JPH08306588A - Solid-state electrolytic capacitor and manufacturing method - Google Patents

Solid-state electrolytic capacitor and manufacturing method

Info

Publication number
JPH08306588A
JPH08306588A JP8262496A JP8262496A JPH08306588A JP H08306588 A JPH08306588 A JP H08306588A JP 8262496 A JP8262496 A JP 8262496A JP 8262496 A JP8262496 A JP 8262496A JP H08306588 A JPH08306588 A JP H08306588A
Authority
JP
Japan
Prior art keywords
solid
electrolytic capacitor
electrolyte
conductive polymer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8262496A
Other languages
Japanese (ja)
Other versions
JP2716032B2 (en
Inventor
Masataka Takeuchi
正隆 武内
Mutsumi Kameyama
むつみ 亀山
Masao Kobayashi
征男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP8262496A priority Critical patent/JP2716032B2/en
Publication of JPH08306588A publication Critical patent/JPH08306588A/en
Application granted granted Critical
Publication of JP2716032B2 publication Critical patent/JP2716032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE: To provide a solid-state electrolyte with high electrolytic conduction and good adhesiveness to a dielectric film, by using a solid-state electrolyte, as a complex, made up of a conductive polymer of pentagonal heterocyclic complex with conjugated double bonds in the main chain and a polymeric electrolyte represented in a given formula. CONSTITUTION: A porous dielectric oxide film 3 that is oxidized in electrolysis is formed on a surface of an anode made of aluminum valve metal. Then, a solid-state electrolyte 6, as a complex, made up of conductive polymer of pentagonal heterocyclic complex with conjugated double bonds in the main chain and a polymeric electrolyte represented by a given formula, where X and Y are hydrogen atoms or an alkyl group with carbon number of 10 or below, Z is -OSO3 or -SO3 , a and b are zero or an integral number of 10 or below, Q is a methyl group, and n is a positive integral number of 3 or above is put in contact with the dielectric oxide film 3. After a cathode 4 made of metal foil like aluminum foil is provided, these members are sealed with a resin 7 to complete a solid-state electrolytic capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電導性高分子と高
分子電解質の複合体を固体電解質として用いた性能の良
好な固体電解コンデンサとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having a good performance using a composite of a conductive polymer and a polymer electrolyte as a solid electrolyte, and a method for producing the same.

【0002】[0002]

【従来の技術】従来の固体電解コンデンサ、例えばアル
ミニウム電解コンデンサは、エッチング処理した比表面
積の大きい多孔質アルミ箔の上に誘電体である酸化アル
ミニウム層を設け、陰極箔との間の電解紙に液状の電解
液を含浸させた構造からなっていることはよく知られて
いる通りであるが、電解液が液状であることは液漏れ等
の問題を惹起し好ましいものではなく、従って、この電
導層を固体電解質で代替する試みがなされている。かか
る固体電解コンデンサは、陽極酸化皮膜を有するアルミ
ニウム、タンタルなどの皮膜形成金属に固体電解質を付
着せしめた構造を有するものであり、この種の固体電解
コンデンサの固体電解質としては、主に硝酸マンガンの
熱分解によって形成される二酸化マンガンが用いられて
いる。しかし、この熱分解の際に要する高熱と発生する
NOx ガスの酸化作用などによって、誘電体であるアル
ミニウム、タンタルなどの金属酸化皮膜の損傷があり、
そのため耐電圧が低下し、漏れ電流が大きくなり、誘電
特性を劣化させるなどの極めて大きな欠点がある。ま
た、このような固体電解コンデンサでは、再化成という
工程も必要となるという欠点もある。
2. Description of the Related Art A conventional solid electrolytic capacitor, for example, an aluminum electrolytic capacitor, has an aluminum oxide layer, which is a dielectric material, provided on an etched porous aluminum foil having a large specific surface area to form an electrolytic paper between it and a cathode foil. It is well known that the structure is impregnated with a liquid electrolyte, but the liquid electrolyte is not preferable because it causes problems such as liquid leakage. Attempts have been made to replace the layers with solid electrolytes. Such a solid electrolytic capacitor has a structure in which a solid electrolyte is adhered to a film-forming metal such as aluminum having an anodized film or tantalum.The solid electrolyte of this type of solid electrolytic capacitor is mainly composed of manganese nitrate. Manganese dioxide formed by pyrolysis is used. However, due to the high heat required for this thermal decomposition and the oxidizing action of the generated NO x gas, the metal oxide film such as aluminum or tantalum, which is a dielectric, may be damaged.
As a result, the withstand voltage is lowered, the leakage current is increased, and the dielectric characteristics are deteriorated, which is a very serious drawback. Further, such a solid electrolytic capacitor also has a drawback that a process of re-formation is required.

