JP4348912B2 - Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound - Google Patents

Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound Download PDF

Info

Publication number
JP4348912B2
JP4348912B2 JP2002237105A JP2002237105A JP4348912B2 JP 4348912 B2 JP4348912 B2 JP 4348912B2 JP 2002237105 A JP2002237105 A JP 2002237105A JP 2002237105 A JP2002237105 A JP 2002237105A JP 4348912 B2 JP4348912 B2 JP 4348912B2
Authority
JP
Japan
Prior art keywords
chlorinated organic
catalyst
tio
organic compound
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002237105A
Other languages
Japanese (ja)
Other versions
JP2004073994A (en
Inventor
健一 清野
章弘 山内
盛男 福田
健太郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2002237105A priority Critical patent/JP4348912B2/en
Publication of JP2004073994A publication Critical patent/JP2004073994A/en
Application granted granted Critical
Publication of JP4348912B2 publication Critical patent/JP4348912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法に関するものであり、詳しくは、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法に関するものである。
【0002】
【従来の技術】
都市ゴミや産業廃棄物を処理する焼却炉などから排出される燃焼排ガスは、各種の有害成分を含有しているが、毒性の強いダイオキシンとその前駆体である芳香族塩素化合物などの塩素化有機化合物および光化学スモッグの原因物質である窒素酸化物の除去は、特に重要である。
【0003】
燃焼排ガス中の塩素化有機化合物の除去方法としては、各種の方法が知られているが、特に接触分解法は、500℃以下の条件で塩素化有機化合物を分解する優れた方法である。ところで、塩素化有機化合物の接触分解は、300℃以上の分解温度では一旦分解されたダイオキシン等が再生成するため、250℃以下の温度で行うことが要求されている。
【0004】
更に近年、都市ゴミ焼却設備では、ゴミ焼却時に発生した熱を回収する目的で得たスチームで発電し、都市ゴミ焼却設備に電力供給すると共に余剰電力の売電が行なわれている。ところで、塩素化有機化合物分解用触媒層の反応温度の維持に上記のスチームが利用されている場合、反応温度が高い程に多量のスチームが消費される不利益がある。従って、斯かる観点からも可及的に低い反応温度、具体的には200℃以下の反応温度での運転が要求されている。
【0005】
一方、塩素化有機化合物の接触分解は、酸化反応と考えられ、反応温度が低下すると反応速度が必然的に低下する。従って、より低い温度で接触分解を行って所定の分解率を得ようとした場合は、触媒量の増加や単位時間当たりの処理ガス量の低下が必要となる。しかしながら、都市ゴミ焼却設備では、処理ガス量の低下が困難なため、処理装置が巨大化するという問題がある。
【0006】
一方、触媒の担体としては、一般的に、TiO、SiO、Al、ZrO2等が使用できるが、塩素化有機化合物分解用触媒の場合は、燃焼排ガス中にSO2が含有されている場合が多いため、SOに耐性を有するTiOが一般的に使用される。例えば、特許第2633316号公報においてはTiO担体に活性成分VとWOを担持した触媒が使用され、特許第2916259号公報においては、担体として、Ti、Si、Zrの2元または3元複合酸化物を使用することにより活性成分の分散性を向上させて触媒性能の向上を図っている。
【0007】
そして、特許第2633316号公報においては、270〜290℃の反応温度が採用されているが、斯かる温度は十分に低温とは言い難く、また、特許第2916259号公報においては、温度が200℃でSVが2000hr−1の反応条件が採用されており、多量の触媒を使用する必要がある。
【0008】
上述の様に、従来の塩素化有機化合物分解用触媒は、何れも、低温条件で且つコンパクトな処理装置で使用するには十分に満足し得る性能ではない。
【0009】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る触媒および当該触媒を使用した塩素化有機化合物の分解方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、種々検討を重ねた結果、次の様な種々の知見を得た。すなわち、SiO−TiO2元複合酸化物を担体とする触媒の塩素有機化合物分解能は、当該2元複合酸化物の酸量を特定の範囲以下に調節することにより高められる。
【0011】
本発明は、上記の知見に基づき達成されたものであり、その第1の要旨は、担体に活性成分が担持して成る塩素化有機化合物分解用触媒であって、上記の担体として、TiO粒子表面上にSiO粒子が付着した構造を有し且つNH吸着法で求めた酸量が0.23mmol/g以下であるSiO−TiO2元複合酸化物とTiOとの混合物(但し当該混合物に対するTiOの混合量は30〜90重量%である)を使用して成ることを特徴とする塩素化有機化合物分解用触媒に存する。
