JPH08309149A - Decomposition method for chlorinated organic compound - Google Patents

Decomposition method for chlorinated organic compound

Info

Publication number
JPH08309149A
JPH08309149A JP7120058A JP12005895A JPH08309149A JP H08309149 A JPH08309149 A JP H08309149A JP 7120058 A JP7120058 A JP 7120058A JP 12005895 A JP12005895 A JP 12005895A JP H08309149 A JPH08309149 A JP H08309149A
Authority
JP
Japan
Prior art keywords
vanadium oxide
gold
chlorinated organic
catalyst
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7120058A
Other languages
Japanese (ja)
Other versions
JP3509286B2 (en
Inventor
Ken Shiragami
研 白神
Kenichi Kiyono
健一 清野
Kazutaka Ida
和孝 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12005895A priority Critical patent/JP3509286B2/en
Publication of JPH08309149A publication Critical patent/JPH08309149A/en
Application granted granted Critical
Publication of JP3509286B2 publication Critical patent/JP3509286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To efficiently remove harmful substances such as chlorinated organic compounds including dioxin in combustion exhaust gas by specifying heating temperature and oxygen concentration respectively in a method in which gas containing chlorinated organic compounds is contacted with a vanadium oxide catalyst containing gold with heating and in the presence of oxygen. CONSTITUTION: In the decomposition of chlorinated organic compounds including dioxin which is generated in the combustion of urban waste and industrial waste, gas containing chlorinated organic compounds is brought into contact with a vanadium oxide catalyst containing gold at 100-500 deg.C and in the presence of 0.5-25vol.% of oxygen. Usually the vanadium oxide catalyst containing gold is supported on a carrier to be used; silica, alumina, titania, diatomaceous earth, etc., can be used as the carrier. Among them, titania (TiO2 ) is used preferably. The amounts of gold and vanadium oxide supported on titania are 0.001 20wt.% and 0.5-50wt.%, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩素化有機化合物の分
解方法に関するものであり、詳しくは、都市ごみや産業
廃棄物などの燃焼に伴って発生するダイオキシン等の塩
素化有機化合物を、金を含む酸化バナジウム触媒に接触
させて分解する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing chlorinated organic compounds, and more particularly, it relates to a method for decomposing chlorinated organic compounds such as dioxins generated by combustion of municipal waste or industrial waste into gold. The present invention relates to a method of decomposing by contacting with a vanadium oxide catalyst containing.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物などの燃焼排ガス
中には、通常ダイオキシンやその前駆体と考えられる芳
香族塩素化合物などの塩素化有機化合物が含有されてい
る。一般に塩素化有機化合物は程度の差はあるが、毒性
が強く、特にダイオキシンは動植物に対して催奇性など
の著しい悪影響を与える程の猛毒であり、燃焼排ガス中
の含有量を極力減少させることが必要である。そのた
め、このダイオキシン等の塩素化有機化合物の除去法
が、例えば活性炭吸着法、熱分解法、或いは接触分解法
等種々提案されている。その中で、接触分解法は500
℃以下の条件で処理を行うことが出来る優れた方法であ
る。
2. Description of the Related Art Combustion exhaust gas from municipal solid waste and industrial waste contains chlorinated organic compounds such as aromatic chlorine compounds, which are generally considered to be dioxins and their precursors. In general, chlorinated organic compounds are highly toxic, but dioxin is a serious poison that causes teratogenic effects such as teratogenic effects on plants and animals, and the content in flue gas can be reduced as much as possible. is necessary. Therefore, various methods of removing chlorinated organic compounds such as dioxins have been proposed, such as an activated carbon adsorption method, a thermal decomposition method, or a catalytic decomposition method. Among them, the catalytic cracking method is 500
It is an excellent method that can be performed under the condition of ℃ or less.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来提
案された接触分解法における触媒は、燃焼排ガス中に含
まれている窒素酸化物、硫黄酸化物、重金属ヒューム等
の不純物に対し、耐久性が欠けると言う問題がある。ま
た、従来の白金やパラジウムを用いる触媒は高価であ
る。
However, the catalyst in the catalytic cracking method proposed hitherto lacks durability against impurities such as nitrogen oxides, sulfur oxides, and heavy metal fumes contained in combustion exhaust gas. There is a problem to say. Further, conventional catalysts using platinum or palladium are expensive.