【0003】これらの欠点を補うため、高熱を付加せず
に固体電解質層を形成する方法、つまり高電導性の有機
半導体材料を固体電解質とする方法が提案されている。
例えば特開昭52−79255号公報、特開昭58−1
7609号公報に、7,7,8,8−テトラシアノキノ
ジメタン(以下、TCNQと略す)を主成分とする固体
電解コンデンサが記載されている。またN−n−プロピ
ルイソキノリンと7,7,8,8−テトラシアノキノジ
メタンからなる錯塩を用いた固体電解コンデンサが知ら
れている。
In order to make up for these drawbacks, a method of forming a solid electrolyte layer without applying high heat, that is, a method of using a highly conductive organic semiconductor material as a solid electrolyte has been proposed.
For example, JP-A-52-79255 and JP-A-58-1
Japanese Patent Publication No. 7609 describes a solid electrolytic capacitor containing 7,7,8,8-tetracyanoquinodimethane (hereinafter abbreviated as TCNQ) as a main component. Further, a solid electrolytic capacitor using a complex salt of Nn-propylisoquinoline and 7,7,8,8-tetracyanoquinodimethane is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
TCNQ錯塩化合物は陽極酸化皮膜との付着性に劣り、
電導度も10-3〜10-2S・cm-1と不十分であるた
め、これを用いた固体電解コンデンサはコンデンサの容
量値が小さく、誘電損失も大きいという問題があり、ま
た熱的経時的な安定性も劣り信頼性が低いという問題が
ある。従って、本発明の目的はこれらの従来技術の問題
点を解決し、電導度が高く誘電体皮膜との付着性のよい
有機半導体を固体電解質に用いた固体電解コンデンサと
その製造方法を提供することにある。
However, these TCNQ complex salt compounds have poor adhesion to the anodized film,
Since the electric conductivity is insufficient as 10 −3 to 10 −2 S · cm −1 , the solid electrolytic capacitor using this has the problem that the capacitance value of the capacitor is small and the dielectric loss is large. Stability is poor and reliability is low. Therefore, an object of the present invention is to solve these problems of the prior art, and to provide a solid electrolytic capacitor using an organic semiconductor having high conductivity and good adhesion to a dielectric film as a solid electrolyte, and a method for manufacturing the same. It is in.

【0005】また、前記した従来の固体電解コンデンサ
は、TCNQの価格が高いため全体の固体電解コンデン
サの製造コストが高くなるという問題もあった。従っ
て、本発明の別の目的は、安価で性能の良好な電導性高
分子化合物を固体電解質とする固体電解コンデンサを提
供することでもある。
Further, the above-mentioned conventional solid electrolytic capacitor has a problem that the manufacturing cost of the whole solid electrolytic capacitor is high because the price of TCNQ is high. Therefore, another object of the present invention is to provide a solid electrolytic capacitor which uses a conductive polymer compound which is inexpensive and has good performance as a solid electrolyte.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成すべくなされたもので、その要旨は、主鎖に共役二重
結合を有する複素五員環化合物より成る電導性高分子と
下記の一般式で表わされる高分子電解質との複合体を固
体電解質として用いることを特徴とする固体電解コンデ
ンサとその製造方法にある。
The present invention has been made to achieve the above object, and the gist thereof is to provide a conductive polymer comprising a hetero five-membered ring compound having a conjugated double bond in the main chain and the following. There is provided a solid electrolytic capacitor characterized by using a complex with a polymer electrolyte represented by the general formula (1) as a solid electrolyte and a method for producing the same.

