JPH08309667A - Resin bond super abrasive grain wheel - Google Patents

Resin bond super abrasive grain wheel

Info

Publication number
JPH08309667A
JPH08309667A JP13866095A JP13866095A JPH08309667A JP H08309667 A JPH08309667 A JP H08309667A JP 13866095 A JP13866095 A JP 13866095A JP 13866095 A JP13866095 A JP 13866095A JP H08309667 A JPH08309667 A JP H08309667A
Authority
JP
Japan
Prior art keywords
abrasive grain
shape
wheel
resin
superabrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13866095A
Other languages
Japanese (ja)
Other versions
JP3346952B2 (en
Inventor
Reiichi Nomura
玲一 野村
Tsutomu Takeuchi
努 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Diamond Industries Co Ltd
Original Assignee
Noritake Diamond Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15227167&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08309667(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Noritake Diamond Industries Co Ltd filed Critical Noritake Diamond Industries Co Ltd
Priority to JP13866095A priority Critical patent/JP3346952B2/en
Publication of JPH08309667A publication Critical patent/JPH08309667A/en
Application granted granted Critical
Publication of JP3346952B2 publication Critical patent/JP3346952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To provide a resin bond super abrasive grain wheel with which electric discharge machining for a high accurate complicated shape can be performed. CONSTITUTION: In a resin bond, when contained 15 to 60% by volume ratio as a super abrasive grain and containing 10% or more by volume ratio dendritic or flake metal power as a conductivity giving substance, a resin bond super abrasive grain wheel, excellent in shape accuracy and shape maintainability, having complicated-shaped abrasive grain layer with a reduced cost, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、砥粒層を超精密な精度
を有する複雑形状に放電加工することを可能にしたレジ
ンボンド超砥粒ホイールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-bonded superabrasive wheel capable of performing electric discharge machining of an abrasive grain layer into a complicated shape having ultraprecision accuracy.

【0002】[0002]

【従来の技術】超砥粒ホイールとして超精密な精度での
総型加工用とするために、放電加工を適用して砥粒層を
凹形状などの複雑な形状に加工し、超精密の加工用とす
ること自体は、従来から広く知られており、例えば、特
公昭46−31276号公報には、メタルボンドダイヤ
モンド砥石素材の表面に、所要形状の放電電極面を対向
させて、その隙間に放電し、結合金属を溶解除去し、結
合材表面からダイヤモンド粒子を露出し、その研削形状
を整えることが開示されている。
2. Description of the Related Art In order to form a superabrasive wheel for forming a superabrasive wheel with superprecision, an electric discharge machining is applied to form an abrasive grain layer into a complicated shape such as a concave shape for superprecision machining. The use itself has been widely known in the past. For example, in Japanese Patent Publication No. 46-31276, a surface of a metal-bonded diamond grindstone is made to face a discharge electrode surface of a required shape, and a gap is formed in the gap. It is disclosed that electric discharge is performed to dissolve and remove the bonding metal, expose diamond particles from the surface of the bonding material, and adjust the grinding shape.

【0003】また、一方において、近年、メタルボンド
超砥粒ホイールに代えて、切れ味において優れているレ
ジンボンド超砥粒ホイールの精密総型加工が要求される
ようになった。このレジンボンド超砥粒ホイールの加工
については、精密工学会春講論(1988−3)50
3、精密工学会秋講論(1988−10)45に鈴木、
植松らによる報告があり、レジンボンド超砥粒ホイール
の場合でも、レジンボンドに導電性物質を含有させれば
放電ツルーイングの適用が可能なことが記載されてい
る。
On the other hand, in recent years, in place of the metal bond superabrasive grain wheel, there has been a demand for precision pattern machining of a resin bond superabrasive grain wheel which is excellent in sharpness. Regarding the processing of this resin bond superabrasive wheel, the Precision Engineering Society, Spring Lecture (1988-3) 50.
3. Suzuki, Autumn Meeting of Precision Engineering Society (1988-10) 45,
There is a report by Uematsu et al. That even in the case of a resin-bonded superabrasive wheel, it is possible to apply discharge truing if the resin bond contains a conductive substance.

【0004】ところが、レジンボンドは元来が導電性が
不十分であり、ボンドに単に導電性物質を付与するだけ
では加工のムラが発生するために、放電加工による高精
度の加工は非常に困難である。事実、放電ツルーイング
されたメタルボンド超砥粒ホイールの加工精度について
は、精密工学会秋講論(1989 10)355に、柳
瀬、植松らによって述べられてはいるが、レジンボンド
超砥粒ホイールの放電加工による加工精度については報
告されていない。
However, since the resin bond is originally insufficient in conductivity, unevenness in processing occurs by simply adding a conductive substance to the bond, so that it is very difficult to perform high-precision processing by electric discharge machining. Is. In fact, regarding the machining accuracy of discharge-trued metal-bonded super-abrasive grain wheels, Yanase and Uematsu et al. Have described it in the Autumn Meeting of Precision Engineering (1989 10) 355. No processing accuracy has been reported.