【0012】
そして、本発明の第2の要旨は、上記の塩素化有機化合物分解用触媒と塩素化有機化合物含有ガスを100〜250℃の温度で接触させることを特徴とする塩素化有機化合物の分解方法に存する。
【0013】
【発明の実施の形態】
先ず、本発明の塩素化有機化合物分解用触媒(以下、単に「触媒」と略記する)について説明する。本発明の触媒は、SiO−TiO2元複合酸化物担体に活性成分が担持して成る。
【0014】
上記のSiO−TiO2元系複合酸化物のチタン源は、塩化チタン、硫酸チタニル、メタチタン酸などから選択することが出来る。ケイ素源としては、コロイド状シリカ、水ガラスどから選択することが出来る。
【0015】
また、上記の活性成分は、通常、V、Cr、Mo、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、W、In及びIrの群から選ばれる少なくとも1種の金属および/またはその酸化物である。これらの中では、バナジウム(V)酸化物が安価であり且つ塩素化有機化合物の分解率が高いために好適に使用される。活性成分の担体に対する割合は、通常1〜10重量%の範囲である。
【0016】
触媒の形状および大きさは、塩素化有機化合物含有ガス中におけるダストの有無、処理ガス量、反応器の大きさ等により、適宜選択される。触媒の形状としては、ハニカム状、円柱状、球状、板状などが挙げられる。
【0017】
担体に活性成分が担持されたハニカム形状の触媒を製造する方法として、(a)担体成分と活性成分またはその原料を成形助材と共に混練した後に、押出成形法など によりハニカム状の形状に賦形する方法、(b)ハニカム形状の基材上に担体成分および活性成分を含浸・担持する方法を挙げることが出来る。
【0018】
本発明においては、上記の担体として、NH吸着法で求めた酸量が0.23mmol/g以下であるSiO−TiO2元複合酸化物を使用する。
【0019】
NH吸着法による酸量の求め方は次の通りである。すなわち、測定装置としてアネルバ(株)製のTPD−MASS装置(AGS−7000型)を使用する。そして、先ず、試料100mgについて、前処理としてHeフロー処理(400℃×30分)を行なう。次いで、NH吸着/排気処理として、700Torrで15分間吸着処理後、真空排気処理(100℃×30分)及びHeフロー処理(100℃×30分)を行なう。そして、室温から700℃の間でNHの昇温脱離を行ない、NHの脱離量(mmol/g)を測定し、これを酸量とする。
【0020】
上記の様な低酸量のSiO−TiO2元複合酸化物担体に活性成分を担持して成る触媒の上記(a)に従った製造方法の一例としては、以下の方法が例示される。
【0021】
(1)メタバナジン酸アンモニウムを約10重量%モノエタノールアミン水溶液に溶解する。
(2)硫酸チタン溶液を熱加水分解してメタチタン酸スラリーを得る。
(3)メタチタン酸スラリーに15重量%アンモニア水を加えてPH調節した後、リフラックス処理を1時間以上行う。
(4)得られたスラリーを濾過し、得られたケーキを50〜150℃の温度で3〜50時間乾燥した後、400〜650℃の温度で焼成し、冷却後に粉砕する。
(5)シリカゾルを加え、更に、十分な撹拌を1時間以上行う。
(6)得られたスラリーを濾過し、得られたケーキを50〜150℃の温度で3〜50時間乾燥した後、400〜650℃の温度で焼成し、冷却後に粉砕する。
(7)得られた粉末状のSiO−TiO2元系混合酸化物を所定量TiOと混合して担体とする。
(8)上記の担体と上記の(1)で調製した水溶液とをニーダーで混練する。
(9)(i)更に、成形助剤を加えて混練した混練物を押出成形し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2000Hr−1の空気気流中、400〜650℃の温度で焼成する、または、(i i)混練物を50〜150℃の温度で3〜50時間乾燥し、400〜650℃の温度で焼成した後、成形助剤を加えて成形する。
【0022】
また、上述の製造方法(b)の1例として、次の方法が例示される。すなわち、円柱状、球状、ハニカム状、板状など 、所望の形状の基材上に上記の(2)〜(7)で調製した担体成分をコーティングし、上記の(1)で調製した水溶液を塗布して活性成分を含浸させ、50〜150℃で3〜50時間乾燥した後、450〜650℃の温度で焼成する。
【0023】
上記の何れの方法においても、前記の(3)と(5)の間に(4)の操作を行なう、すなわち、(4)の操作(焼成による酸化チタンの形成)を省略し、(3)で得られたメタチタン酸スラリーにシリカゲルを加えた場合は、原子レベルで複合酸化物化するため、SiO−TiO2元複合酸化物の酸量が高くなる。また、シリカゲルの代わりに反応性の高いアルコキシシランを使用した場合も同様である。
【0024】
要するに、本発明において、SiOとTiOとは粒子レベルで複合酸化物化していることが重要であり、SiO−TiO2元複合酸化物は、TiO粒子表面上にSiO粒子が付着した構造を有する。上記のSiO−TiO2元系複合酸化物において、SiO含有量は、通常1〜20重量%、好ましくは2〜15重量%である。
【0025】
前記の(7)の操作の場合、SiO−TiO2元複合酸化物とTiO との混合物に対するTiOの混合量は、30〜90重量%、好ましくは50〜90重量%である。斯かる混合操作により、SiO−TiO2元複合酸化物の効果を維持しつつ成形性を向上させることが出来る。
【0026】