【化3】 (但し、X,Yは水素原子または炭素数が10以下のア
ルキル基、Zは−OSO3 -、または−SO3 -であり、
a,bは0または10以下の正の整数、Qはメチレン基
(−CH2 −)、nは3以上の正の整数である。)
Embedded image (However, X, Y is a hydrogen atom or an alkyl group having 10 or less carbon atoms, Z is -OSO 3 -, or -SO 3 - and is,
a, b is 0 or 10 less positive integer, Q is a methylene group (-CH 2 -), n is an positive integer of 3 or more. )

【0007】[0007]

【作用】以下本発明を詳細に説明する。図1は本発明の
固体電解コンデンサの縦断面図である。アルミニウム、
タンタル、ニオブ等の弁金属からなる陽極2の表面に電
解酸化された多孔質の誘電体酸化皮膜3を設け、これに
前記した電導性高分子と高分子電解質との複合体からな
る固体電解質6が接触していて、この固体電解質の一部
が誘電体酸化皮膜3の細孔内に入っている。さらにアル
ミ等の金属箔の陰極4を設けた後、樹脂7で封口されて
いる。また、1は陽極リード線、5は陰極リード線を示
す。
The present invention will be described in detail below. FIG. 1 is a vertical sectional view of a solid electrolytic capacitor of the present invention. aluminum,
An electrolytically oxidized porous dielectric oxide film 3 is provided on the surface of an anode 2 made of a valve metal such as tantalum or niobium, and a solid electrolyte 6 made of a composite of a conductive polymer and a polymer electrolyte as described above is provided on the porous dielectric oxide film 3. Are in contact with each other, and a part of this solid electrolyte enters the pores of the dielectric oxide film 3. Further, after providing the cathode 4 of a metal foil such as aluminum, it is sealed with a resin 7. Further, 1 indicates an anode lead wire and 5 indicates a cathode lead wire.

【0008】本発明において、固体電解質に用いられる
電導性高分子としては主鎖に共役二重結合を有する複素
五員環化合物であり、その具体例としては、ポリフラ
ン、ポリピロール、ポリセレノフェン、ポリチオフェン
およびこれ等の誘導体を挙げることができる。
In the present invention, the conductive polymer used in the solid electrolyte is a hetero five-membered ring compound having a conjugated double bond in the main chain, and specific examples thereof include polyfuran, polypyrrole, polyselenophene and polythiophene. And derivatives thereof.

【0009】次に、前記電導性高分子と複合化する高分
子電解質は数平均分子量が500以上で、分子内にスル
ホキシルアニオンを少なくとも1ヶ以上含有する次の一
般式で表わされるものが用いられる。
Next, the polyelectrolyte complexed with the conductive polymer has a number average molecular weight of 500 or more and contains at least one sulfoxyl anion in the molecule and is represented by the following general formula. To be

【化4】 (但し、X,Yは水素原子または炭素数が10以下のア
ルキル基、Zは−OSO3 -、または−SO3 -であり、
a,bは0または10以下の正の整数、Qはメチレン基
(−CH2 −)、nは3以上の正の整数である。) 例えば数平均分子量が500以上のポリビニルスルホン
酸アニオン、ポリアリルスルホン酸アニオン等を挙げる
ことができる。
[Chemical 4] (However, X, Y is a hydrogen atom or an alkyl group having 10 or less carbon atoms, Z is -OSO 3 -, or -SO 3 - and is,
a, b is 0 or 10 less positive integer, Q is a methylene group (-CH 2 -), n is an positive integer of 3 or more. ) For example, polyvinyl sulfonate anion having a number average molecular weight of 500 or more, polyallyl sulfonate anion and the like can be mentioned.

【0010】電導性高分子と複合化する前記高分子電解
質の量は特に制限はないが、通常、電導性高分子100
重量部に対して高分子電解質1〜500重量部、好まし
くは2〜200重量部、特に好ましくは4〜100重量
部である。
The amount of the above-mentioned polymer electrolyte to be complexed with the conductive polymer is not particularly limited, but usually the conductive polymer 100 is used.
The amount of the polymer electrolyte is 1 to 500 parts by weight, preferably 2 to 200 parts by weight, particularly preferably 4 to 100 parts by weight, based on parts by weight.