【0004】更に、接触分解法においても、その処理温
度が比較的高い場合は、処理後の分解生成物からダイオ
キシンが再生成する可能性があった。本発明は、上記の
ような実情に鑑みなされたものであり、その目的は、不
純物に対して耐久性があり、かつ比較的安価な触媒を使
用した経済的に有利な塩素化有機化合物の分解方法を提
供することにあり、また本発明のもう一つの目的は、ダ
イオキシンの再生成の恐れが少ない150〜350℃の
ような比較的低い温度においても活性が高い触媒を用い
た、塩素化有機化合物の分解方法を提供することにあ
る。
Further, even in the catalytic cracking method, if the treating temperature is relatively high, dioxin may be regenerated from the decomposed product after the treating. The present invention has been made in view of the above circumstances, and an object thereof is to decompose an economically advantageous chlorinated organic compound using a catalyst that is resistant to impurities and is relatively inexpensive. Another object of the present invention is to provide a chlorinated organic compound using a catalyst having a high activity even at a relatively low temperature such as 150 to 350 ° C., which is less likely to regenerate dioxin. It is to provide a method for decomposing a compound.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
は、塩素化有機化合物を含有するガスを100〜500
℃の温度において、0.5〜25vol%の酸素の存在
下、金を含む酸化バナジウム触媒と接触させることを特
徴とする塩素化有機化合物の分解方法に存する。
That is, the gist of the present invention is to use a gas containing a chlorinated organic compound in an amount of 100 to 500.
A method for decomposing a chlorinated organic compound is characterized in that it is brought into contact with a vanadium oxide catalyst containing gold in the presence of 0.5 to 25 vol% oxygen at a temperature of ° C.

【0006】以下、本発明の構成について詳細に説明す
る。本発明で処理の対象とする排ガスとしては、例えば
都市ごみや産業廃棄物などの燃焼排ガス等が挙げられ
る。このような燃焼排ガスには、通常、2,3,7,8
−テトラクロロジベンゾダイオキシン、2,3,4,
7,8−ペンタクロロジベンゾフランで代表されるダイ
オキシン類が10〜40ng/Nm3 含まれている。更
に、これらダイオキシン類の前駆体であるモノクロロベ
ンゼン、ジクロロベンゼン又はo−クロロフェノール、
クロロベンゾフラン等の塩素化有機化合物も含まれてい
る。
The structure of the present invention will be described in detail below. Examples of the exhaust gas to be treated in the present invention include combustion exhaust gas such as municipal waste and industrial waste. Such flue gas usually contains 2, 3, 7, 8
-Tetrachlorodibenzodioxin, 2,3,4
Dioxins represented by 7,8-pentachlorodibenzofuran are contained in an amount of 10 to 40 ng / Nm 3 . Further, monochlorobenzene, dichlorobenzene or o-chlorophenol, which is a precursor of these dioxins,
It also contains chlorinated organic compounds such as chlorobenzofuran.

【0007】本発明においては、塩素化有機化合物の分
解触媒として、金を含む酸化バナジウム触媒を使用す
る。このような触媒は、通常、担体に担持して使用され
るが、その担体としては、シリカ、アルミナ、チタニ
ア、あるいは珪藻土等を使用することが出来る。中で
も、チタニア(TiO2 )を使用するのが好ましい。特
に、燃焼排ガス中に硫黄酸化物が含まれている場合に
は、チタニアを用いるのが好適である。
In the present invention, a vanadium oxide catalyst containing gold is used as a decomposition catalyst for chlorinated organic compounds. Such a catalyst is usually used by supporting it on a carrier, and as the carrier, silica, alumina, titania, diatomaceous earth or the like can be used. Above all, it is preferable to use titania (TiO 2 ). In particular, when sulfur oxide is contained in the combustion exhaust gas, it is preferable to use titania.