次に、本発明の触媒の使用方法(塩素化有機化合物の分解方法)について説明する。本発明においては前記の触媒と塩素化有機化合物含有ガスを接触させる。塩素化有機化合物含有ガスとしては、例えば、2,3,7,8−テトラクロロジベンゾダイオキシン及び2,3,4,7,8−ぺンタクロロジベンゾフランで代表されるダイオキシン類や3,3’,4,4’,5−ペンタクロロビフェニルで代表されるコプラナーPCB類が約0.1〜200ng/m(N.T.P)(毒性等価換算値)含有され、更に、ダイオキシン類の前駆体物質である、モノクロロベンゼン、トリクロロベンゼン等のクロロベンゼン類、O−クロロフェノール、トリクロロフェノール等のクロロフェノール類、クロロベンゾフラン等が含有されたガス、具体的には、都市ごみや産業廃棄物などを燃焼した際の排ガス等が挙げられる。斯かる塩素化有機化合物含有ガスは、水分と共に酸素を含有し、その含有量は、通常0.5〜25vol%、好ましく1〜21vol%である。
【0027】
上記の様な塩素化有機化合物含有ガスは、通常、バッグフィルターに通じて粉塵や重金属などを除去した後に接触工程に導入される。また、必要に応じ、バッグフィルターで処理する前に消石灰反応塔で処理して酸性ガスを除去してもよい。
【0028】
塩素化有機化合物含有ガスと触媒との接触温度は、100〜250℃、好ましくは100〜200℃である。接触温度が250℃を超える場合は、塩素化有機化合物の分解率も増加するが、分解されたダイオキシン類が再合成する問題と共に触媒層加熱用スチームの節約の観点からも不利である。接触温度が100℃未満の場合は、運転上支障を来す結露が惹起される。触媒層の圧力は、ゲージ圧として、通常−0.05〜0.9MPa、好ましくは−0.01〜0.5MPaである。また、空間速度(SV)は、通常100〜50000Hr−1、好ましくは1000〜20000Hr−1である。
【0029】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において「%」は特に断りがない限り重量%を意味する。
【0030】
<SiO−TiO2元複合酸化物の調製(1)>
メタチタン酸スラリー(TiO濃度30wt%、石原産業(株)製)2667gに15重量%アンモニア水977gを加えてPH9.5〜10に調製した後、PHを維 持しながら60℃にて5時間に亘り充分な撹拌を行いつつ加熱熟成した。その後、冷却してスラリーを取り出し、濾過脱水し、得られたケーキを110℃で20時間乾燥した後、550℃まで50℃/Hrの速度で昇温し、同温度で5時間保持した。そして、冷却後、適当な粒度に粉砕し、Ti酸化物を得た。このTi酸化物にシリカゾル(触媒化成社製「キャタロイドS−20L」)211g添加し、室温で2時間に亘り充分な撹拌をした後、スラリーを取り出し、濾過脱水し、得られたケーキを110℃で20時間乾燥した後、550℃まで50℃/Hrの速度で昇温し、同温度で5時間保持した。そして、冷却後、適当な粒度に粉砕し、SiO/TiO比が5重量%/95重量%のSiO−TiO2元系複合酸化物を得た。
【0031】
<SiO−TiO2元複合酸化物の調製(2)>
メタチタン酸スラリー(TiO濃度30wt%、石原産業(株)製)2330gに15重量%アンモニア水854gを加えてPH9.5〜10に調製した後、PHを維持しながら60℃にて5時間に亘り充分な撹拌を行いつつ加熱熟成した。次いで、シリカゾル(触媒化成社製「キャタロイドS−20L」717g添加し、更に、上記と同一条件の加熱熟成を1時間行った。その後、冷却してスラリーを取り出し、濾過脱水し、得られたケーキを100℃で20時間乾燥した後、600℃まで75℃/Hrの速度で昇温し、同温度で5時間保持した。そして、冷却後、適当な粒度に粉砕し、SiO/TiO比が17重量%/83重量%のSiO−TiO2元系複合酸化物を得た。
【0032】
<触媒Aの調製>
メタバナジン酸アンモニウム1029gとパラモリブデン酸アンモニウム736gを80℃に加温した10%モノエタノールアミン水溶液6000gに溶解して原料液(1)を調製した。上記の調製(1)で得たSiO−TiO2元系複合酸化物粉末(5%SiO/95%TiO)1900gと純粋なTiO粉末5700gとを双腕型ニーダーで1時間に亘り乾式混合し、当該混合物に原料液(1)と成形助剤1000gを加えて更に2時間混練し、得られた混合物を押し出し機より口径5mmのハニカム構造に成形した。得られた成型物を130℃の温度で24時間乾燥し、次いで、SV100h−1、温度500℃の条件下で3時間焼成し、次の表1に示す組成の触媒(A):V−MoO/(SiO−TiO)−TiOを得た。
【0033】
【表1】

Figure 0004348912
【0034】
<触媒Bの調製>
上記の触媒Aの調製において、前記の調製(2)で得たSiO−TiO2元系複合酸化物粉末(17%SiO/83%TiO)を使用した以外は触媒(A)の調製と同様にして次の表2に示す組成の触媒B:V−MoO/(17%SiO−TiO)−TiOを得た。
【0035】
【表2】
Figure 0004348912
【0036】
<評価方法>
ガラス製反応器に上記の各触媒を30ml充填し、常圧固定床流通反応装置で活性試験を行った。触媒固定床の寸法は縦28mm、横28mm、高さ38mmであった。原料ガス組成はオルトクロルフェノール(OCP):100ppm、O:10vol%、HO:10vol%、N:バランス量の組成であった。原料ガスのSVは5000h−1であった。160℃と180℃の各温度で5時間保持した後、反応装置通過ガスをマイクロシリンジでサンプリングし、ガスクロマトグラフィーで分析した。分析は絶対検量線法で行った。表3に結果を示す。
【0037】
【表3】
Figure 0004348912
【0038】
【発明の効果】