【0011】また、電導性高分子と高分子電解質との複
合体を製造する方法は種々考えられるが、通常高分子電
解質の存在下に電導性高分子を公知の方法で化学的また
は電気化学的に合成することによって得られる。この
際、高分子電解質は重合溶液に溶解していることが望ま
しいが、溶解しないスラリー状態であっても差し支えな
い。
There are various possible methods for producing a composite of a conductive polymer and a polymer electrolyte. Usually, the conductive polymer is chemically or electrochemically produced by a known method in the presence of the polymer electrolyte. It is obtained by synthesizing At this time, the polymer electrolyte is preferably dissolved in the polymerization solution, but it may be in a non-dissolved slurry state.

【0012】本発明における固体電解コンデンサの陽極
には、アルミニウム、タンタル、ニオブ等の金属箔又は
これらの金属粉の焼結体が用いられる。金属箔の場合に
は表面をエッチングして細孔をもたせる。金属箔、又は
焼結体は、例えば、ホウ酸アンモニウムの液中で電極酸
化され、金属箔又は焼結体上に誘電体の薄層が形成され
る。本発明における電導性高分子と高分子電解質との複
合体は、この誘電体の薄層と接触し、一部が細孔の中ま
で進入する。
For the anode of the solid electrolytic capacitor according to the present invention, a metal foil of aluminum, tantalum, niobium or the like or a sintered body of these metal powders is used. In the case of a metal foil, the surface is etched to have pores. The metal foil or the sintered body is subjected to electrode oxidation in, for example, a solution of ammonium borate to form a thin layer of a dielectric on the metal foil or the sintered body. The composite of the conductive polymer and the polyelectrolyte according to the present invention comes into contact with the thin layer of the dielectric and partly penetrates into the pores.

【0013】次に、電導性高分子と高分子電解質との複
合体を誘電体薄層に付着せしめるには、例えば、(i)
電導性高分子のモノマーを高分子電解質存在下で誘電体
薄層上に直接重合する方法、(ii)予め合成した電導性
高分子と高分子電解質との複合体を溶媒に分散または溶
解させて誘電体薄層に塗布する方法等が挙げられるが、
必ずしもこれらに限定されるものではない。
Next, for attaching a composite of a conductive polymer and a polymer electrolyte to a thin dielectric layer, for example, (i)
A method of directly polymerizing a monomer of a conductive polymer on a dielectric thin layer in the presence of a polyelectrolyte, (ii) by dispersing or dissolving a composite of a preliminarily synthesized conductive polymer and a polyelectrolyte in a solvent Examples include a method of coating a thin dielectric layer,
It is not necessarily limited to these.

【0014】[0014]

【実施例】以下実施例を示し、本発明を詳細に説明す
る。 実施例1 厚さ100μmのアルミニウム箔(純度99.99%)
を陽極とし、これに直流及び交流を交互に使用して箔の
表面を電気化学的にエッチングし、平均細孔径が2μm
で、比表面積が12m2 /gの多孔質アルミニウム箔を
得た。次いでこのエッチング処理したアルミニウム箔を
ホウ酸アンモニウムの液中に浸漬し、液中で電気化学的
にアルミニウム箔の上の誘電体の薄層を形成した。次
に、このアルミニウム誘電体上に、ポリビニル硫酸カリ
ウム70g、塩化第二鉄20gを500ccの蒸留水に
溶かした溶液を塗布し、これにピロールの蒸気を約1時
間接触させ、ポリピロール/ポリビニル硫酸複合体を形
成させた。蒸留水で充分に洗浄し、乾燥した後、陰極に
アルミニウム箔を使用し、樹脂封口して固体電解コンデ
ンサを作成した。尚、固体電解質の電導度は0.2S・
cm-1であった。
The present invention will be described in detail with reference to the following examples. Example 1 Aluminum foil having a thickness of 100 μm (purity 99.99%)
Is used as an anode, and the surface of the foil is electrochemically etched by alternately using direct current and alternating current, and the average pore diameter is 2 μm.
Then, a porous aluminum foil having a specific surface area of 12 m 2 / g was obtained. The etched aluminum foil was then immersed in a solution of ammonium borate to electrochemically form a thin layer of dielectric on the aluminum foil in the solution. Next, a solution prepared by dissolving 70 g of polyvinyl potassium sulfate and 20 g of ferric chloride in 500 cc of distilled water was applied onto this aluminum dielectric, and the vapor of pyrrole was contacted with this for about 1 hour to form a polypyrrole / polyvinyl sulfate composite. The body was formed. After sufficiently washing with distilled water and drying, an aluminum foil was used as the cathode and the resin was sealed to form a solid electrolytic capacitor. The conductivity of the solid electrolyte is 0.2S
It was cm -1 .