【0005】そのため、レジンボンド超砥粒ホイールの
砥粒層を複雑な形状に形状創成するするためには、研摩
砥石による機械加工や、放電加工によって砥粒層を形状
創成したメタルボンドホイールや、電着超砥粒ホイール
との共擦りが行われている。
Therefore, in order to form the abrasive grain layer of the resin-bond superabrasive grain wheel into a complicated shape, machining with a polishing grindstone, a metal bond wheel in which the abrasive grain layer is formed by electric discharge machining, Co-rubbing with the electrodeposited superabrasive wheel is performed.

【0006】しかしながら、レジンボンド砥粒層は弾性
を有するため、機械加工や共擦りにより複雑形状を創成
するに当たっては、応力により変形し精度が出しにく
く、加工コストが高くなるという欠点がある。とくに、
共擦りによる場合には、ボンド面からの砥粒の突き出し
が小さくなり、また、砥粒先端の摩滅などにより切れ味
が悪くなるため使用時に目立てをする必要がある。この
目立てにより、最終形状精度が悪化するという欠点があ
る。
However, since the resin bond abrasive grain layer has elasticity, when creating a complicated shape by machining or co-rubbing, it has a drawback that it is deformed by stress and precision is difficult to obtain, and the machining cost becomes high. Especially,
In the case of co-rubbing, the protrusion of the abrasive grains from the bond surface becomes small, and the sharpness of the abrasive grains deteriorates due to abrasion of the tips of the abrasive grains. This sharpening has a drawback in that the final shape accuracy is deteriorated.

【0007】また、特公昭48−15997号公報に
は、砥粒層内に電解によって製造した樹枝晶金属粒子団
いわゆるクラスターを介在させることが記載されている
が、これは、超砥粒の保持力と共に砥粒による研削効率
を高めるもので、レジンボンド砥粒層形状の創成のため
の放電加工への寄与についての記載はない。
Further, Japanese Patent Publication No. 48-15997 discloses that a so-called cluster of dendrite metal particle groups produced by electrolysis is interposed in an abrasive grain layer, which is used to retain superabrasive grains. It enhances the grinding efficiency by the abrasive grains together with the force, and there is no description about the contribution to the electric discharge machining for creating the shape of the resin bond abrasive grain layer.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、レジ
ンボンド超砥粒ホイールの高精度複雑形状加工の問題を
解決することにあって、放電加工による砥粒層の精密加
工の適用を可能にしたレジンボンド超砥粒ホイールを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of high precision complicated shape machining of a resin bond superabrasive grain wheel, and it is possible to apply precision machining of an abrasive grain layer by electric discharge machining. To provide a resin-bonded super-abrasive grain wheel.

【0009】[0009]

【課題を解決するための手段】本発明は、レジンボンド
中に超砥粒を体積割合で15〜60%と、平均粒径が3
0μm以下の導電性物質粉末粒子を体積割合で10%以
上含有せしめることによって精密放電加工による砥粒層
の形状創成を可能にしたことを特徴とする。
According to the present invention, the super-abrasive grains are contained in the resin bond in a volume ratio of 15 to 60%, and the average grain size is 3%.
It is characterized in that the shape of the abrasive grain layer can be created by precision electric discharge machining by containing powder particles of a conductive substance of 0 μm or less in an amount of 10% or more by volume ratio.

【0010】導電性物質粉末粒子としては、ニッケル、
鉄、亜鉛、銅、銀、あるいは、これらの合金、あるい
は、黒鉛のような半導電性物質が使用でき、その粒子の
形状としては、球状よりも、比表面積が1000cm2
/g以上、好ましくは3000cm2 /g以上の樹枝
状、片状の金属粉末が好ましい。
As the conductive substance powder particles, nickel,
A semi-conductive substance such as iron, zinc, copper, silver, an alloy thereof, or graphite can be used, and the particle has a specific surface area of 1000 cm 2 rather than a spherical shape.
/ G or more, preferably 3000 cm 2 / g or more of a dendritic or flaky metal powder is preferable.

【0011】この導電性物質粉末粒子は、単にレジンボ
ンドに導電性を持たせるだけではなく、レジンボンド超
砥粒ホイールとしての機能を充分発揮させるため、砥粒
の保持性が優れている必要がある。この点から使用され
るフィラーとしては、銅、鉄、ニッケル等の金属粉末が
良い。とくに金属粉末の形状としては、比表面積、すな
わち、粉末の単位重量当りの粒子の全表面積が3000
cm2 /g以上の樹脂状あるいは片状のものが最も望ま
しい。そのときの樹枝状あるいは片状銅粉の大きさは、
平均粒径30μm以下の大きさのものであるのが望まし
い。この比表面積が大きい樹枝状、片状、多孔状、繊維
状などの金属粉末の使用によってレジンボンド強度も増
加し、また摩耗の程度も低下して砥粒層の形状維持性が
向上する。
The particles of the conductive substance powder need not only have conductivity in the resin bond but also fully exhibit the function as a resin bond superabrasive grain wheel, and therefore, need to have excellent abrasive grain retention. is there. From this point of view, the filler used is preferably a metal powder such as copper, iron or nickel. Particularly, as the shape of the metal powder, the specific surface area, that is, the total surface area of the particles per unit weight of the powder is 3000.
Most preferably, it is a resin or piece having a size of cm 2 / g or more. The size of the dendritic or flaky copper powder at that time is
It is desirable that the average particle size is 30 μm or less. The use of dendritic, flaky, porous, or fibrous metal powder having a large specific surface area increases the resin bond strength, reduces the degree of wear, and improves the shape retention of the abrasive layer.