以上説明した本発明によれば、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る触媒および当該触媒を使用した塩素化有機化合物の分解方法が提供され、本発明の工業的価値は顕著である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for decomposing chlorinated organic compounds and a method for decomposing chlorinated organic compounds, and more specifically, a chlorinated organic compound capable of decomposing chlorinated organic compounds such as dioxin with high efficiency at a low temperature. The present invention relates to a decomposition catalyst and a decomposition method of a chlorinated organic compound.
[0002]
[Prior art]
Combustion exhaust gas discharged from incinerators that treat municipal waste and industrial waste contains various harmful components, but chlorinated organic compounds such as highly toxic dioxins and their precursors, aromatic chlorine compounds. Removal of nitrogen oxides, which are causative agents of compounds and photochemical smog, is particularly important.
[0003]
Various methods are known as a method for removing chlorinated organic compounds from combustion exhaust gas. In particular, catalytic cracking is an excellent method for decomposing chlorinated organic compounds under conditions of 500 ° C. or less. By the way, the catalytic decomposition of a chlorinated organic compound is required to be performed at a temperature of 250 ° C. or lower because dioxins once decomposed are regenerated at a decomposition temperature of 300 ° C. or higher.
[0004]
Furthermore, in recent years, in city garbage incineration facilities, power is generated by steam obtained for the purpose of recovering heat generated at the time of garbage incineration, and electric power is supplied to the city garbage incineration facility and surplus power is sold. By the way, when the above steam is used to maintain the reaction temperature of the catalyst layer for chlorinated organic compound decomposition, there is a disadvantage that a larger amount of steam is consumed as the reaction temperature is higher. Therefore, from such a viewpoint, operation at a reaction temperature as low as possible, specifically, a reaction temperature of 200 ° C. or less is required.
[0005]
On the other hand, catalytic decomposition of chlorinated organic compounds is considered an oxidation reaction, and the reaction rate inevitably decreases as the reaction temperature decreases. Therefore, when an attempt is made to obtain a predetermined decomposition rate by performing catalytic cracking at a lower temperature, it is necessary to increase the amount of catalyst or decrease the amount of processing gas per unit time. However, in the municipal waste incineration facility, since it is difficult to reduce the amount of processing gas, there is a problem that the processing apparatus becomes enormous.