【0015】比較例1 実施例1と同じ誘電体層をもったアルミニウム箔上に二
酸化マンガンを固体電解質とし、陰極をアルミニウム箔
とした固体電解コンデンサを作成した。
Comparative Example 1 A solid electrolytic capacitor was prepared in which manganese dioxide was used as a solid electrolyte and an aluminum foil was used as a cathode on an aluminum foil having the same dielectric layer as in Example 1.

【0016】上記実施例で得られた固体電解コンデンサ
の特性値を一括して表1に示す。
Table 1 collectively shows the characteristic values of the solid electrolytic capacitors obtained in the above examples.

【表1】 表1から明らかなように、本発明による固体電解コンデ
ンサは従来の二酸化マンガンを電解質とする固体電解コ
ンデンサに比して誘電損失、漏れ電流が小さく、高耐電
圧の固体電解コンデンサを作成することができる。ま
た、本発明による固体電解コンデンサの容量×定格電圧
の値は二酸化マンガンを用いた固体電解コンデンサに比
して、大きく、同じ形状ならば大容量を得ることができ
る。
[Table 1] As is clear from Table 1, the solid electrolytic capacitor according to the present invention has a smaller dielectric loss and leakage current than the conventional solid electrolytic capacitor using manganese dioxide as an electrolyte, and can produce a high withstand voltage solid electrolytic capacitor. it can. Further, the value of capacity × rated voltage of the solid electrolytic capacitor according to the present invention is larger than that of a solid electrolytic capacitor using manganese dioxide, and a large capacity can be obtained with the same shape.

【0017】[0017]