【0012】また、この導電性物質粒子の全体にわたっ
ての均一な分散と、分散した導電性物質粒子の比表面積
が大きいことは砥粒層の放電加工を均一に行うためには
必須の要件である。この意味から導電性物質の平均粒径
は30μm以下、好ましくは10μm以下である必要が
ある。とくに、砥粒層形状を高精度に加工する場合に
は、導電性付与物質の平均粒径は10μm以下である必
要がある。
Further, the uniform dispersion of the conductive material particles throughout and the large specific surface area of the dispersed conductive material particles are indispensable requirements for uniform electric discharge machining of the abrasive grain layer. . From this point of view, it is necessary that the average particle diameter of the conductive material is 30 μm or less, preferably 10 μm or less. In particular, when the shape of the abrasive grain layer is processed with high precision, the average particle diameter of the conductivity imparting substance needs to be 10 μm or less.

【0013】さらに、被削材の割れとカケの発生を少な
くするために砥粒層に特に弾性が必要な場合、また、超
砥粒を多量に含有させる場合、導電性付与物質の含有率
は体積割合で10〜20%で平均粒径が10μm以下で
あることが望ましい。
Further, in the case where the abrasive grain layer is required to have particularly elasticity in order to reduce the occurrence of cracking and chipping of the work material, and when a large amount of superabrasive grains is contained, the content ratio of the conductivity-imparting substance is It is desirable that the volume ratio is 10 to 20% and the average particle diameter is 10 μm or less.

【0014】また、レジンボンド超砥粒ホイールの総型
加工においてとくに重要な砥粒層の形状維持性を向上さ
せるためには、砥粒層を形成するフェノール、エポキ
シ、メラミン、ポリエステルなどの樹脂を使用したレジ
ンボンドを高強度にし、耐摩耗性を向上させるのが有効
な手段の一つである。さらには、耐熱性を有する必要が
あり、放電加工のスパークによる影響も考慮すると、と
くに耐熱性を有するポリイミド樹脂の使用が好ましい。
Further, in order to improve the shape-maintaining property of the abrasive grain layer, which is particularly important in forming the resin-bonded superabrasive grain wheel, a resin such as phenol, epoxy, melamine or polyester for forming the abrasive grain layer is used. One of the effective means is to increase the strength of the resin bond used and to improve the wear resistance. Furthermore, it is necessary to have heat resistance, and considering the influence of sparks in electric discharge machining, it is particularly preferable to use a polyimide resin having heat resistance.

【0015】また、導電性物質の分散性の向上のための
方法として、原材料における樹脂粉末の平均粒径を小さ
くすることが好ましい。砥粒層において、超砥粒の体積
割合を増加することは砥粒層の形状維持性を向上させる
手段として有効であり、少なくとも体積割合で超砥粒の
みを15%以上が良い。その増加した超砥粒を有効に働
かせるために超砥粒の保持力を高める必要がある。この
場合には、それ自体公知のコート超砥粒を使用すること
が好ましい。しかしながら、そのコート超砥粒と導電性
物質の含有量が合わせて体積割合で約70%を越えると
レジンボンドによる成形性は低下し、必要とする研削性
能に合致した物性を得ることができない。これらの様々
な要因を考慮すると、超砥粒の量はレジンボンド中に体
積割合で15〜60%であることが望ましい。砥粒層の
形状維持性を向上するためには、超砥粒の粒度を大きく
することが有効ではあるが、放電加工による仕上げ面精
度が粗くなり加工精度にも影響する。そのため、加工目
的と仕上げ精度を考慮して砥粒の粒度を選択するのが良
い。
As a method for improving the dispersibility of the conductive substance, it is preferable to reduce the average particle size of the resin powder in the raw material. Increasing the volume ratio of superabrasive grains in the abrasive grain layer is effective as a means for improving the shape retention of the abrasive grain layer, and at least 15% or more of the superabrasive grains is preferable in terms of volume ratio. In order to make the increased superabrasive grains work effectively, it is necessary to increase the holding force of the superabrasive grains. In this case, it is preferable to use coated superabrasive particles known per se. However, if the total content of the coated superabrasive grains and the conductive substance exceeds about 70% by volume, the formability by resin bond deteriorates, and it is impossible to obtain the physical properties that match the required grinding performance. Considering these various factors, it is desirable that the amount of superabrasive grains is 15 to 60% by volume in the resin bond. In order to improve the shape retention of the abrasive grain layer, it is effective to increase the grain size of the superabrasive grains, but the precision of the finished surface due to electrical discharge machining becomes rough, which also affects the machining precision. Therefore, it is preferable to select the grain size of the abrasive grains in consideration of the processing purpose and finishing accuracy.

【0016】[0016]

【作用】レジンボンド中に、フィラーとして平均粒径が
30μm以下の導電性物質を体積割合で10%以上含有
せしめたことによって、砥粒層を複雑形状に放電加工す
るために必要な導電性物質のレジンボンド中に均一な分
散状態が確保される。また、上記条件を満たすフィラー
として樹枝状、あるいは片状の金属粉を使用することに
より、比表面積が向上し、放電加工におけるスパークの
分散が十分に行われ、高い精度の加工が行われる。同様
に、その形状により、砥粒層の成形時、金属粉末、ある
いは樹脂が密接にからみ合うことができ、高強度のレジ
ンボンドをなしている。
The conductive substance necessary for electric discharge machining of the abrasive grain layer by containing 10% or more by volume of a conductive substance having an average particle size of 30 μm or less as a filler in the resin bond A uniform dispersed state is ensured during the resin bond. Further, by using the dendritic or flaky metal powder as the filler satisfying the above conditions, the specific surface area is improved, the sparks are sufficiently dispersed in the electric discharge machining, and the machining with high accuracy is performed. Similarly, due to the shape thereof, the metal powder or the resin can be intimately entangled with each other when the abrasive grain layer is molded, and a high-strength resin bond is formed.

【0017】[0017]

【実施例】レジンボンド超砥粒ホイールの砥粒層に含有
せしめる導電性付与物質として銅粉末を使用した場合の
実施例について示す。
EXAMPLE An example in which copper powder is used as the conductivity-imparting substance to be contained in the abrasive grain layer of the resin-bonded superabrasive grain wheel will be described.

【0018】実施例1 導電性付与物質としての銅粉末の形状の変化に伴う被放
電加工性、形状精度、及び物性の変化について調べた。
超砥粒層としてコンセントで100(超砥粒体積含有量
25%)とし、メッシュサイズ#600の超砥粒に対し
重量55%でNiコートを有する砥粒を体積割合で3
9.1%使用し、ボンド用レジンとして熱硬化性ポリイ
ミド樹脂を使用した。
Example 1 Changes in electrical discharge machinability, shape accuracy, and physical properties due to changes in the shape of copper powder as a conductivity-imparting substance were examined.
As a superabrasive grain layer, 100 (superabrasive grain volume content of 25%) was used as an outlet, and the volume ratio of the abrasive grains having a Ni coat of 55% with respect to the mesh size # 600 of superabrasive grains was 3% by volume.
9.1% was used, and a thermosetting polyimide resin was used as a resin for bonding.

【0019】導電性付与物質としての銅粉末としては、
図1(a)は電解法によって製造した比表面積が450
0〜5000cm2 /gの樹枝状のものを示し、(b)
は溶湯粉化法によって製造した比表面積が350〜40
0cm2 /gの球状粒子を示し、(c)は機械的搗砕法
によって製造した比表面積が4000〜5000cm2
/gの片状粒子を示し、(d)は溶湯粉化法によって製
造した比表面積が1000〜1200cm2/g の粒状のも
のを示す。それぞれ、平均粒径が30μmでの銅粉末を
体積割合で30.0%使用した。
As the copper powder as the conductivity-imparting substance,
FIG. 1A shows that the specific surface area produced by the electrolysis method is 450.
0-5000 cm 2 / g of dendritic material is shown, (b)
Has a specific surface area of 350 to 40 produced by the melt pulverization method.
0 c 2 / g of spherical particles is shown, and (c) has a specific surface area of 4000 to 5000 cm 2 produced by a mechanical milling method.
/ G of flaky particles, and (d) shows granular particles having a specific surface area of 1000 to 1200 cm 2 / g produced by the molten metal powdering method. In each case, 30.0% by volume of copper powder having an average particle diameter of 30 μm was used.

【0020】図2に示すように、この砥粒層1をアルミ
ニウム基盤2の外周面に取付けることより成るレジンボ
ンド超砥粒ホイールを保持機3に固定した状態で回転し
つつ、グラファイト電極4を用いて放電加工を行い、こ
のグラファイト電極4の形状に対応する形状に加工し
た。
As shown in FIG. 2, while the resin-bonded superabrasive wheel consisting of the abrasive grain layer 1 attached to the outer peripheral surface of the aluminum base 2 is fixed to the holder 3, the graphite electrode 4 is rotated. Electric discharge machining was carried out using this to machine into a shape corresponding to the shape of this graphite electrode 4.

【0021】表1に、それぞれの場合の抗折強度指数、
砥粒層面粗さ、砥粒層加工精度を示す。同表に示す形状
精度は、放電加工後にホイールからカーボン板に形状転
写させ、そのカーボン板の形状を測定することにより確
認した。
Table 1 shows the bending strength index in each case,
The surface roughness of the abrasive layer and the processing accuracy of the abrasive layer are shown. The shape accuracy shown in the table was confirmed by transferring the shape from the wheel to the carbon plate after electric discharge machining and measuring the shape of the carbon plate.