[0006]
On the other hand, TiO 2 , SiO 2 , Al 2 O 3 , ZrO 2 or the like can be generally used as the catalyst carrier, but in the case of a chlorinated organic compound decomposition catalyst, SO 2 is contained in the combustion exhaust gas. since in many cases are, TiO 2 having a resistance to sO 2 is generally used. For example, in Japanese Patent No. 2633316, a catalyst in which an active component V 2 O 5 and WO 3 are supported on a TiO 2 carrier is used. In Japanese Patent No. 2916259, a binary of Ti, Si, Zr or By using a ternary composite oxide, the dispersibility of the active ingredient is improved to improve the catalyst performance.
[0007]
In Japanese Patent No. 2633316, a reaction temperature of 270 to 290 ° C. is adopted. However, such a temperature is not sufficiently low, and in Japanese Patent No. 2916259, the temperature is 200 ° C. The reaction conditions of SV of 2000 hr −1 are employed, and a large amount of catalyst needs to be used.
[0008]
As described above, none of the conventional catalysts for decomposing chlorinated organic compounds is sufficiently satisfactory for use in a low-temperature condition and a compact processing apparatus.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its purpose is to decompose a chlorinated organic compound such as dioxin with high efficiency at a low temperature and to decompose the chlorinated organic compound using the catalyst. It is to provide a method.
[0010]
[Means for Solving the Problems]
As a result of various studies, the present inventors have obtained the following various findings. That is, the chlorinated organic compound resolving power of the catalyst using the SiO 2 —TiO 2 binary composite oxide as a carrier can be enhanced by adjusting the acid amount of the binary composite oxide to a specific range or less.
[0011]
The present invention has been achieved on the basis of the above findings. The first gist of the present invention is a catalyst for decomposing chlorinated organic compounds in which an active component is supported on a carrier, and TiO 2 is used as the carrier. A mixture of SiO 2 —TiO 2 binary composite oxide and TiO 2 having a structure in which SiO 2 particles are adhered on the particle surface and having an acid amount of 0.23 mmol / g or less determined by the NH 3 adsorption method ( However it consists in chlorinated organic compounds cracking catalyst, characterized by comprising using a mixture of TiO 2 is 30 to 90 wt%) with respect to the mixture.
[0012]
The second gist of the present invention is a method for decomposing a chlorinated organic compound, characterized in that the chlorinated organic compound decomposition catalyst and the chlorinated organic compound-containing gas are brought into contact at a temperature of 100 to 250 ° C. Exist.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the chlorinated organic compound decomposition catalyst of the present invention (hereinafter simply referred to as “catalyst”) will be described. The catalyst of the present invention comprises an active component supported on a SiO 2 —TiO 2 binary composite oxide support.
[0014]
The titanium source of the SiO 2 —TiO 2 binary composite oxide can be selected from titanium chloride, titanyl sulfate, metatitanic acid, and the like. The silicon source can be selected from colloidal silica and water glass.
[0015]
The active component is usually at least one selected from the group consisting of V, Cr, Mo, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, W, In, and Ir. A metal and / or its oxide. Among these, vanadium (V) oxide is preferably used because it is inexpensive and has a high decomposition rate of chlorinated organic compounds. The ratio of the active ingredient to the carrier is usually in the range of 1 to 10% by weight.
[0016]
The shape and size of the catalyst are appropriately selected depending on the presence or absence of dust in the chlorinated organic compound-containing gas, the amount of treatment gas, the size of the reactor, and the like. Examples of the shape of the catalyst include a honeycomb shape, a columnar shape, a spherical shape, and a plate shape.
[0017]
As a method for producing a honeycomb-shaped catalyst in which an active component is supported on a carrier, (a) the carrier component and the active component or its raw material are kneaded together with a molding aid, and then shaped into a honeycomb shape by an extrusion molding method or the like. And (b) a method of impregnating and supporting a carrier component and an active component on a honeycomb-shaped substrate.
[0018]
In the present invention, a SiO 2 —TiO 2 binary composite oxide having an acid amount of 0.23 mmol / g or less determined by the NH 3 adsorption method is used as the carrier.
[0019]
The method for obtaining the acid amount by the NH 3 adsorption method is as follows. That is, a TPD-MASS device (AGS-7000 type) manufactured by Anerva Co., Ltd. is used as a measuring device. First, a He flow treatment (400 ° C. × 30 minutes) is performed as a pretreatment for 100 mg of the sample. Next, as NH 3 adsorption / exhaust treatment, an adsorption treatment is performed at 700 Torr for 15 minutes, followed by vacuum exhaust treatment (100 ° C. × 30 minutes) and He flow treatment (100 ° C. × 30 minutes). Then, perform the Atsushi Nobori of NH 3 at between 700 ° C. from room temperature, the amount of released NH 3 to (mmol / g) was measured, which is referred to as acid content.
[0020]
As an example of the production method according to the above (a) of the catalyst comprising the active component supported on the low acid amount SiO 2 —TiO 2 binary composite oxide carrier as described above, the following method is exemplified. .
[0021]
(1) Dissolve ammonium metavanadate in an aqueous solution of about 10% by weight monoethanolamine.
(2) A titanium sulfate solution is hydrolyzed to obtain a metatitanic acid slurry.
(3) After adjusting the pH by adding 15 wt% ammonia water to the metatitanic acid slurry, reflux treatment is performed for 1 hour or more.
(4) The obtained slurry is filtered, and the obtained cake is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, then baked at a temperature of 400 to 650 ° C., and pulverized after cooling.
(5) Add silica sol, and perform sufficient stirring for 1 hour or more.
(6) The obtained slurry is filtered, and the obtained cake is dried at a temperature of 50 to 150 ° C for 3 to 50 hours, then baked at a temperature of 400 to 650 ° C, and pulverized after cooling.
(7) The powdery SiO 2 —TiO 2 binary mixed oxide obtained is mixed with a predetermined amount of TiO 2 to form a carrier.
(8) The carrier and the aqueous solution prepared in (1) are kneaded with a kneader.
(9) (i) Further, the kneaded product kneaded with the addition of a molding aid is extruded and dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then in an air stream of SV100 to 2000 Hr −1 , 400 to 400 Firing is performed at a temperature of 650 ° C., or (ii) the kneaded product is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and calcined at a temperature of 400 to 650 ° C., and then molded by adding a molding aid.
[0022]
Moreover, the following method is illustrated as an example of the above-mentioned manufacturing method (b). That is, a carrier component prepared in the above (2) to (7) is coated on a base material having a desired shape such as a columnar shape, a spherical shape, a honeycomb shape, a plate shape, and the aqueous solution prepared in the above (1). It is applied and impregnated with the active ingredient, dried at 50 to 150 ° C. for 3 to 50 hours, and then fired at a temperature of 450 to 650 ° C.
[0023]
In any of the above methods, the operation of (4) is performed between the above (3) and (5), that is, the operation of (4) (formation of titanium oxide by firing) is omitted, and (3) When silica gel is added to the metatitanic acid slurry obtained in (1), it is converted into a composite oxide at the atomic level, so that the acid amount of the SiO 2 —TiO 2 binary composite oxide becomes high. The same applies when a highly reactive alkoxysilane is used instead of silica gel.
[0024]
In short, in the present invention, it is important that SiO 2 and TiO 2 are complex oxides at the particle level, and SiO 2 —TiO 2 binary complex oxide has SiO 2 particles on the surface of TiO 2 particles. Has an attached structure. In the SiO 2 —TiO 2 binary composite oxide, the SiO 2 content is usually 1 to 20% by weight, preferably 2 to 15% by weight.
[0025]
In the case of the operation (7), the mixing amount of TiO 2 with respect to the mixture of SiO 2 —TiO 2 binary composite oxide and TiO 2 is 30 to 90% by weight, preferably 50 to 90% by weight. By such a mixing operation, the moldability can be improved while maintaining the effect of the SiO 2 —TiO 2 binary composite oxide.
[0026]
Next, a method for using the catalyst of the present invention (a method for decomposing chlorinated organic compounds) will be described. In the present invention, the catalyst and the chlorinated organic compound-containing gas are brought into contact with each other. Examples of the chlorinated organic compound-containing gas include dioxins represented by 2,3,7,8-tetrachlorodibenzodioxin and 2,3,4,7,8-pentachlorodibenzofuran, 3,3 ′, Coplanar PCBs represented by 4,4 ′, 5-pentachlorobiphenyl are contained in an amount of about 0.1 to 200 ng / m 3 (NTP) (equivalent toxic equivalent value), and a dioxin precursor. Combustion of substances containing chlorobenzenes such as monochlorobenzene and trichlorobenzene, chlorophenols such as O-chlorophenol and trichlorophenol, and chlorobenzofuran, specifically municipal waste and industrial waste The exhaust gas etc. at the time of carrying out are mentioned. Such a chlorinated organic compound-containing gas contains oxygen together with moisture, and the content thereof is usually 0.5 to 25 vol%, preferably 1 to 21 vol%.
[0027]
The chlorinated organic compound-containing gas as described above is usually introduced into the contact process after removing dust and heavy metals through a bag filter. If necessary, the acid gas may be removed by treatment with a slaked lime reaction tower before treatment with the bag filter.