【発明の効果】本発明の固体電解コンデンサは、従来公
知の固体電解コンデンサに比較して下記の利点を有する
極めて実用性の高いものである。 高温加熱することなしに電解質層を形成できるので陽
極の酸化皮膜の損傷がなく、補修のための陽極酸化(再
化成)を行なう必要がなく、そのため、定格電圧を従来
の数倍にでき、同容量、同定格電圧のコンデンサを得る
のに、形状を小型化できる。 電導性化合物が誘電体皮膜との付着性が良いため、
(i)漏れ電流が小さい、(ii)高耐圧のコンデンサを
製作できる。 電解質の電導度が10-2〜102 S・cm-1と十分に
高いため、グラファイトなどの導電層を設ける必要がな
く、そのため工程が簡略化され、コスト的にも有利とな
る。 高周波数特性が良い。
The solid electrolytic capacitor of the present invention has extremely high practicability and has the following advantages as compared with the conventionally known solid electrolytic capacitors. Since the electrolyte layer can be formed without heating at a high temperature, there is no damage to the anodic oxide film, and there is no need to perform anodic oxidation (reformation) for repair. Therefore, the rated voltage can be several times higher than conventional ones. The size can be reduced to obtain a capacitor having the same capacity and rated voltage. Since the conductive compound has good adhesion to the dielectric film,
(I) Leakage current is small, and (ii) High breakdown voltage capacitors can be manufactured. Since the electrolyte has a sufficiently high electric conductivity of 10 −2 to 10 2 S · cm −1 , it is not necessary to provide a conductive layer such as graphite, which simplifies the process and is advantageous in cost. Good high frequency characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体電解コンデンサの一具体例を
示す縦断面図である。
FIG. 1 is a vertical sectional view showing a specific example of a solid electrolytic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 陽極リード線 2 陽極 3 誘電体酸化皮膜 4 陰極 5 陰極リード線 6 固体電解質 7 樹脂 1 Anode Lead Wire 2 Anode 3 Dielectric Oxide Film 4 Cathode 5 Cathode Lead Wire 6 Solid Electrolyte 7 Resin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主鎖に共役二重結合を有する複素五員環
化合物より成る電導性高分子と下記の一般式で表わされ
る高分子電解質との複合体を固体電解質として用いるこ
とを特徴とする固体電解コンデンサ。 【化1】 (但し、X,Yは水素原子または炭素数が10以下のア
ルキル基、Zは−OSO3 -、または−SO3 -であり、
a,bは0または10以下の正の整数、Qはメチレン基
(−CH2 −)、nは3以上の正の整数である。)
1. A composite of a conductive polymer composed of a hetero five-membered ring compound having a conjugated double bond in the main chain and a polymer electrolyte represented by the following general formula is used as a solid electrolyte. Solid electrolytic capacitor. Embedded image (However, X, Y is a hydrogen atom or an alkyl group having 10 or less carbon atoms, Z is -OSO 3 -, or -SO 3 - and is,
a, b is 0 or 10 less positive integer, Q is a methylene group (-CH 2 -), n is an positive integer of 3 or more. )
【請求項2】 主鎖に共役二重結合を有する複素五員環
化合物より成る電導性高分子のモノマーを、下記の一般
式で表わされる高分子電解質の存在下で誘電体薄層上に
重合付着せしめることを特徴とする固体電解コンデンサ
の製造方法。 【化2】 (但し、X,Yは水素原子または炭素数が10以下のア
ルキル基、Zは−OSO3 -、または−SO3 -であり、
a,bは0または10以下の正の整数、Qはメチレン基
(−CH2 −)、nは3以上の正の整数である。)
2. A conductive polymer monomer composed of a hetero five-membered ring compound having a conjugated double bond in its main chain is polymerized on a dielectric thin layer in the presence of a polymer electrolyte represented by the following general formula. A method for producing a solid electrolytic capacitor, characterized in that it is attached. Embedded image (However, X, Y is a hydrogen atom or an alkyl group having 10 or less carbon atoms, Z is -OSO 3 -, or -SO 3 - and is,
a, b is 0 or 10 less positive integer, Q is a methylene group (-CH 2 -), n is an positive integer of 3 or more. )
JP8262496A 1996-04-04 1996-04-04 Solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JP2716032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262496A JP2716032B2 (en) 1996-04-04 1996-04-04 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262496A JP2716032B2 (en) 1996-04-04 1996-04-04 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08306588A true JPH08306588A (en) 1996-11-22
JP2716032B2 JP2716032B2 (en) 1998-02-18

Family

ID=13779615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262496A Expired - Lifetime JP2716032B2 (en) 1996-04-04 1996-04-04 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2716032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332452A (en) * 2000-05-24 2001-11-30 Showa Denko Kk Solid electrolytic capacitor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332452A (en) * 2000-05-24 2001-11-30 Showa Denko Kk Solid electrolytic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JP2716032B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5484995B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPWO2006075551A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000133550A (en) Solid electrolytic capacitor
JP2008147392A (en) Solid-state electrolytic capacitor and method for manufacturing solid-state electrolytic capacitor
WO2003017299A1 (en) Method of producing solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP2000021687A (en) Capacitor and manufacture thereof
JP2716032B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH02238613A (en) Solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0734422B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2632944B2 (en) Solid electrolytic capacitors
JP3076872B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JP2775762B2 (en) Solid electrolytic capacitors
JP2003268082A (en) Electroconductive composition, method for producing the same, capacitor using the electroconductive composition and method for producing the same
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP2003151857A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JPH03285321A (en) Solid electrolytic capacitor
JP2001102256A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071107