloride from 1,2-dichloroethane thermal decomposition
JPH08311000A (en) Production of methylamine
JP3171763B2 (en) Method for producing methylamine
WO2014002884A1 (en) Method for producing isopropanol
JP3213497B2 (en) Method for producing methylamine
WO2001007385A1 (en) Methanol process for natural gas conversion
JP4301814B2 (en) Process for epoxidizing olefins
CN112250542A (en) Process for preparing 2-cyclohexylcyclohexanol
JP4122603B2 (en) Method for producing dichloroacetoxypropane and derivatives thereof
JPS6212771B2 (en)
WO2020041667A1 (en) One pot dehydrochlorination/chlorination of a chloroalkane to produce a mixture of chlorinated alkenes and chlorinated alkanes
JP2579238B2 (en) Process for producing a mixture of 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane by continuously reacting hydrogen fluoride and 1,1,1-trichloroethane in a liquid phase
JP2996914B2 (en) Method for producing alkanolamine
KR101851014B1 (en) Methods and assemblies for liquid-phase reactions
JP3630381B2 (en) Method for producing methylamine