[0028]
Contact temperature of chlorinated organic compound containing gas and catalyst, 1 00-250 ° C., preferably from 100 to 200 ° C.. When the contact temperature exceeds 250 ° C., the decomposition rate of the chlorinated organic compound increases, but it is disadvantageous from the viewpoint of saving steam for heating the catalyst layer as well as the problem that the decomposed dioxins are re-synthesized. When the contact temperature is less than 100 ° C., condensation causing trouble in operation is caused. The pressure of the catalyst layer is usually −0.05 to 0.9 MPa, preferably −0.01 to 0.5 MPa as a gauge pressure. Moreover, space velocity (SV) is 100-50000Hr < -1 > normally, Preferably it is 1000-20000Hr- 1 .
[0029]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. In the following, “%” means “% by weight” unless otherwise specified.
[0030]
<Preparation of SiO 2 -TiO 2 2-way complex oxide (1)>
A metatitanic acid slurry (TiO 2 concentration 30 wt%, manufactured by Ishihara Sangyo Co., Ltd.) was added to 2667 g of 15 wt% ammonia water 977 g to prepare a pH of 9.5 to 10, and then maintained at 60 ° C. for 5 hours while maintaining the pH. The mixture was aged by heating with sufficient stirring. Thereafter, the slurry was taken out by cooling, dehydrated by filtration, and the obtained cake was dried at 110 ° C. for 20 hours, then heated to 550 ° C. at a rate of 50 ° C./Hr, and kept at the same temperature for 5 hours. And after cooling, it grind | pulverized to the appropriate particle size and obtained Ti oxide. To this Ti oxide, 211 g of silica sol (“Cataloid S-20L” manufactured by Catalyst Kasei Co., Ltd.) was added, and after sufficient stirring at room temperature for 2 hours, the slurry was taken out and filtered and dehydrated. After drying for 20 hours, the temperature was raised to 550 ° C. at a rate of 50 ° C./Hr and kept at the same temperature for 5 hours. After cooling, crushed to a suitable particle size, SiO 2 / TiO 2 ratio to obtain a 5 wt% / 95 wt% of SiO 2 -TiO 2 2-element complex oxide.
[0031]
<Preparation of SiO 2 -TiO 2 2-way complex oxide (2)>
After adding 854 g of 15 wt% ammonia water to 2330 g of metatitanic acid slurry (TiO 2 concentration 30 wt%, manufactured by Ishihara Sangyo Co., Ltd.) to adjust the pH to 9.5-10, the pH is maintained at 60 ° C. for 5 hours while maintaining the pH. The mixture was aged by heating with sufficient stirring. Subsequently, 717 g of silica sol (“Cataloid S-20L” manufactured by Catalyst Kasei Co., Ltd.) was added, and further heat aging under the same conditions as described above was performed for 1 hour. Thereafter, the slurry was cooled, taken out, filtered and dehydrated, and the resulting cake After drying at 100 ° C. for 20 hours, the temperature was raised to 600 ° C. at a rate of 75 ° C./Hr and held at the same temperature for 5 hours, and after cooling, pulverized to an appropriate particle size, and the SiO 2 / TiO 2 ratio Of 17 wt% / 83 wt% of SiO 2 —TiO 2 binary composite oxide was obtained.
[0032]
<Preparation of catalyst A>
A starting material liquid (1) was prepared by dissolving 1029 g of ammonium metavanadate and 736 g of ammonium paramolybdate in 6000 g of a 10% aqueous monoethanolamine solution heated to 80 ° C. 1900 g of SiO 2 —TiO 2 binary complex oxide powder (5% SiO 2 /95% TiO 2 ) obtained in the above preparation (1) and 5700 g of pure TiO 2 powder in one-arm kneader in 1 hour The mixture was dry-mixed, the raw material liquid (1) and 1000 g of forming aid were added to the mixture and kneaded for another 2 hours, and the resulting mixture was formed into a honeycomb structure having a diameter of 5 mm from an extruder. The obtained molded product was dried at a temperature of 130 ° C. for 24 hours, then calcined for 3 hours under conditions of SV100 h −1 and a temperature of 500 ° C., and the catalyst (A) having the composition shown in Table 1 below: V 2 O 5- MoO 3 / (SiO 2 —TiO 2 ) —TiO 2 was obtained.
[0033]
[Table 1]
Figure 0004348912
[0034]
<Preparation of catalyst B>
In the preparation of the catalyst A, the catalyst (A) was prepared except that the SiO 2 —TiO 2 binary composite oxide powder (17% SiO 2 /83% TiO 2 ) obtained in the preparation ( 2 ) was used. In the same manner as in the preparation, catalyst B having the composition shown in the following Table 2 was obtained: V 2 O 5 —MoO 3 / (17% SiO 2 —TiO 2 ) —TiO 2 .