【0008】酸化バナジウムの担持量は、担体に対し、
通常0.5〜50wt%、好ましくは2〜40wt%で
ある。また、金の担持量は担体に対し、通常0.001
〜20wt%、好ましくは0.01〜10wt%であ
る。更に、酸化バナジウムに対する金の含有量は、通常
0.001〜0.2重量倍である。
The supported amount of vanadium oxide is
It is usually 0.5 to 50 wt%, preferably 2 to 40 wt%. The amount of gold supported is usually 0.001 with respect to the carrier.
-20 wt%, preferably 0.01-10 wt%. Further, the content of gold with respect to vanadium oxide is usually 0.001 to 0.2 times by weight.

【0009】触媒の大きさ及び形状は、一般に、原料性
状、ダストの有無、ガス量、反応器の大きさ等により決
定される。そして、触媒の形状としては、円柱状、球
状、ハニカム状、板状などが挙げられる。
The size and shape of the catalyst are generally determined by the properties of the raw materials, the presence or absence of dust, the amount of gas, the size of the reactor and the like. Examples of the shape of the catalyst include a cylindrical shape, a spherical shape, a honeycomb shape, and a plate shape.

【0010】円柱状又は球状の担持触媒を調製する場
合、例えば、I)蓚酸水溶液に五酸化バナジウム(V2
5 )を溶解し、II)この水溶液中に例えば円柱状また
は球状の成形担体を3〜10時間含浸し、III)液切り
し、IV)40〜150℃で3〜50時間乾燥後、V)空
気気流中、空間速度(以下SVと略称する)100〜2
000h-1、温度450〜650℃の条件下にて焼成し
て酸化バナジウム担持担体を調製し、次いでVI)塩化金
酸水溶液中に、前記のように調製した酸化バナジウム担
持担体を3〜10時間含浸し、VII)液切りし、VIII)4
0〜150℃で3〜50時間乾燥後、IX)空気気流中、
空間速度(以下SVと略称する)100〜2000
-1、温度450〜650℃の条件下にて焼成する方法
を用いることができる。
When a columnar or spherical supported catalyst is prepared, for example, I) vanadium pentoxide (V 2 ) is added to an aqueous solution of oxalic acid.
O 5 ) is dissolved, II) this aqueous solution is impregnated with, for example, a cylindrical or spherical shaped carrier for 3 to 10 hours, III) drained, and IV) dried at 40 to 150 ° C. for 3 to 50 hours, and then V ) Air velocity, space velocity (hereinafter abbreviated as SV) 100 to 2
The vanadium oxide-supporting carrier is calcined under the conditions of 000 h −1 and a temperature of 450 to 650 ° C., and then VI) the vanadium oxide-supporting carrier prepared as described above in an aqueous solution of chloroauric acid for 3 to 10 hours. Impregnate, VII) Drain, VIII) 4
After drying at 0 to 150 ° C for 3 to 50 hours, IX) in an air stream,
Space velocity (hereinafter referred to as SV) 100 to 2000
A method of firing under conditions of h −1 and temperature of 450 to 650 ° C. can be used.

【0011】また、ハニカム状又は板状の担持触媒を調
製する場合は、所望形状の基材上にまず担体成分をコー
ティングし、次いでこの担体成分に上記と同様の方法で
触媒成分を担持する方法を用いることができる。図1に
担体としてチタニアを用いたハニカム状の触媒の調製方
法を例示する。
When preparing a honeycomb-shaped or plate-shaped supported catalyst, a carrier component is first coated on a substrate having a desired shape, and then the catalyst component is supported on this carrier component in the same manner as described above. Can be used. FIG. 1 illustrates a method for preparing a honeycomb catalyst using titania as a carrier.

【0012】基材の材質は特に限定されるものではない
が、格子状などの押出成形品にはコージェライト等が使
用され、コルゲート品にはアルミナ、シリカ等の無機繊
維などが使用される。コーティングすべきチタニアをス
ラリーとして使用する場合は、通常粘結性のあるチタニ
アゾルをチタニア粉末とともに分散させたスラリーを用
いるのが好ましい。
The material of the base material is not particularly limited, but cordierite or the like is used for an extrusion molded product such as a lattice, and inorganic fiber such as alumina or silica is used for a corrugated product. When the titania to be coated is used as a slurry, it is preferable to use a slurry in which a titania sol having a caking property is dispersed together with a titania powder.

【0013】バナジウム酸化物の原料としては、特に限
定されないが、五酸化バナジウム(V2 5 )粉末を使
用することが好ましい。これを蓚酸水溶液に溶解してバ
ナジウム担持用液とする。金の担持用液の原料について
も特に限定されないが、塩化金酸四水和物(HAuCl
4 ・4H2 O)が好適で、これを水等に溶解して金の担
持用液とする。これらの担持用液は混合して使用しても
よい。
The source of vanadium oxide is not particularly limited, but vanadium pentoxide (V 2 O 5 ) powder is preferably used. This is dissolved in an aqueous solution of oxalic acid to obtain a vanadium-supporting liquid. Although the raw material of the gold supporting liquid is not particularly limited, chloroauric acid tetrahydrate (HAuCl
4 · 4H 2 O) is preferred, which was dissolved in water or the like and carrying a liquid gold. These supporting liquids may be mixed and used.

【0014】また、バナジウム担持用液と金の担持用液
とを別々に使用する場合の担持方法としては、まず、例
えば、バナジウム担持用液に担体を含浸後、乾燥し、焼
成してV2 5 担持触媒を調製し、次に金の担持用液に
前記のV2 5 担持触媒を含浸後、乾燥し、焼成する方
法を採用することが出来る。また、金を先に担体に担持
し、酸化バナジウムを後から担持する方法、あるいは前
述のように上記二つの担持用液を混合して混合担持用液
として、金と酸化バナジウムとを同時に担持する方法も
採用できる。
As a supporting method when the vanadium-supporting liquid and the gold-supporting liquid are used separately, first, for example, the vanadium-supporting liquid is impregnated with the carrier, dried, and fired to obtain V 2. A method of preparing an O 5 -supported catalyst, then impregnating the above-mentioned V 2 O 5 -supported catalyst in a gold supporting liquid, drying and calcining it can be employed. In addition, a method of first supporting gold on a carrier and then supporting vanadium oxide or a method of mixing the above two supporting liquids as described above to prepare a mixed supporting liquid and simultaneously supporting gold and vanadium oxide. The method can also be adopted.

【0015】ハニカム触媒等の基材を用いた触媒におい
て、担体成分及び触媒成分の合計量は、製造後の触媒重
量の5〜70wt%、好ましくは10〜50wt%とす
るのがよい。
In a catalyst using a base material such as a honeycomb catalyst, the total amount of the carrier component and the catalyst component is 5 to 70 wt%, preferably 10 to 50 wt% of the weight of the produced catalyst.

【0016】なお、ハニカム触媒のような形状の触媒を
製造する場合などは、チタニア等の担体成分と、金及び
酸化バナジウムもしくはその原料とを、成形助剤ととも
に混練した上、押出成形法等の成形法により賦形しても
よい。但し、金の担持量が1%未満のように極めて少な
い場合は金の析出による偏在が発生する恐れや触媒内部
に金が取り込まれてしまい有効成分として働かなくなる
可能性があるので、これを防ぐため、前記のように予め
担体を形成しておいてからこれらの成分を担持させる方
法の方が好ましい。
When a catalyst having a shape such as a honeycomb catalyst is manufactured, a carrier component such as titania and gold and vanadium oxide or its raw material are kneaded together with a molding aid, and then extruded or the like. It may be shaped by a molding method. However, if the supported amount of gold is extremely small, such as less than 1%, uneven distribution due to gold precipitation may occur or gold may be taken into the catalyst and stop working as an active ingredient. Therefore, as described above, it is preferable to form the carrier in advance and then carry these components.

【0017】本発明においては、上記の様に調製して得
られた触媒を使用し、100〜500℃、好ましくは1
50〜350℃の温度において、0.5〜25vol
%、好ましくは1〜15vol%の酸素の存在下、塩素
化有機化合物を分解する。温度が100℃未満では分解
反応が起きにくく、500℃を超えると分解は進行する
が、熱消費量が多く、触媒の耐久性にも支障を来し、ま
た分解生成物からのダイオキシンの再生成の可能性も高
くなる。
In the present invention, the catalyst prepared as described above is used, and the temperature is 100 to 500 ° C., preferably 1
0.5 to 25 vol at a temperature of 50 to 350 ° C
%, Preferably 1 to 15 vol% oxygen in the presence of decomposing chlorinated organic compounds. If the temperature is less than 100 ° C, the decomposition reaction is difficult to occur, and if it exceeds 500 ° C, the decomposition proceeds, but the heat consumption is large, the durability of the catalyst is impaired, and dioxin is regenerated from the decomposition product. The possibility of

【0018】分解時の圧力は、ゲージ圧で通常0〜9k
g/cm2 、好ましくは0.01〜5kg/cm2 であ
る。また、SVは、通常100〜50000h-1、好ま
しくは1000〜20000h-1である。本発明方法
は、ダイオキシン(2,3,7,8−テトラクロロジベ
ンゾダイオキシン)換算で0.05〜500ng/Nm
3 程度の濃度の塩素化有機化合物を含有するガスを処理
するのに好適であり、前述の都市ごみや産業廃棄物等の
燃焼排ガスの処理に適用すると効果が大きい。
The pressure at the time of decomposition is usually 0 to 9 k in gauge pressure.
It is g / cm 2 , preferably 0.01 to 5 kg / cm 2 . Moreover, SV is normally 100~50000H -1, preferably 1000~20000h -1. The method of the present invention is 0.05 to 500 ng / Nm in terms of dioxin (2,3,7,8-tetrachlorodibenzodioxin).
It is suitable for treating a gas containing a chlorinated organic compound at a concentration of about 3 and is highly effective when applied to the treatment of combustion exhaust gas such as the aforementioned municipal solid waste and industrial waste.

【0019】また、上記の接触分解前のガス中にアンモ
ニアガスを導入すると塩素化物の除去と同時に窒素化合
物の分解も可能である。更に、処理対象のガス中に多少
の水分が含まれていても塩素化物の分解には影響がな
く、従ってこのような点からも、本発明における触媒は
実用上好ましい。なお、上記の塩素化有機化合物の処理
は、通常、燃焼排ガスをバグフィルターに通して粉塵な
どを除去した後に行われ、分解処理後の排出ガスは、ア
ルカリ洗浄塔により酸性ガスを除去した後、大気に放出
する。ただし、粉塵、重金属が少ない燃焼排ガスの場合
は、バグフィルターによる前処理を省略することも出来
る。
When ammonia gas is introduced into the gas before the catalytic decomposition, the chlorinated compound can be removed and the nitrogen compound can be decomposed at the same time. Furthermore, even if the gas to be treated contains a small amount of water, it does not affect the decomposition of the chlorinated product. Therefore, from this point as well, the catalyst of the present invention is practically preferable. The treatment of the above chlorinated organic compound is usually performed after removing dust and the like by passing the combustion exhaust gas through a bag filter, and the exhaust gas after the decomposition treatment, after removing the acidic gas by an alkali washing tower, Release to atmosphere. However, in the case of combustion exhaust gas containing little dust and heavy metals, pretreatment with a bag filter can be omitted.