【0022】[0022]

【表1】 [Table 1]

【0023】何れも、従来の共摩り、ホイールの重ね合
いによってしか創成できない形状を放電加工によって得
たが、金属粉末の形状が球状、粒状粉の場合放電加工後
の砥面に黒い焼けのような異常放電痕が確認された。金
属粉末の形状の違いによる加工形状精度は、図3に示す
A,B,C,Dのそれぞれの箇所で表1に示すとおりで
あり、何れもが高精度の加工に仕上がっていることが分
かる。さらに、比表面積と対応すると、比表面積の大き
い形状粉が高精度であり、且つ砥粒層面粗さも小さく加
工されていることが分かる。
In each case, a shape that can be created only by conventional co-polishing and wheel overlapping was obtained by electric discharge machining. However, when the shape of the metal powder is spherical or granular powder, it looks like black burn on the grinding surface after electric discharge machining. Unusual discharge marks were confirmed. The machining shape accuracy due to the difference in the shape of the metal powder is as shown in Table 1 at each of A, B, C, and D shown in FIG. 3, and it can be seen that all of them are finished with high accuracy. . Further, it can be seen that the shape powder having a large specific surface area is processed with high accuracy and the surface roughness of the abrasive grain layer is small in correspondence with the specific surface area.

【0024】また、レジンボンド砥粒層の曲げ強度をJ
IS K 5911に依って測定した結果は、樹枝状粉
を使用した場合の曲げ強度を100として指数で示し
た。金属粉末の形状の違いにより曲げ強さが異なること
が分かる。樹枝状、片状粉末がほぼ同等の曲げ強さを示
し、その他の形状粉末よりも高強度に成形できている。
Further, the bending strength of the resin bond abrasive grain layer is set to J
The result of measurement according to IS K 5911 is shown as an index with the bending strength when dendritic powder is used as 100. It can be seen that the bending strength varies depending on the shape of the metal powder. The dendritic and flaky powders have almost the same bending strength, and can be molded with higher strength than other powders.

【0025】これら結果をまとめると、上記規定量の導
電性付与物質を使用することによって何れの場合にも放
電加工によって精密形状への加工が可能であることがわ
かった。また、樹枝状、片状粉末を使用した場合、その
他の形状粉よりも砥粒層面性状が良好で、旦つ高精度で
あり、研削時の摩耗が比較的小さく形状維持性が良好な
高強度レジンボンド超砥粒ホイールになる。またその両
方の効果により、形状修正のインターバルが長くなる。
In summary of these results, it has been found that by using the specified amount of the conductivity-imparting substance, it is possible to form a precise shape by electric discharge machining in any case. Also, when dendritic or flaky powder is used, the surface quality of the abrasive grain layer is better than other powders, it is highly accurate, wear at the time of grinding is relatively small, and shape retention is high. It becomes a resin bond superabrasive wheel. Also, due to both effects, the shape correction interval becomes longer.

【0026】なお、上記の実施例における平均粒径は、
測定機器としてマイクロトラック粒度分析計 Mode
l 7995−10 SRAを使用し、3回計測の平均
を示した値である。
The average particle size in the above examples is
Microtrac Particle Size Analyzer Mode
It is the value which showed the average of three measurements using 1 7995-10 SRA.

【0027】実施例2 レジンボンド超砥粒ホイールの放電加工における金属粉
末の体積割合及び平均粒径の変化に伴う被放電加工性、
加工形状精度と、超砥粒メッシュサイズの形状精度に対
する影響も調べた。レジンボンドにおける銅粉末の体積
割合を0〜40%、平均粒径10〜70μmと様々変化
させた組成についてレジンボンド超砥粒ホイールを成形
し、砥粒層を上記実施例1の場合と同様の形状に放電加
工した。銅粉末は実施例1において良好結果を得ること
のできた樹枝状のものを使用した。超砥粒はコンセント
で100(超砥粒体積含有量25%)とし、Niコート
重量割合55%でメッシュサイズ#230/270のも
のを使用した。放電加工作業要領は、実施例1の場合と
同様に行った。その後、レジンボンド超砥粒ホイールの
砥粒層面観察を行った。観察結果を表2に示す。
Example 2 EDM machinability due to changes in volume ratio and average particle size of metal powder in electric discharge machining of a resin bond superabrasive wheel,
We also investigated the influence of processing shape accuracy and superabrasive grain mesh size on shape accuracy. The resin bond superabrasive grain wheel was molded for various compositions such that the volume ratio of the copper powder in the resin bond was 0 to 40% and the average grain size was 10 to 70 μm, and the abrasive grain layer was the same as in Example 1 above. Electric discharge machining was performed on the shape. As the copper powder, a dendritic copper powder which could obtain good results in Example 1 was used. The super-abrasive grains were 100 (a super-abrasive grain volume content of 25%) at the outlet, and the Ni coat weight ratio was 55% and the mesh size was # 230/270. The electrical discharge machining procedure was the same as in the case of Example 1. After that, the surface of the abrasive grain layer of the resin bond superabrasive grain wheel was observed. The observation results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】放電加工状態の観察において、銅粉末平均
粒径が30μmの場合体積割合20%以上、10μmの
場合体積割合10%以上の場合が安定した放電加工がで
き、異常放電痕と思われる黒い焼けなとが確認されなか
った。これを◎印によって示す。銅粉末平均粒径が10
μmの場合には体積割合が5%、50μmの場合には体
積割合が30%のそれぞれの場合において、砥粒層に直
径0.2mm以上の黒い焼けなど異常放電痕が数個有る
のが確認された。これを○印によって示す。また銅粉末
平均粒径が50μm以上の場合体積割合20%以上で
も、安定した放電加工ができない場合や、砥粒層に直径
0.2mm以上の黒い焼けなどの異常放電痕が10以上
有する場合が生じた。これをΔ印と×印によって示す。
そしていずれの平均粒径の場合も、銅体積割合が40%
以上になると成形不良を起こしている。これを−印によ
って示した。
In the observation of the electric discharge machining state, when the copper powder average particle diameter is 30 μm, the volume ratio is 20% or more, and when it is 10 μm, the volume ratio is 10% or more, stable electric discharge machining can be performed, and black which is considered to be an abnormal discharge mark No burning was confirmed. This is indicated by a double circle. Copper powder average particle size is 10
When the volume ratio is 5% in the case of μm and the volume ratio is 30% in the case of 50 μm, it is confirmed that the abrasive grain layer has several abnormal discharge marks such as black burn with a diameter of 0.2 mm or more. Was done. This is indicated by a circle. Further, when the average particle diameter of the copper powder is 50 μm or more, stable electric discharge machining cannot be performed even if the volume ratio is 20% or more, or there are 10 or more abnormal electric discharge marks such as black burn with a diameter of 0.2 mm or more in the abrasive grain layer. occured. This is indicated by the Δ and X marks.
And for any of the average particle sizes, the copper volume ratio is 40%.
In the above cases, molding defects have occurred. This is indicated by the-mark.

【0030】つぎに、表2のレジンボンド超砥粒ホイー
ルの砥粒層面観察結果により、安定した放電加工が可能
であり、直径0.2mm以上の黒い焼けなどの異常放電
痕が確認されない、又は数個確認された表2の放電加工
状態観察一覧において◎、○が付いた場合について、形
状精度を測定した。この砥粒層形状測定は、砥粒層に直
径0.2mm以上の異常放電痕を10個以上有する場
合、高精度で安定した総型加工ができ無い可能性が高い
ため今回は省くこととした。形状精度は、放電加工後の
ホイールからカーボン板に形状転写させ、そのカーボン
板の形状を測定することにより確認した。また同時に砥
粒層面租さも測定した。結果を表3に示す。
Next, from the results of observation of the abrasive grain layer surface of the resin-bonded superabrasive grain wheel in Table 2, stable electrical discharge machining is possible, and abnormal electrical discharge marks such as black burn with a diameter of 0.2 mm or more are not confirmed, or The shape accuracy was measured for the cases where ⊚ and ◯ were added in the electrical discharge machining state observation list of Table 2 which was confirmed several times. This abrasive grain layer shape measurement is omitted this time because there is a high possibility that stable and precise die forming cannot be performed if the abrasive grain layer has 10 or more abnormal discharge marks with a diameter of 0.2 mm or more. . The shape accuracy was confirmed by transferring the shape from a wheel after electric discharge machining to a carbon plate and measuring the shape of the carbon plate. At the same time, the surface roughness of the abrasive layer was also measured. The results are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】同表から、とくに銅粉末平均粒経が30μ
mの場合体積割合20、30%、10μmの場合体積割
合10、20、30%の場合が、砥粒層形状精度が図3
に示すA、B、C、Dの何れの箇所においても高精度の
加工に仕上がっていることが確認される。また砥粒層面
粗さも上記の組成の場合が、銅粉末平均粒径が10μm
の場合体積割合5%、50μmの場合体債割合30%よ
りも小さかった。これらの結果より、レジンボンド超砥
粒ホイールにおける有効な放電加工の組成範囲を限定す
れば、銅粉末の体積割合は20〜30%以上が好まし
く、それに対応し平均粒径は30μm以下が好ましい。
そしてしレジンボンド超砥粒ホイールの特長である弾性
が必要な場合や超砥粒を多量に含有させる場合で、銅粉
未の体積割合が10〜20%と少ない場合は10μm以
下が特に好ましいことが確認された。
From the table, the average grain size of the copper powder is 30 μm.
In the case of m, the volume ratio is 20, 30%, and in the case of 10 μm, the volume ratio of the abrasive grain layer is 10, 20, 30%.
It is confirmed that any of the points A, B, C, and D shown in (3) is finished with high precision processing. When the surface roughness of the abrasive layer is also the above composition, the average particle diameter of the copper powder is 10 μm.
In the case of, the volume ratio was 5%, and in the case of 50 μm, the body bond ratio was less than 30%. From these results, if the composition range of the effective electric discharge machining in the resin-bonded superabrasive wheel is limited, the volume ratio of the copper powder is preferably 20 to 30% or more, and correspondingly, the average particle size is preferably 30 μm or less.
And when the elasticity which is the feature of the resin-bonded superabrasive grain wheel is required or when a large amount of superabrasive grains are contained, and when the volume ratio of the copper powder is 10 to 20% is small, 10 μm or less is particularly preferable. Was confirmed.

【0033】上記実施例1の表1と実施例2の表3の結
果を比較することにより、超砥粒メッシュサイズの形状
精度に対する影響も以下のとおり観察された。すなわ
ち、超砥粒メッシュサイズが#600から#230/2
70に変化すると砥粒層形状寸法精度は、Aの箇所にお
いて、+0° 15′から+0° 20′に、Cの箇所
において、0.005mmから−0.008mm、Dの
箇所において、+0.005mmから+0.008mm
と悪化していた。また砥粒層面粗さにおいては22μm
から39μmと約2倍となっている。この比較により形
状精度および砥粒層面粗さは超砥粒メッシュサイズに影
響されることが確認された。
By comparing the results of Table 1 of Example 1 and Table 3 of Example 2 above, the influence of the superabrasive grain mesh size on the shape accuracy was also observed as follows. That is, the superabrasive grain mesh size is from # 600 to # 230/2.
When it is changed to 70, the dimensional accuracy of the abrasive grain layer shape changes from + 0 ° 15 ′ to + 0 ° 20 ′ at the position A, 0.005 mm to −0.008 mm at the position C, and +0.005 mm at the position D. From + 0.008mm
Was getting worse. The surface roughness of the abrasive layer is 22 μm
To 39 μm, which is about double. From this comparison, it was confirmed that the shape accuracy and the surface roughness of the abrasive layer were affected by the superabrasive mesh size.

【0034】実施例3 実施例1、2において、高精度に放電加工できたレジン
ボンド組成について、難削材である超硬に対する研削性
能を調査した結果を以下に示す。研削試験方法としては
同組成のレジンボンド超砥粒ホイールで放電加工を行っ
たものとWA砥石で目立てしたもの、そしてメタルボン
ド超砥粒ホイールのWA砥石で目立でしたものの三種類
で行った。ホイール仕様詳細及び組成は表4と表5に示
す。放電加工方法及び条件は実施例1と同じものとした
が、研削試験を行うため砥粒層に形状創成は行わなかっ
た。また、メタルボンド超砥粒ホイールとレジンボンド
超砥粒ホイールの超砥粒の体積割合とメッシュサイズは
同じものとした。研削試験条件を表6に示す。
Example 3 In Examples 1 and 2, the results of investigating the grinding performance with respect to the hard-to-machine material cemented carbide with respect to the resin bond composition capable of high-precision electrical discharge machining are shown below. As the grinding test method, three kinds of tests were performed: one that was electric discharge machined with a resin-bonded superabrasive wheel of the same composition, one that was sharpened with a WA grindstone, and one that was conspicuous with a WA wheel of a metal-bonded superabrasive wheel. . Detailed wheel specifications and compositions are shown in Tables 4 and 5. The electric discharge machining method and conditions were the same as in Example 1, but no shape was created in the abrasive grain layer because a grinding test was performed. Further, the volume ratio and mesh size of the superabrasive grains of the metal bond superabrasive grain wheel and the resin bond superabrasive grain wheel were the same. Table 6 shows the grinding test conditions.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】表7、8では上記の放電加工ホイールはW
A砥石目立てと比較して研削比、ワーク面粗さともにわ
ずかながら良好な結果となった。研削比はメタルボンド
超砥粒ホイールが一番大きいが、研削音異常のため試験
中止となった。また、図4には消費電力推移状況を示
す。同図に示すように、放電加工ホイール、WA砥石目
立てホイール共に同等の消費電力値を示している。
In Tables 7 and 8, the above electric discharge machining wheels are W
The grinding ratio and work surface roughness were slightly better than those of the A grindstone setting. The metal-bonded super-abrasive wheel had the largest grinding ratio, but the test was canceled due to abnormal grinding noise. In addition, FIG. 4 shows the power consumption transition status. As shown in the figure, both the electric discharge machining wheel and the WA grinding stone dressing wheel show the same power consumption value.

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】これらの結果により高精度に放電加工でき
るレジンボンド組成の放電加工ホイールは、WA砥石目
立てホイールと同等以上の研削性能を有し、超硬などの
メタルボンドでは非常に加工しずらい被削材の加工が可
能であることが確認された。
Based on these results, the electric discharge machining wheel having a resin bond composition capable of high precision electric discharge machining has a grinding performance equal to or higher than that of the WA grinding stone dressing wheel, and is extremely difficult to machine with a metal bond such as cemented carbide. It was confirmed that it was possible to process the cutting material.

【0042】[0042]

【発明の効果】 (l) 凹形状などの複雑形状で、且つ高精度なレジン
ボンド超砥粒ホイールが、低コストで製造可能となり、
メタルボンド超砥粒ホイールでは加工しずらい超硬、サ
ーメットなどの難削材の加工などが、レジンボンド超砥
粒ホイールを使用することにより、高能率、高精度に総
型加工ができるようになる。 (2) 放電加工による形状創成と同時に目立て加工も
行われるので目立て工程が不要となり、レジンボンド超
砥粒ホイールの目立てによる形状精度の低下が無くな
る。 (3) レジンボンド超砥粒ホイールの難削材の総型加
工において、砥粒層の形状維持性が向上し、それに伴い
形状修正のインターバルが長くなり作業能率が向上す
る。
EFFECT OF THE INVENTION (l) A resin-bonded superabrasive wheel having a complicated shape such as a concave shape and high precision can be manufactured at low cost.
Metal bond super-abrasive grain wheel makes it difficult to process carbide and hard-to-cut materials such as cermet.By using the resin bond super-abrasive grain wheel, it is possible to perform high-efficiency and high-precision machining. Become. (2) Since the dressing process is performed at the same time as the shape creation by the electric discharge machining, the dressing process is unnecessary, and the deterioration of the shape accuracy due to the dressing of the resin bond superabrasive wheel is eliminated. (3) In the general machining of the difficult-to-cut material of the resin-bonded superabrasive grain wheel, the shape retention of the abrasive grain layer is improved, and the interval of shape correction is increased accordingly, and the work efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 使用した導電性付与物質としての金属粉の粒
子構造を示す顕微鏡写真である。
FIG. 1 is a micrograph showing a particle structure of a metal powder used as a conductivity imparting substance.

【図2】 適用した放電加工装置の概要を示す。FIG. 2 shows an outline of an applied electric discharge machine.

【図3】 加工した砥粒層の断面形状を示す。FIG. 3 shows a cross-sectional shape of a processed abrasive grain layer.

【図4】 放電加工に要した消費電力の推移を示す。FIG. 4 shows a transition of power consumption required for electric discharge machining.

【符号の説明】[Explanation of symbols]

1 砥粒層 2 アルミニウム基盤 3
保持機 4 グラファイト電極
1 Abrasive layer 2 Aluminum base 3
Holding machine 4 Graphite electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レジンボンド中に超砥粒を体積割合で1
5〜60%と平均粒径が30μm以下の導電性物質粉末
粒子を体積割合で10%以上含有せしめることによって
放電加工による砥粒層の高精度の形状創成を可能にした
ことを特徴とするレジンボンド超砥粒ホイール。
1. Super-abrasive grains in a volume ratio of 1 in a resin bond.
Resin containing 5 to 60% of conductive material powder particles having an average particle diameter of 30 μm or less in a volume ratio of 10% or more enables highly accurate shape creation of an abrasive layer by electric discharge machining. Bond super abrasive wheel.
【請求項2】 比表面積が1000cm2 /g以上の金
属粉末を含有してなることを特徴とする請求項1に記載
のレジンボンド超砥粒ホイール。
2. The resin-bonded superabrasive wheel according to claim 1, comprising a metal powder having a specific surface area of 1000 cm 2 / g or more.
JP13866095A 1995-05-11 1995-05-11 Resin bond super abrasive wheel Expired - Lifetime JP3346952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13866095A JP3346952B2 (en) 1995-05-11 1995-05-11 Resin bond super abrasive wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13866095A JP3346952B2 (en) 1995-05-11 1995-05-11 Resin bond super abrasive wheel

Publications (2)

Publication Number Publication Date
JPH08309667A true JPH08309667A (en) 1996-11-26
JP3346952B2 JP3346952B2 (en) 2002-11-18

Family

ID=15227167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13866095A Expired - Lifetime JP3346952B2 (en) 1995-05-11 1995-05-11 Resin bond super abrasive wheel

Country Status (1)

Country Link
JP (1) JP3346952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297893A (en) * 2009-10-02 2009-12-24 Ricoh Co Ltd Polishing tool and method of manufacturing the same
CN102205524A (en) * 2010-03-29 2011-10-05 福吉米株式会社 Resin-bonded grinding wheel
JP2012240164A (en) * 2011-05-20 2012-12-10 Fujimi Inc Metal-bonded grinding wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297893A (en) * 2009-10-02 2009-12-24 Ricoh Co Ltd Polishing tool and method of manufacturing the same
CN102205524A (en) * 2010-03-29 2011-10-05 福吉米株式会社 Resin-bonded grinding wheel
JP2011206866A (en) * 2010-03-29 2011-10-20 Fujimi Inc Resin bond grinding stone
JP2012240164A (en) * 2011-05-20 2012-12-10 Fujimi Inc Metal-bonded grinding wheel

Also Published As

Publication number Publication date
JP3346952B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JPH072307B2 (en) Metal bond diamond whetstone
CN104066549A (en) Vitrified super-abrasive-grain grindstone
WO1998005466A1 (en) Wear resistant bond for an abrasive tool
CN1046128C (en) Diamond grinding block
CN105189046A (en) Bonded abrasive article and method of grinding
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
CN114561641B (en) Surface friction treatment method for ceramic reinforced aluminum matrix composite brake disc
TWI635931B (en) Super abrasive wheel
JPS62205203A (en) Production of ultrafine short metallic fiber
JP3346952B2 (en) Resin bond super abrasive wheel
CN103203453B (en) Grinding wheel manufacturing method of edge-sharpening single crystal diamond tool
JPS61100374A (en) Grinding wheel
CN112828780B (en) Preparation method and application method of abrasive for layered sand-planting abrasive belt
JPS58217271A (en) Fine grinding wheel
JP2005007531A (en) Throw away tip and manufacturing method thereof
JP3751160B2 (en) Hard material abrasive grain densification structure
JP5499253B2 (en) Super abrasive wheel and discharge truing method or truing dressing method of super abrasive wheel
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JP2972623B2 (en) Metal bond whetstone
JPH0985627A (en) Grinding wheel
KR20190074295A (en) Metal hybrid grinding wheel with coated filler particles
JP3340408B2 (en) Abrasive layer structure of hard material
JPH08150567A (en) Vitrified bond diamond grinding stone and its manufacture
JP3260252B2 (en) Rotary dresser
JP2692712B2 (en) Grinding wheel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term