[0035]
[Table 2]
Figure 0004348912
[0036]
<Evaluation method>
A glass reactor was filled with 30 ml of each of the above catalysts, and the activity test was performed in an atmospheric pressure fixed bed flow reactor. The dimensions of the catalyst fixed bed were 28 mm in length, 28 mm in width, and 38 mm in height. The raw material gas composition was orthochlorophenol (OCP): 100 ppm, O 2 : 10 vol%, H 2 O: 10 vol%, and N 2 : balance amount. The SV of the source gas was 5000h- 1 . After holding at 160 ° C. and 180 ° C. for 5 hours, the gas passing through the reactor was sampled with a microsyringe and analyzed by gas chromatography. The analysis was performed by the absolute calibration curve method. Table 3 shows the results.
[0037]
[Table 3]
Figure 0004348912
[0038]
【The invention's effect】
According to the present invention described above, a catalyst capable of efficiently decomposing chlorinated organic compounds such as dioxins at a low temperature and a method for decomposing chlorinated organic compounds using the catalyst are provided. The target value is remarkable.

Claims (3)

担体に活性成分が担持して成る塩素化有機化合物分解用触媒であって、上記の担体として、TiO粒子表面上にSiO粒子が付着した構造を有し且つNH吸着法で求めた酸量が0.23mmol/g以下であるSiO−TiO2元複合酸化物とTiOとの混合物(但し当該混合物に対するTiOの混合量は30〜90重量%である)を使用して成ることを特徴とする塩素化有機化合物分解用触媒。A catalyst for decomposing chlorinated organic compounds in which an active component is supported on a carrier, wherein the carrier has a structure in which SiO 2 particles are adhered on the surface of TiO 2 particles, and an acid determined by an NH 3 adsorption method. A mixture of SiO 2 —TiO 2 binary composite oxide and TiO 2 having an amount of 0.23 mmol / g or less (provided that the mixed amount of TiO 2 with respect to the mixture is 30 to 90% by weight). A catalyst for decomposing chlorinated organic compounds. 触媒活性成分がV、Cr、Mo、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、W、In及びIrの群から選ばれる少なくとも1種の金属および/またはその酸化物である請求項1に記載の塩素化有機化合物分解用触媒。The catalytically active component is at least one metal selected from the group consisting of V, Cr, Mo, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, W, In and Ir and / or its oxidation The catalyst for decomposing chlorinated organic compounds according to claim 1, which is a product. 請求項1又は2に記載の塩素化有機化合物分解用触媒と塩素化有機化合物含有ガスを100〜250℃の温度で接触させることを特徴とする塩素化有機化合物の分解方法。 A method for decomposing a chlorinated organic compound , comprising contacting the chlorinated organic compound decomposition catalyst according to claim 1 or 2 and a chlorinated organic compound-containing gas at a temperature of 100 to 250 ° C.
JP2002237105A 2002-08-15 2002-08-15 Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound Expired - Fee Related JP4348912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237105A JP4348912B2 (en) 2002-08-15 2002-08-15 Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237105A JP4348912B2 (en) 2002-08-15 2002-08-15 Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound

Publications (2)

Publication Number Publication Date
JP2004073994A JP2004073994A (en) 2004-03-11
JP4348912B2 true JP4348912B2 (en) 2009-10-21

Family

ID=32021023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237105A Expired - Fee Related JP4348912B2 (en) 2002-08-15 2002-08-15 Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound

Country Status (1)

Country Link
JP (1) JP4348912B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225930B (en) * 2021-12-23 2024-03-29 广东誉谱检测科技有限公司 Composite material for decomposing dioxin and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004073994A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US5214014A (en) Deodorizing catalyst
KR100418225B1 (en) Catalyst and process for removing organohalogen compounds
EP1112772B1 (en) Process for disposing of exhaust gases
JP3860707B2 (en) Combustion exhaust gas treatment method
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
JP4348912B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
JP3868705B2 (en) Combustion exhaust gas treatment method
JP3860708B2 (en) Combustion exhaust gas treatment method
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
JP4182697B2 (en) Catalyst for decomposing chlorinated organic compounds and process for producing the same
JP2006116537A (en) Method for treating waste gas
JP3860706B2 (en) Combustion exhaust gas treatment method
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004113850A (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
KR101537995B1 (en) A catalyst with improved durability for treating hazardous gas generated in semiconductor manufacturing process
JP4352676B2 (en) Method for decomposing chlorinated organic compounds
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP2006075834A (en) Exhaust gas treatment method and catalyst carrying ceramic filter
JP2004209355A (en) Method for manufacturing catalyst for exhaust gas treatment
JP2000189756A (en) Treatment of combustion waste gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4348912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees