JPH08306389A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH08306389A
JPH08306389A JP7111445A JP11144595A JPH08306389A JP H08306389 A JPH08306389 A JP H08306389A JP 7111445 A JP7111445 A JP 7111445A JP 11144595 A JP11144595 A JP 11144595A JP H08306389 A JPH08306389 A JP H08306389A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
polymer
lithium battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111445A
Other languages
Japanese (ja)
Inventor
Masahiko Ogawa
昌彦 小川
Masaru Nishimura
賢 西村
Akiko Ishida
明子 石田
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7111445A priority Critical patent/JPH08306389A/en
Publication of JPH08306389A publication Critical patent/JPH08306389A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To restrict inner short-circuitting by dendrite of lithium in a lithium polymer secondary battery. CONSTITUTION: A thin polymer electrolyte layer 2 is disposed between a positive electrode 1 and a lithium negative electrode 3 to be laminated with them. Roughness of polymer components in electrolyte is eliminated by lamination, so the growth of dendrite can be restricted, thereby a lithium polymer secondary battery of excellent safety without having inner short-circuitting can thus be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリマー電解質を用いる
リチウム電池に関するものである。
FIELD OF THE INVENTION The present invention relates to a lithium battery using a polymer electrolyte.

【0002】[0002]

【従来の技術】金属リチウムを用いるリチウム二次電池
では、充電時のリチウムのデンドライト析出による内部
ショートおよび電池の発熱・発火という安全性に関する
問題を避けて通ることができない。ポリマー電解質はそ
の固体としての性質からデンドライトの生成を抑制し、
高い安全性を確保したリチウム二次電池を実現する可能
性を秘めている。またポリマーは形状の自由度や容易に
大面積のシートができることなどの利点を持つことから
大型のリチウム電池への応用も考えられている。
2. Description of the Related Art In a lithium secondary battery using metallic lithium, it is inevitable to avoid safety problems such as internal short circuit due to dendrite deposition of lithium during charging and heat generation / ignition of the battery. The polymer electrolyte suppresses the generation of dendrites due to its solid nature,
It has the potential to realize a highly safe lithium secondary battery. Polymers are also considered to be applied to large lithium batteries because they have advantages such as flexibility in shape and the ability to easily form a large-area sheet.

【0003】しかし、ポリマー電解質のイオン伝導度は
最高でも室温で10-4S/cm程度であり、電解液と同
程度のイオン伝導度を確保することを目的として、ポリ
マーマトリクスの中に電解液を含浸させたゲル状のポリ
マー電解質の開発・研究が活発に行われている。
However, the ionic conductivity of the polymer electrolyte is at most about 10 −4 S / cm at room temperature, and the electrolyte solution is placed in the polymer matrix for the purpose of ensuring the same ionic conductivity as the electrolyte solution. The development and research of gel-type polymer electrolytes impregnated with are active.

【0004】ゲル状のポリマー電解質は例えば特開平5
−109310号公報に記載される方法で製造される。
光架橋性ポリマーであるポリエチレングリコールジアク
リレート10重量%、光架橋性モノマーであるトリメチ
ロールプロパンエトキシル化トリアクリレート1重量
%、電解液の溶媒であるプロピレンカーボネート65重
量%、ポリエチレンオキシド10重量%、電解質塩であ
るLiCF3SO314重量%からなる混合溶液を平板上
に塗布し、これに電子線を照射することによりポリマー
およびモノマーが重合硬化し、透明で柔軟なフィルム状
のポリマー電解質が得られる。
A gel-like polymer electrolyte is disclosed in, for example, Japanese Patent Laid-Open No.
It is manufactured by the method described in JP-A-109310.
Photocrosslinkable polymer polyethylene glycol diacrylate 10% by weight, photocrosslinkable monomer trimethylolpropane ethoxylated triacrylate 1% by weight, electrolyte solvent 65% by weight propylene carbonate, polyethylene oxide 10% by weight, electrolyte A polymer solution and a monomer are polymerized and cured by applying a mixed solution of 14% by weight of LiCF 3 SO 3 which is a salt on a flat plate, and irradiating the plate with an electron beam to obtain a transparent and flexible film-like polymer electrolyte. .

【0005】上記電解質において、ポリエチレングリコ
ールジアクリレートとトリメチロールプロパンエトキシ
ル化トリアクリレートがポリマーマトリクス部分を構成
し、それ以外の成分が電解液に相当するが、イオン伝導
は電解液相を介して行われる。このポリマー電解質のイ
オン伝導度は室温で2×10-3S/cmであり、電解液
に匹敵する高いイオン伝導性を示す。
In the above electrolyte, polyethylene glycol diacrylate and trimethylolpropane ethoxylated triacrylate constitute the polymer matrix portion, and the other components correspond to the electrolytic solution, but ionic conduction takes place through the electrolytic solution phase. . The ionic conductivity of this polymer electrolyte is 2 × 10 −3 S / cm at room temperature, which shows a high ionic conductivity comparable to that of an electrolytic solution.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のポリマ
ー電解質の作製方法では反応混合溶液を攪拌することが
できないため電解質中で不均一に架橋反応が起こりポリ
マーマトリックスの粗密ができる。ポリマーマトリック
スが粗な部分では電解液相が大部分を占め、電流が集中
し、加えて機械的強度も弱い。このためポリマーマトリ
ックスが粗な部分が負極に接していると局所的にリチウ
ムが析出しやすい電気化学的環境が形成され、リチウム
デンドライトの析出を誘発する。
However, in the above method for producing a polymer electrolyte, the reaction mixture solution cannot be stirred, so that a non-uniform crosslinking reaction occurs in the electrolyte and the polymer matrix becomes coarse and dense. In the rough portion of the polymer matrix, the electrolytic solution phase occupies the majority, current concentrates, and the mechanical strength is weak. For this reason, when the rough portion of the polymer matrix is in contact with the negative electrode, an electrochemical environment where lithium is likely to be deposited locally is formed, and the deposition of lithium dendrite is induced.

【0007】この結果、電池充電時にリチウムデンドラ
イトによる内部ショートが発生し、電解液系電池の場合
と同様に内部ショートによる発熱・発火や充放電サイク
ル数の減少を招く。
As a result, an internal short circuit occurs due to the lithium dendrite when the battery is charged, which causes heat generation / ignition and a decrease in the number of charge / discharge cycles due to the internal short circuit as in the case of the electrolyte system battery.

【0008】以上のように、電池の信頼性と安全性の確
保という観点からは、従来のポリマー電解質では未だ固
体材料としての利点が活かされておらず、リチウムデン
ドライトの析出・成長を抑制することができる電解質の
開発が切望されていた。本発明は、このような課題を解
決するものであり、新規のリチウム・ポリマー二次電池
を提案することを目的とする。
As described above, from the viewpoint of ensuring the reliability and safety of the battery, the conventional polymer electrolyte has not yet taken advantage of the solid material, and the deposition / growth of lithium dendrite is suppressed. The development of an electrolyte that can do this has been earnestly desired. The present invention solves such a problem, and an object thereof is to propose a novel lithium polymer secondary battery.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では複数のポリマー電解質層を重ね合わせて
積層し、ポリマーマトリックスの粗な部分をなくすもの
である。
In order to achieve the above-mentioned object, in the present invention, a plurality of polymer electrolyte layers are superposed and laminated to eliminate a rough portion of a polymer matrix.

【0010】[0010]

【作用】目の粗い網を何枚も重ねると全体として非常に
目の細かいものになるように1枚の電解質層にポリマー
の粗密が存在しても複数の電解質層を積層することで電
解質全体ではポリマーの粗密はなくなる。よって、本発
明の電解質をリチウムポリマー二次電池に適用するとリ
チウムデンドライトは電解質層を貫通することがなく、
従来の課題である内部ショートの問題を解決することが
できる。
[Function] The whole electrolyte is made fine by stacking a plurality of electrolyte layers even if there is a polymer density in one electrolyte layer so that the whole mesh becomes very fine when several meshes are stacked. Then, the density of the polymer disappears. Therefore, when the electrolyte of the present invention is applied to a lithium polymer secondary battery, lithium dendrite does not penetrate the electrolyte layer,
It is possible to solve the problem of internal short circuit which is a conventional problem.

【0011】[0011]

【実施例】以下、本発明の実施例を図面とともに説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】[実施例1]図1に本発明のリチウム・ポ
リマー二次電池の縦断面図を示す。図において1はポリ
マー電解質複合正極である。この正極は以下の方法で作
製した。熱硬化性モノマー20重量%と熱重合開始剤1
重量%と非水電解液80重量%を含む液体に、活物質と
導電剤を混合したペースト状正極合剤をアルミニウム箔
上に塗布する。これを100℃で1時間加熱処理するこ
とにより前記モノマーが重合硬化して、ポリマー電解質
を複合した正極シートが得られる。
Example 1 FIG. 1 is a vertical sectional view of a lithium polymer secondary battery of the present invention. In the figure, 1 is a polymer electrolyte composite positive electrode. This positive electrode was manufactured by the following method. 20% by weight of thermosetting monomer and thermal polymerization initiator 1
A paste-like positive electrode mixture prepared by mixing an active material and a conductive agent is applied to an aluminum foil in a liquid containing 1% by weight and 80% by weight of a non-aqueous electrolyte. By subjecting this to heat treatment at 100 ° C. for 1 hour, the above-mentioned monomer is polymerized and cured, and a positive electrode sheet in which a polymer electrolyte is composited is obtained.

【0013】ここでは、熱硬化性モノマーにポリエチレ
ングリコールジアクリレート、熱重合開始剤にアゾビス
イソブチロニトリル、非水電解液にはプロピレンカーボ
ネートとエチレンカーボネートが1:1の等体積混合溶
媒としてLiPF6を1モル/リットル溶解した液体を
使用した。また、活物質にはV613+Y(0≦Y≦0.
16)、導電剤にはアセチレンブラックを用いた。
In this case, polyethylene glycol diacrylate is used as the thermosetting monomer, azobisisobutyronitrile is used as the thermal polymerization initiator, and LiPF is used as the non-aqueous electrolyte solution in a 1: 1 equal volume mixed solvent of propylene carbonate and ethylene carbonate. A liquid in which 6 was dissolved at 1 mol / liter was used. In addition, V 6 O 13 + Y (0 ≦ Y ≦ 0.
16), acetylene black was used as the conductive agent.

【0014】2は、膜厚は10μmの電解質を5枚積層
化したポリマー電解質層である。個々の電解質はいずれ
も紫外線硬化性モノマーと光重合開始剤と非水電解液か
らなる液体に紫外線を照射して得たゲル状のポリマー電
解質層である。紫外線硬化性モノマーにはポリエチレン
オキシドジアクリレートを用い、光重合開始剤にはベン
ジルジメチルケタール(0.1重量%)を用いた。ここ
で、紫外線硬化性モノマーと非水電解液の重量比は、2
0:80である。
Reference numeral 2 is a polymer electrolyte layer in which five electrolytes having a film thickness of 10 μm are laminated. Each of the individual electrolytes is a gel-like polymer electrolyte layer obtained by irradiating a liquid containing an ultraviolet-curable monomer, a photopolymerization initiator, and a nonaqueous electrolytic solution with ultraviolet rays. Polyethylene oxide diacrylate was used as the ultraviolet curable monomer, and benzyl dimethyl ketal (0.1% by weight) was used as the photopolymerization initiator. Here, the weight ratio of the ultraviolet curable monomer to the non-aqueous electrolyte is 2
It is 0:80.

【0015】積層の方法としては個々の電解質を別々に
合成し、重ね合わせる方法と金属リチウムの上に電解質
層を形成し、さらにこの電解質の上に次の電解質層を硬
化形成するという操作を繰り返す方法がある。電極表面
との接合性は金属リチウム上に直接電解質を形成する後
者の方法が優れており、本実施例では後者の方法で作製
した電解質層を使用した。
As a stacking method, the operations of synthesizing individual electrolytes separately, stacking them, forming an electrolyte layer on metallic lithium, and curing and forming the next electrolyte layer on this electrolyte are repeated. There is a way. The latter method of directly forming an electrolyte on metallic lithium is excellent in terms of the bondability with the electrode surface, and in this example, the electrolyte layer produced by the latter method was used.

【0016】また、正極1上にも薄層の電解質を紫外線
硬化によって形成し、上記の積層化電解質および金属リ
チウム電極とともに電池を構成した。
A thin layer of electrolyte was also formed on the positive electrode 1 by ultraviolet curing, and a battery was constructed with the above-mentioned laminated electrolyte and metallic lithium electrode.

【0017】本実施例では、電解液としてプロピレンカ
ーボネートとエチレンカーボネートの1:1の等体積混
合溶媒に、溶質としてLiPF6を1モル/リットル溶
解した非水電解液を使用した。
In this embodiment, a nonaqueous electrolytic solution prepared by dissolving LiPF 6 as a solute at 1 mol / liter in a 1: 1 equal volume mixed solvent of propylene carbonate and ethylene carbonate was used as the electrolytic solution.

【0018】[実施例2]紫外線硬化性モノマーと非水
電解液の重量比が、40:60であること以外は(実施
例1)と同じであるリチウム・ポリマー二次電池を作製
した。
[Example 2] A lithium-polymer secondary battery was produced in the same manner as in Example 1 except that the weight ratio of the UV-curable monomer to the non-aqueous electrolyte was 40:60.

【0019】[実施例3]膜厚50μmの電解質層を2
枚積層化したこと以外は(実施例1)と同じであるリチ
ウム・ポリマー二次電池を作製した。
[Embodiment 3] Two electrolyte layers having a film thickness of 50 μm are provided.
A lithium-polymer secondary battery was produced in the same manner as in (Example 1) except that the sheets were laminated.

【0020】[比較例]電解質を膜厚50μmの単一層
としたこと以外は(実施例1)と同じであるリチウム・
ポリマー二次電池を作製した。
Comparative Example The same lithium as in Example 1 except that the electrolyte was a single layer having a thickness of 50 μm.
A polymer secondary battery was produced.

【0021】これらの電池を0.25mA/cm2およ
び0.5mA/cm2の電流密度で3.3〜1.8Vの
電圧範囲で充放電させ、そのサイクル特性を評価した。
These batteries were charged and discharged at current densities of 0.25 mA / cm 2 and 0.5 mA / cm 2 in a voltage range of 3.3 to 1.8 V, and their cycle characteristics were evaluated.

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)に試作した電池の試験結果を示
す。充放電電流密度が0.25mA/cm2の試験にお
いて、(実施例1)では195サイクル、(実施例2)
では210サイクルと良好なサイクル特性を示した。
(実施例3)では80サイクルと特性が低下している
が、電解質が単一層である(比較例)では40サイクル
で内部ショートを起こしていることから2回の積層だけ
でもある程度の効果が得られることがわかる。充放電電
流密度が0.5mA/cm2の試験において、(実施例
1)では160サイクルまで充放電可能であった。(実
施例2)では電解質のイオン伝導度が低いためこの電流
密度での放電はできなかった。電解質層内には電解液が
少ない方が良いが60wt%を下回ると放電特性が低下
する。しかし、低率放電時には60wt%の場合が最も
良かったので、60wt%以上であることが好ましい。
Table 1 shows the test results of the prototype battery. In a test with a charge / discharge current density of 0.25 mA / cm 2 , 195 cycles in (Example 1), (Example 2)
Showed good cycle characteristics of 210 cycles.
In the case of (Example 3), the characteristics were deteriorated to 80 cycles, but in the case of the electrolyte having a single layer (Comparative example), an internal short circuit occurred at 40 cycles. You can see that In the test in which the charge / discharge current density was 0.5 mA / cm 2 , in Example 1, charge / discharge was possible up to 160 cycles. In (Example 2), discharge at this current density was not possible because the ionic conductivity of the electrolyte was low. It is better that the amount of the electrolytic solution in the electrolyte layer is small, but if it is less than 60 wt%, the discharge characteristics are deteriorated. However, since 60 wt% was the best at the low rate discharge, it is preferably 60 wt% or more.

【0024】以上の結果から積層化したポリマー電解質
ではリチウムのデンドライト析出による内部ショートを
防止することができ、電池の充放電サイクル寿命を向上
させることができた。
From the above results, it was possible to prevent the internal short circuit due to the dendrite deposition of lithium in the laminated polymer electrolyte and to improve the charge / discharge cycle life of the battery.

【0025】なお、本実施例では、熱硬化性モノマーお
よび紫外線硬化性モノマーにポリエチレンオキシドジア
クリレートを用いたが、これはポリエチレンオキシドジ
メタクリレートなど他のモノマーであってもよい。
In this embodiment, polyethylene oxide diacrylate was used as the thermosetting monomer and the ultraviolet curable monomer, but other monomer such as polyethylene oxide dimethacrylate may be used.

【0026】また、非水電解液の溶質にはLiPF6
用いたが、これはLiCF3SO3、LiClO4、Li
N(CF3SO22、LiAsF6、LiBF4など他の
リチウム塩であってもよい。
LiPF 6 was used as the solute of the non-aqueous electrolyte, which was LiCF 3 SO 3 , LiClO 4 , Li.
Other lithium salts such as N (CF 3 SO 2 ) 2 , LiAsF 6 , and LiBF 4 may be used.

【0027】また、熱重合開始剤にはアゾビスイソブチ
ロニトリルを用いたが、これは過酸化ベンゾイルや過酸
化アセチルなど他の開始剤であってもよい。
Although azobisisobutyronitrile was used as the thermal polymerization initiator, other initiators such as benzoyl peroxide and acetyl peroxide may be used.

【0028】また、光重合開始剤にはベンジルジメチル
ケタールを用いたが、これはベンゾインイソプロピルエ
ーテル、ベンゾフェノン、ジメチルアミノアセトフェノ
ン、4,4′−ビス(ジメチルアミノ)ベンゾフェノ
ン、2−クロロチオキサントン、(C652IPF6
(CH32N(C65)N2PF6、(C653SPF6
など他の開始剤であってもよい。
Benzyl dimethyl ketal was used as the photopolymerization initiator, which was benzoin isopropyl ether, benzophenone, dimethylaminoacetophenone, 4,4'-bis (dimethylamino) benzophenone, 2-chlorothioxanthone, (C 6 H 5 ) 2 IPF 6 ,
(CH 3) 2 N (C 6 H 5) N 2 PF 6, (C 6 H 5) 3 SPF 6
Other initiators may also be used.

【0029】また、活物質にはV613+Y(0≦Y≦
0.16)を用いたが、これはLiCoO2、LiNi
2、V25、LiMnO2、LixMn24(0.1<
x<0.5)など他の活物質であってもよい。
The active material is V 6 O 13 + Y (0≤Y≤
0.16) was used, which was LiCoO 2 , LiNi
O 2 , V 2 O 5 , LiMnO 2 , Li x Mn 2 O 4 (0.1 <
Other active materials such as x <0.5) may be used.

【0030】また、導電剤にはアセチレンブラックを用
いたが、これはグラファイト等の他のカーボンあるいは
それらの混合物であってもよい。
Although acetylene black was used as the conductive agent, other carbon such as graphite or a mixture thereof may be used.

【0031】また、リチウム電池用負極には金属リチウ
ムを用いたが、これはリチウムを含む化合物、例えばL
i−Alのような合金、あるいはCxLi(リチウム化
した炭素あるいは黒鉛)であってもよい。
Further, metallic lithium was used for the negative electrode for the lithium battery, which is a compound containing lithium, for example, L.
It may be an alloy such as i-Al or C x Li (lithiated carbon or graphite).

【0032】[0032]

【発明の効果】以上のように本発明は、リチウム電池の
電解質に積層化したポリマー電解質層を用いることで、
リチウムのデンドライトによる内部ショートの発生を抑
制し、高信頼性のリチウム・ポリマー二次電池を提供す
ることができる。
As described above, according to the present invention, by using the polymer electrolyte layer laminated on the electrolyte of the lithium battery,
An internal short circuit due to lithium dendrites can be suppressed, and a highly reliable lithium polymer secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム・ポリマー二次電池の縦断面
FIG. 1 is a vertical sectional view of a lithium polymer secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 ポリマー電解質複合正極 2 積層化したポリマー電解質層 3 金属リチウムの負極 1 Polymer Electrolyte Composite Positive Electrode 2 Laminated Polymer Electrolyte Layer 3 Metal Lithium Negative Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と負極の間に複数のポリマー電解質層
を重ね合わせて配したことを特徴とするリチウム電池。
1. A lithium battery characterized in that a plurality of polymer electrolyte layers are superposed and arranged between a positive electrode and a negative electrode.
【請求項2】ポリマー電解質の各層の厚みが10μm以
上50μm以下であることを特徴とする請求項1記載の
リチウム電池。
2. The lithium battery according to claim 1, wherein the thickness of each layer of the polymer electrolyte is 10 μm or more and 50 μm or less.
【請求項3】ポリマー電解質に非水電解液を含浸したゲ
ル電解質を使用する請求項1記載のリチウム電池。
3. The lithium battery according to claim 1, wherein a gel electrolyte obtained by impregnating a polymer electrolyte with a non-aqueous electrolyte is used.
【請求項4】ゲル電解質中の非水電解液量が60wt%
以上である請求項3記載のリチウム電池。
4. The amount of non-aqueous electrolyte in the gel electrolyte is 60 wt%.
The lithium battery according to claim 3, which is the above.
【請求項5】負極がリチウム金属である請求項1記載の
リチウム電池。
5. The lithium battery according to claim 1, wherein the negative electrode is lithium metal.
【請求項6】正極活物質にV613+Y(0≦Y≦0.1
6)を使用する請求項1記載のリチウム電池。
6. A positive electrode active material comprising V 6 O 13 + Y (0 ≦ Y ≦ 0.1
6. The lithium battery according to claim 1, which uses 6).
JP7111445A 1995-05-10 1995-05-10 Lithium battery Pending JPH08306389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111445A JPH08306389A (en) 1995-05-10 1995-05-10 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111445A JPH08306389A (en) 1995-05-10 1995-05-10 Lithium battery

Publications (1)

Publication Number Publication Date
JPH08306389A true JPH08306389A (en) 1996-11-22

Family

ID=14561388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111445A Pending JPH08306389A (en) 1995-05-10 1995-05-10 Lithium battery

Country Status (1)

Country Link
JP (1) JPH08306389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922707A (en) * 1995-07-07 1997-01-21 Yuasa Corp Electrolyte for battery and battery
JPH11144767A (en) * 1997-11-04 1999-05-28 Tdk Corp Sheet type electrode-electrolyte structure and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922707A (en) * 1995-07-07 1997-01-21 Yuasa Corp Electrolyte for battery and battery
JPH11144767A (en) * 1997-11-04 1999-05-28 Tdk Corp Sheet type electrode-electrolyte structure and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4418134B2 (en) Polymer gel electrolyte and lithium battery using the same
JPH08329983A (en) Lithium battery
US20070020523A1 (en) Battery
KR100371954B1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JP4005192B2 (en) Solid battery
JP2004164897A (en) Bipolar battery
KR100444134B1 (en) Polymer electrolyte and nonaqueous battery containing the same
JP2002359006A (en) Secondary battery
JPWO1999034372A6 (en) Polymer electrolyte and non-aqueous battery using the same
JP3879140B2 (en) Lithium polymer secondary battery
JP4163295B2 (en) Gel-like solid electrolyte battery
JP4019518B2 (en) Lithium secondary battery
JPH08287949A (en) Lithium-polymer battery and its manufacture
JP3858465B2 (en) Lithium secondary battery
JP2002184466A (en) Battery for portable equipment
JPH08306389A (en) Lithium battery
JPH11260336A (en) Polymer electrolyte battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JP3372704B2 (en) Solid electrolyte lithium ion secondary battery and method of manufacturing the same
JP3948159B2 (en) Secondary battery and manufacturing method thereof
JPH11162506A (en) Manufacture of lithium battery
JP2006261129A (en) Method of manufacturing lithium secondary battery
JP2000067850A (en) Polymer electrolyte secondary battery
JP2000331712A (en) Lithium secondary battery using polymer gel electrolyte
JPH08255614A (en) Manufacture of lithium battery and manufacture of positive electrode thereof