【0020】[0020]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例によって限定されるものではない。 実施例1 <触媒調製>チタニア粉20.7重量部、チタニアゾル
32.7重量部および1.0wt%硝酸水溶液150重
量部をボールミルに入れ、回転数100rpmで24時
間処理し、固体分濃度16.2wt%のチタニアスラリ
ーを調製した。このチタニアスラリーに、基材として、
有効表面積20.5cm2 /cm3 、開孔率73%、セ
ル数205セル/inch2 、容積30mlのセラミッ
ク繊維状ハニカム(ニチアス社製)を浸漬した後、空気
ブローを行った。そして、この浸漬および空気ブローを
3回繰り返し、前記のハニカム基材にチタニアをコーテ
ィングした。次いで、150℃で一夜乾燥後、700℃
で3時間焼成してチタニア担体を製造した。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Example 1 <Catalyst preparation> 20.7 parts by weight of titania powder, 32.7 parts by weight of titania sol and 150 parts by weight of 1.0 wt% nitric acid aqueous solution were placed in a ball mill and treated at 100 rpm for 24 hours to obtain a solid content concentration of 16. A 2 wt% titania slurry was prepared. In this titania slurry, as a base material,
A ceramic fibrous honeycomb (manufactured by Nichias) having an effective surface area of 20.5 cm 2 / cm 3 , a porosity of 73%, a cell number of 205 cells / inch 2 , and a volume of 30 ml was immersed, and then air blowing was performed. Then, this immersion and air blowing were repeated three times to coat the above honeycomb substrate with titania. Then, after drying overnight at 150 ℃, 700 ℃
A titania carrier was produced by firing at 3 hours.

【0021】水60mlに五酸化バナジウム20g及び
蓚酸46gを溶解した水溶液に上記のコーティングで得
たチタニア担体を室温で3時間浸漬し、液切り後、60
℃で5時間、120℃で一夜それぞれ乾燥し、次いで5
00℃で3時間焼成した。更に、これを水60mlに塩
化金酸四水和物2.5gを溶解した水溶液に室温で3時
間浸漬し、液切り後、60℃で5時間、120℃で一夜
それぞれ乾燥し、更に500℃で3時間焼成して、担持
触媒を調製した。
The titania carrier obtained by the above coating was immersed in an aqueous solution in which 20 g of vanadium pentoxide and 46 g of oxalic acid were dissolved in 60 ml of water at room temperature for 3 hours.
Dry at 5 ° C for 5 hours and 120 ° C overnight, then 5
It was baked at 00 ° C. for 3 hours. Further, this was immersed in an aqueous solution of 2.5 g of chloroauric acid tetrahydrate dissolved in 60 ml of water at room temperature for 3 hours, drained, dried at 60 ° C. for 5 hours and at 120 ° C. overnight, and further dried at 500 ° C. The mixture was calcined for 3 hours to prepare a supported catalyst.

【0022】この様にして調製した触媒(触媒A)の組
成は、V2 5 8.5wt%、Au0.5wt%、Ti
2 37.2wt%、残部はハニカム基材であった。
The composition of the catalyst (catalyst A) thus prepared was V 2 O 5 8.5 wt%, Au 0.5 wt%, Ti
O 2 was 37.2 wt%, and the balance was a honeycomb substrate.

【0023】<活性試験>ガラス製反応器に上記の触媒
30ccを充填し、常圧固定床流通反応装置で活性試験
を行った。触媒固定床の寸法は、縦26mm、横26m
m、高さ44mmであった。原料ガス組成は、モノクロ
ロベンゼン(MCB)が100ppm、O 2 が10vo
l%、残りはN2 であった。この原料ガスをSV500
0h-1で通しながら昇温し、温度250℃で1時間保持
した後、反応装置通過ガスをマイクロシリンジでサンプ
リングし、ガスクロマトグラフィー法で分析した。分析
法は絶対検量線法で行った。結果を表−1に示す。な
お、表−1中の各記号の意義は表−2に示す通りであ
る。
<Activity test> The above catalyst was placed in a glass reactor.
30cc filled, activity test in atmospheric pressure fixed bed flow reactor
Was done. The size of the fixed catalyst bed is 26 mm in height and 26 m in width.
The height was 44 mm. Source gas composition is monochrome
Robenzene (MCB) is 100ppm, O 2Is 10 vo
1%, the rest is N2Met. This raw material gas is SV500
0h-1The temperature is raised while passing through and kept at 250 ° C for 1 hour.
After that, the gas passing through the reactor is sampled with a microsyringe.
Ring and analyzed by gas chromatography. analysis
The method was the absolute calibration curve method. The results are shown in Table 1. What
The meaning of each symbol in Table-1 is as shown in Table-2.
It

【0024】実施例2 活性試験の温度を200℃で行ったこと以外は、実施例
1と同様な方法で触媒の活性試験を行った。結果を表−
1に示す。
Example 2 A catalyst activity test was conducted in the same manner as in Example 1 except that the activity test temperature was 200 ° C. Table of results
It is shown in FIG.

【0025】比較例1 実施例1において、バナジウム水溶液を単独で使用し、
実施例1と同様な方法で触媒(触媒B)を調製した。得
られた触媒の組成は、V2 5 8.8wt%、TiO2
37.1wt%であった。この触媒について実施例1と
同様な方法で触媒の活性試験を行った。結果を表−1に
示す。
Comparative Example 1 In Example 1, the vanadium aqueous solution was used alone,
A catalyst (catalyst B) was prepared in the same manner as in Example 1. The composition of the obtained catalyst was V 2 O 5 8.8 wt%, TiO 2
It was 37.1 wt%. A catalyst activity test was conducted on this catalyst in the same manner as in Example 1. The results are shown in Table 1.

【0026】比較例2 活性試験の温度を200℃としたこと以外は比較例1と
同様な方法で触媒の活性試験を行った。結果を表−1に
示す。
Comparative Example 2 A catalyst activity test was conducted in the same manner as in Comparative Example 1 except that the temperature of the activity test was 200 ° C. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 (表−2) A :V2 5 8.5wt%、Au0.5wt% TiO2 37.2wt% B :V2 5 8.8wt%、TiO2 37.1wt% MCB:モノクロロベンゼンTable 2 (Table 2) A: V 2 O 5 8.5 wt%, Au 0.5 wt% TiO 2 37.2 wt% B: V 2 O 5 8.8 wt%, TiO 2 37.1 wt% MCB: Mono Chlorobenzene

【0029】上記の実施例から明らかな様に、金を含む
酸化バナジウム触媒により、モノクロルベンゼンの分解
反応(脱塩素化反応)が起こることが分かる。従って、
この触媒により、ダイオキシン等の塩素化有機化合物の
分解も可能である。
As is clear from the above examples, it is understood that the decomposition reaction (dechlorination reaction) of monochlorobenzene occurs with the vanadium oxide catalyst containing gold. Therefore,
This catalyst can also decompose chlorinated organic compounds such as dioxins.

【0030】[0030]

【発明の効果】以上説明した通り、本発明によれば、不
純物に耐久性のある金を含む酸化バナジウム触媒を使用
することにより、社会的に問題になっている都市ごみや
産業廃棄物などの燃焼排ガス中のダイオキシン等の塩素
化有機化合物などの有害物質の除去に有効な方法が提供
される。
Industrial Applicability As described above, according to the present invention, by using a vanadium oxide catalyst containing gold, which is durable against impurities, it is possible to remove socially problematic municipal solid waste or industrial waste. Provided is an effective method for removing harmful substances such as chlorinated organic compounds such as dioxins in combustion exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】チタニア担持触媒の調製工程の一例を示すフロ
ーチャート図である。
FIG. 1 is a flowchart showing an example of a process for preparing a titania-supported catalyst.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩素化有機化合物を含有するガスを10
0〜500℃の温度において、0.5〜25vol%の
酸素の存在下、金を含む酸化バナジウム触媒と接触させ
ることを特徴とする塩素化有機化合物の分解方法。
1. A gas containing a chlorinated organic compound is added to 10
A method for decomposing a chlorinated organic compound, which comprises contacting with a vanadium oxide catalyst containing gold in the presence of 0.5 to 25 vol% oxygen at a temperature of 0 to 500 ° C.
【請求項2】 金を含む酸化バナジウム触媒がチタニア
に担持され、チタニアに対する金及び酸化バナジウムの
担持量がそれぞれ0.001〜20wt%及び0.5〜
50wt%である請求項1記載の分解方法。
2. A vanadium oxide catalyst containing gold is supported on titania, and the supported amounts of gold and vanadium oxide on titania are 0.001 to 20 wt% and 0.5 to respectively.
The decomposition method according to claim 1, which is 50 wt%.
【請求項3】 金を含む酸化バナジウム触媒が、(1)
担体に先に酸化バナジウムを担持し、次いで金を担持す
る方法、(2)担体に酸化バナジウムと金とを同時に担
持する方法、(3)担体に先に金を担持し、次いで酸化
バナジウムを担持する方法、のいずれかの方法によって
得られたものである請求項1又は2に記載の分解方法。
3. A vanadium oxide catalyst containing gold is (1)
A method of supporting vanadium oxide first on a carrier and then gold, (2) a method of simultaneously supporting vanadium oxide and gold on a carrier, (3) first supporting gold and then vanadium oxide on a carrier The method for decomposing according to claim 1 or 2, which is obtained by any one of the following methods.
JP12005895A 1995-05-18 1995-05-18 Decomposition method of chlorinated organic compounds Expired - Fee Related JP3509286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12005895A JP3509286B2 (en) 1995-05-18 1995-05-18 Decomposition method of chlorinated organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12005895A JP3509286B2 (en) 1995-05-18 1995-05-18 Decomposition method of chlorinated organic compounds

Publications (2)

Publication Number Publication Date
JPH08309149A true JPH08309149A (en) 1996-11-26
JP3509286B2 JP3509286B2 (en) 2004-03-22

Family

ID=14776856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12005895A Expired - Fee Related JP3509286B2 (en) 1995-05-18 1995-05-18 Decomposition method of chlorinated organic compounds

Country Status (1)

Country Link
JP (1) JP3509286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016898A1 (en) * 1998-09-22 2000-03-30 Osaka Gas Co., Ltd. Catalyst for decomposing chlorinated organic compound
EP1043046A1 (en) * 1997-12-25 2000-10-11 Chiyoda Corporation Wet type method of rendering dioxins innoxious

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043046A1 (en) * 1997-12-25 2000-10-11 Chiyoda Corporation Wet type method of rendering dioxins innoxious
EP1043046A4 (en) * 1997-12-25 2004-11-10 Chiyoda Chem Eng Construct Co Wet type method of rendering dioxins innoxious
WO2000016898A1 (en) * 1998-09-22 2000-03-30 Osaka Gas Co., Ltd. Catalyst for decomposing chlorinated organic compound

Also Published As

Publication number Publication date
JP3509286B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US5283041A (en) Catalytic incineration of organic compounds
KR100239294B1 (en) Catalytic method and device for controlling voc, co and halogenated organic emissions
JPH0353968B2 (en)
JPH07163877A (en) Catalyst for treating exhaust gas containing dioxines, production thereof and treatment method
CN112121868A (en) Method for producing ceramic filter containing catalyst for purifying exhaust gas or waste gas
KR100336967B1 (en) A process for preparing honeycomb type monolithic catalyst
JPH06142517A (en) Catalyst for decomposition of nitrous oxide
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
KR100336963B1 (en) Honeycomb type monolithic catalyst for removing VOCs
JPH1057760A (en) Method for decomposing chlorinated organic compound
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP2005313161A (en) Method for manufacturing denitration catalyst
KR20020032167A (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
CN112536031A (en) Catalyst for treating industrial waste gas and preparation method thereof
JPH08318135A (en) Method for decomposing chlorinated organic compound
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JPH1099646A (en) Decomposition of chlorinated organic compound
EP0993857B1 (en) Method for the catalytic oxidation of VOC/CO in the presence of organosilicate compounds
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP4348912B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH1085559A (en) Decomposing method for chlorinated organic compound
KR20020016145A (en) Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
RU2488441C1 (en) Catalyst for oxidative decomposition of organochlorine compounds in gases and method for production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees