JPH0830496B2 - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPH0830496B2
JPH0830496B2 JP61023818A JP2381886A JPH0830496B2 JP H0830496 B2 JPH0830496 B2 JP H0830496B2 JP 61023818 A JP61023818 A JP 61023818A JP 2381886 A JP2381886 A JP 2381886A JP H0830496 B2 JPH0830496 B2 JP H0830496B2
Authority
JP
Japan
Prior art keywords
magnetic
center
shaft
magnetic pole
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61023818A
Other languages
Japanese (ja)
Other versions
JPS62184223A (en
Inventor
民雄 福田
雅治 石井
英治 佐藤
庸蔵 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61023818A priority Critical patent/JPH0830496B2/en
Publication of JPS62184223A publication Critical patent/JPS62184223A/en
Publication of JPH0830496B2 publication Critical patent/JPH0830496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ラジアル形磁気軸受に係り、とくにON−OF
F制御を実施するのに好適な磁気軸受に関する。
TECHNICAL FIELD The present invention relates to a radial type magnetic bearing, and particularly to ON-OF.
The present invention relates to a magnetic bearing suitable for implementing F control.

〔従来の技術〕[Conventional technology]

従来の装置は、ソフト技研出版部から昭和56年10月に
発行された「磁気・磁性体の新技術と各種設計・応用の
実際」第157ページの図−4に記載のように、4方向の
吸引力を得るには一方向につき各々2個の磁極の合計8
個の磁極を有していた。
As shown in Figure 4 on page 157, “New technology of magnetic materials and magnetic materials”, published by Soft Giken Publishing Co. in October 1981, the conventional device has four directions. In order to obtain the attraction force of, a total of 8 magnetic poles, 2 for each direction
It had magnetic poles.

又、特開昭59−83829号公報,特開昭59−99118号公
報,特開昭59−151619号公報にはそれぞれ回転軸の変位
に対して対向する電磁石の一方の励磁を弱め他方の励磁
を強めるように制御する磁気軸受が開示されている。
Further, in JP-A-59-83829, JP-A-59-99118, and JP-A-59-151619, the excitation of one of the opposing electromagnets is weakened and the excitation of the other is weakened with respect to the displacement of the rotary shaft. There is disclosed a magnetic bearing that controls to strengthen the magnetic field.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記従来装置は、吸引方向の2倍の磁極を必
要とする上、多数の励磁コイルを収納する空間を確保す
るために外径が大きくなる、軸方向に長くなる、さらに
軸の製作最小径もあまり小さくできないという不具合が
あった。
However, the above-mentioned conventional device requires twice as many magnetic poles as in the attraction direction, and also has a large outer diameter in order to secure a space for accommodating a large number of exciting coils, becomes longer in the axial direction, and has a further manufacturing cost. There was a problem that the small diameter could not be made too small.

又、特開昭59−83829号公報,特開昭59−99118号公
報,特開昭59−151619号公報に開示のものは、上記と同
様に吸引方向の2倍の磁極を設けて回転軸の変位を制御
するものであり、上記したものと同様の問題点を有す
る。
Further, the ones disclosed in JP-A-59-83829, JP-A-59-99118, and JP-A-59-151619 are provided with a magnetic pole twice in the suction direction as in the above, and a rotary shaft is provided. Is controlled, and has the same problems as those described above.

本発明の目的は、軸に与えることができる吸引力の方
向の数を磁極の数と同数以上にでき、軸の変位の制御性
を向上させた磁気軸受を提供することにある。
An object of the present invention is to provide a magnetic bearing in which the number of directions of attraction that can be applied to a shaft can be made equal to or more than the number of magnetic poles, and the controllability of shaft displacement is improved.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、軸まわりに、励磁コイルを
有する4以上偶数個の磁極を配置した磁気軸受におい
て、前記各磁極を共通の固定鉄心に形成するとともに、
前記磁極の各々の端面の磁極が互いに隣合う同士でN極
とS極と異なるように励磁コイルに通電されるものであ
って、軸を吸引する方向の両側に位置する2個の磁極も
しくは軸を吸引する方向に最も近い磁極とこの磁極に隣
接している2個の磁極との3個の磁極の各励磁コイルに
それぞれ独立に通電して各磁極を独立に制御し、磁極間
方向および磁極方向の一方向に制御するものである。
In order to achieve the above object, in a magnetic bearing in which an even number of magnetic poles of 4 or more having an excitation coil are arranged around an axis, each magnetic pole is formed on a common fixed iron core, and
Two magnetic poles or shafts which are energized to the exciting coil so that the magnetic poles on the respective end faces of the magnetic poles are adjacent to each other and different from the N pole and the S pole, and which are located on both sides in the direction of attracting the shaft. Of the three magnetic poles, that is, the magnetic pole closest to the direction of attracting the magnetic pole and the two magnetic poles adjacent to the magnetic pole, are independently energized to independently control the respective magnetic poles, and the magnetic pole direction and the magnetic pole are controlled. The direction is controlled in one direction.

〔作用〕[Action]

隣接する磁極の励磁コイルの組合せを変えることによ
って、磁極の数よりも多い軸の移動方向が得られる。こ
のため中心への移動時間が短縮される。
By changing the combination of the exciting coils of the adjacent magnetic poles, more moving directions of the shaft than the number of magnetic poles can be obtained. Therefore, the time required to move to the center is shortened.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

第1図に示す実施例では、軸2と固定鉄心3と該固定
鉄心3より該軸2側に突出した磁極4a,4b,4c,4dと該磁
極4a,4b,4c,4dの各々に巻かれた励磁コイル6a,6b,6c,6d
から磁気軸受1本体が構成されている。該固定鉄心3の
中心Oを通るX軸上に配置されたX軸位置センサ11と該
固定鉄心3の中心Oを通りX軸と直角方向のY軸上に配
置されたY軸位置センサ12と該励磁コイル6a,6b,6c,6d
各々への通電をON−OFFする高速リレー22a,22b,22c,22d
と該位置センサ11,12からの信号を受け取り演算や判断
をして該高速リレー22a,22b,22c,22dへ信号を送り出す
制御部13などから該磁気軸受1の制御系が構成されてい
る。該励磁コイル6a,6b,6c,6dへの給電は電源21で行
う。
In the embodiment shown in FIG. 1, the shaft 2, the fixed iron core 3, the magnetic poles 4a, 4b, 4c, 4d protruding from the fixed iron core 3 toward the shaft 2 and the magnetic poles 4a, 4b, 4c, 4d are respectively wound. Excited coils 6a, 6b, 6c, 6d
The main body of the magnetic bearing 1 is composed of. An X-axis position sensor 11 arranged on the X-axis passing through the center O of the fixed iron core 3 and a Y-axis position sensor 12 arranged on the Y-axis passing through the center O of the fixed iron core 3 and perpendicular to the X-axis. The exciting coils 6a, 6b, 6c, 6d
High-speed relays 22a, 22b, 22c, 22d that turn on and off the power to each
A control system for the magnetic bearing 1 is composed of a control unit 13 which receives signals from the position sensors 11 and 12 and performs calculations and judgments to send signals to the high speed relays 22a, 22b, 22c and 22d. The power supply 21 supplies power to the exciting coils 6a, 6b, 6c, 6d.

次に、本実施例の動作を説明する。該固定鉄心3の中
心をO、該固定鉄心3の中心Oと該磁極4d,4aの中心線
で形成された+X側の領域をI、該固定鉄心3の中心O
と該磁極4a,4bの中心線で形成された+Y側の領域をI
I、該固定鉄心3の中心Oと該磁極4b,4dの中心線で形成
された−X側の領域をIII、該固定鉄心3の中心Oと該
磁極4c,4dの中心線で形成された領域をIVとする。該励
磁コイル6aに電流を流すと該磁極4aの端面の極性はN
極、該励磁コイル6bに電流を流すと該磁極4bの端面の極
性はS極、該励磁コイル6cに電流を流すと該磁極4cの端
面の極性はN極、該励磁コイル6dと電流を流すと該電極
4dの端面の極性はS極で全ての相隣る磁極の極性が異な
るように励磁コイルを配置する。該軸2の位置を該位置
センサ11,12により測定し、臓定した値を該制御部13で
演算処理し、該軸2の中心O′が領域IIIに在ると該制
御部13で判断し、該領域IIIと該固定鉄心3の中心Oで
対称な領域Iを構成する該磁極4d,4aの励磁コイル6d,6a
のみを通電状態とするように該高速リレー22d,22aをON
とし該高速リレー22b,22cをOFFとする信号を該制御13か
ら出す。該制御部13から出た信号により該高速リレー22
d,22aのみがON状態になり、該電流21から該励磁コイル6
d,6aに電流が流れ、該励磁コイル6d,6aを流れる電流に
より該磁極4d,4aが磁化され磁束が通る。該磁極4aを出
た磁束は該軸2,該磁極4d,該固定鉄心3を通り該磁極4a
に戻り、該磁極4aと該軸2及び該磁極4dと該軸2に吸引
力が発生し、両者の吸引力の合力により該軸2は+X軸
方向に移動する。上記の該位置センサ11,12の信号受け
取りから吸引力による該軸2の移動までを高速度で繰り
返すことにより、該軸2の中心O′は該固定鉄心3の中
心Oへと近付く。
Next, the operation of this embodiment will be described. The center of the fixed iron core 3 is O, the area O on the + X side formed by the center O of the fixed iron core 3 and the center lines of the magnetic poles 4d and 4a is I, and the center O of the fixed iron core 3 is
And the area on the + Y side formed by the center lines of the magnetic poles 4a and 4b is I
I, a region on the -X side formed by the center O of the fixed iron core 3 and the center lines of the magnetic poles 4b and 4d is III, and is formed by the center O of the fixed iron core 3 and the center lines of the magnetic poles 4c and 4d. Let the area be IV. When a current is passed through the exciting coil 6a, the polarity of the end face of the magnetic pole 4a becomes N.
Pole, when a current is passed through the exciting coil 6b, the polarity of the end surface of the magnetic pole 4b is S pole, and when a current is passed through the exciting coil 6c, the polarity of the end surface of the magnetic pole 4c is N pole, and a current is passed through the exciting coil 6d. And the electrode
The polarity of the end face of 4d is the S pole, and the exciting coils are arranged so that the polarities of all adjacent magnetic poles are different. The position of the shaft 2 is measured by the position sensors 11 and 12, the determined value is arithmetically processed by the control unit 13, and the control unit 13 determines that the center O ′ of the shaft 2 is in the region III. Then, the exciting coils 6d and 6a of the magnetic poles 4d and 4a that constitute a region I symmetrical with the region III and the center O of the fixed iron core 3 are formed.
Turn on the high-speed relays 22d and 22a so that only the power is turned on.
Then, a signal for turning off the high speed relays 22b and 22c is output from the control 13. The high-speed relay 22 is driven by the signal output from the control unit 13.
Only d and 22a are turned on, and the exciting coil 6
A current flows through d, 6a, and the magnetic poles 4d, 4a are magnetized by the current flowing through the exciting coils 6d, 6a, and a magnetic flux passes. The magnetic flux exiting the magnetic pole 4a passes through the shaft 2, the magnetic pole 4d, and the fixed iron core 3 and the magnetic pole 4a.
Then, an attractive force is generated in the magnetic pole 4a and the shaft 2, and in the magnetic pole 4d and the shaft 2, and the shaft 2 moves in the + X axis direction due to the resultant force of the attractive forces of the two. The center O ′ of the shaft 2 approaches the center O of the fixed iron core 3 by repeating at high speed from the reception of the signals from the position sensors 11 and 12 to the movement of the shaft 2 by the suction force.

なお、該固定鉄心3の中心Oの極く近接に全ての電極
石5a,5b,5c,5dを作動させない即ち全ての高速リレー22
a,22b,22c,22dをOFFとする領域を設けても上記動作に支
障はない。さらに、本実施例では該電源21を定電源で示
したが、該固定鉄心3の中心Oと該軸2の中心O′の距
離により変化する可変電源としても上記動作に支障はな
いし、該電源21の他方を接地23とせず、接地23,23a,23
b,23c,23dを共通として一定の電位をもっていても上記
動作に支障はない。
It should be noted that all the electrode stones 5a, 5b, 5c, 5d are not operated in the immediate vicinity of the center O of the fixed iron core 3, that is, all the high speed relays 22
The above operation is not hindered even if a region where a, 22b, 22c and 22d are turned off is provided. Further, although the power source 21 is shown as a constant power source in the present embodiment, the above operation is not hindered even if it is a variable power source which changes depending on the distance between the center O of the fixed iron core 3 and the center O'of the shaft 2, and the power source is not impaired. The other side of 21 is not grounded 23, but grounded 23, 23a, 23
Even if b, 23c, and 23d are common and have a constant potential, the above operation is not hindered.

第2図に、該軸2の中心O′が領域IIIの−Y側にあ
るときのO′の動きの例を示す。O′の始点は全て該固
定鉄心3の中心Oからδだけ離れており、実線O1′の
始点は−X軸上、一点鎖O2′の始点は−X側から−Y側
へ22.5゜離れ、破線O3′の始点は−X側から−Y側へ45
゜即ち領域IIIと領域IVの境界上にあり、O1′,O2′,
O3′がOの極く近傍δ内に到達するまでの動きの例で
ある。図中の黒丸は測定点である。
FIG. 2 shows an example of the movement of O'when the center O'of the shaft 2 is on the -Y side of the region III. O 'All start of are separated by [delta] 1 from the center O of the fixed iron core 3, the solid line O 1' starting point on the -X axis, starting point of one point chain O 2 'from the -X side to the -Y side 22.5 45 ° away, the starting point of the broken line O 3 ′ is from −X side to −Y side 45
I.e., on the boundary between Region III and Region IV, O 1 ′, O 2 ′,
It is an example of the movement until O 3 ′ reaches within δ 0 , which is very close to O. The black circles in the figure are measurement points.

以下に示す表1は、第2図で示したO2′の位置と該高
速リレー22a,22b,22c,22dのON−OFF状態及び該軸2の吸
引方向を示す。軸の中心O′が領域IIIにあると高速リ
レー22aと22dがONとなって軸を+X側へ吸引し、軸の中
心O′が領域IVにあると高速リレー22aと22bがONとなっ
て軸を+Y側へ吸引していることが判る。
Table 1 below shows the position of O 2 ′ shown in FIG. 2 , the ON / OFF states of the high speed relays 22a, 22b, 22c and 22d and the suction direction of the shaft 2. When the center O'of the shaft is in the region III, the high speed relays 22a and 22d are turned on and the shaft is attracted to the + X side. When the center O'of the shaft is in the region IV, the high speed relays 22a and 22b are turned on. It can be seen that the shaft is attracted to the + Y side.

本実施例によれば次の効果がある。 According to this embodiment, there are the following effects.

軸の吸引方向が4方向の場合、磁極の数は吸引方向
と同じ4個の従来の半分ですみ、同一吸引力を得るめ球
の磁極端部の総面積は従来形の約65%と小さく、励磁コ
イルの収納スペースも含めた固定鉄心側の体積は従来形
の70%程度となり、従来形に比べコンパクトである。
When the shaft has four directions of attraction, the number of magnetic poles is half that of the conventional four, which is the same as the direction of attraction, and the total area of the magnetic pole ends of the female ball that obtains the same attractive force is as small as about 65% of the conventional type. The volume of the fixed core side including the space for the excitation coil is about 70% of the conventional type, which is more compact than the conventional type.

固定鉄心が共通であるので磁極相互の位置合わせの
手間が不要である。
Since the fixed iron core is common, it is not necessary to align the magnetic poles with each other.

固定鉄心の外周が円筒形であるのでハウジングの製
作が容易で組立が簡単である。
Since the outer circumference of the fixed core is cylindrical, the housing can be easily manufactured and assembled.

磁極に巻く励磁コイルを固定鉄心とは別個に製作で
きるので生産性が良い。
Since the exciting coil wound around the magnetic pole can be manufactured separately from the fixed iron core, the productivity is good.

励磁コイルの製作数が従来形の半分で、1箇所当り
の巻数も従来形に比べ1割程度しか増えず、省資源であ
る。
The number of manufactured excitation coils is half that of the conventional type, and the number of turns per location is only about 10% greater than that of the conventional type, which is resource saving.

第3図に示す実施例では、軸1と固定鉄心2と該固定
鉄心2より該軸2側に突出した磁極4a,4b,4c,4dと該磁
極4a,4b,4c,4dの各々に巻かれた励磁コイル6a,6b,6c,6d
から磁気軸受1本体が構成されている。該固定鉄心3の
中心Oを通るX軸上に配置されたX方向位置センサ11と
該固定鉄心3の中心Oを通りX軸と直角をなすY軸上に
配置されたY方向位置センサ12と該励磁コイル6a,6b,6
c,6d各々への通電をON−OFFとする高速リレー22a I,22a
II,22b I,22b II,22c I,22c II,22d I,22d IIと該位置
センサ11,12からの信号を受け取り演算や判断をして高
速リレー22a I,22a II,22b I,22b II,22c I,22c II,22d
I,22d IIへ信号を送り出す制御部13などから該磁気軸
受1の制御系が構成されている。該励磁コイル6a,6b,6
c,6dへの給電は電源21I,21IIで行う。
In the embodiment shown in FIG. 3, the shaft 1, the fixed iron core 2, the magnetic poles 4a, 4b, 4c, 4d protruding from the fixed iron core 2 toward the shaft 2 and the magnetic poles 4a, 4b, 4c, 4d are respectively wound. Excited coils 6a, 6b, 6c, 6d
The main body of the magnetic bearing 1 is composed of. An X direction position sensor 11 arranged on the X axis passing through the center O of the fixed iron core 3 and a Y direction position sensor 12 arranged on the Y axis passing through the center O of the fixed iron core 3 and perpendicular to the X axis. The exciting coils 6a, 6b, 6
High-speed relay 22a I, 22a that turns on and off power to each of c and 6d
II, 22b I, 22b II, 22c I, 22c II, 22d I, 22d II and high-speed relays 22a I, 22a II, 22b I, 22b II , 22c I, 22c II, 22d
A control system for the magnetic bearing 1 is composed of a control unit 13 for sending signals to I and 22d II. The exciting coils 6a, 6b, 6
Power is supplied to c and 6d by power supplies 21I and 21II.

次に、本実施例の動作を説明する。該固定鉄心3の中
心をOとし、+X側と該磁極4dの中間と該中心Oを結ん
だ線と+X側と該磁極4aの中間と該中心Oを結んだ線で
形成された領域をI、該磁極4aと+X側の中間と該中心
Oを結んだ線と該磁極4aと+Y軸の中間と該中心Oを結
んだ線で形成された領域をII、+Y軸と該磁極4aの中間
と該中心Oを結んだ線と+Y軸と該磁極4bの中間と該中
心Oを結んだ線で形成された領域をIII、該磁極4bと+
Y軸の中間と該中心Oを結んだ線と該磁極4bと−X軸の
中間と該中心Oを結んだ線で形成された領域をIV、−X
軸と該磁極4bの中間と該中心Oを結んだ線と−X軸と該
磁極4cの中間と該中心Oを結んだ線で形成された領域を
V、該磁極4cと−X軸の中間と該中心Oを結んだ線と該
値極4cと−Y軸の中間と該中心Oを結んだ線で形成され
た領域をVI、−Y軸と該磁極4cの中間と該中心Oを結ん
だ線と−Y軸と該磁極4dの中間と該中心Oを結んだ線で
形成された領域をVII、該磁極4dと−Y軸の中間と該中
心Oを結んだ線と該磁極4dと+X軸の中間と該中心Oを
結んだ線で形成された領域VIIIとし、該軸2の中心を
O′とする。該励磁コイル6aに電流を流すと該磁極4aの
端面の極性をN極、該励磁コイル6bに電流を流す該磁極
4bの端面の極性はS極、該励磁コイル6cに電流を流すと
該磁極4cの端面の極性はN極、該励磁コイル6dに電流を
流すと該磁極4dの端面の極性はS極と全ての相隣る磁極
の極性が異なるように励磁コイルを配置する。励磁コイ
ルに電源22IIを通電した場合の磁極を通る磁束は、同一
の励磁コイルに電源22Iを通電した場合の磁極を通る磁
束の2倍となるように、電源22IIと電源22Iの電位は設
定している。該高速リレー22a Iと22a II,22b Iと22b I
I,22c Iと22c II,22d Iと22d IIは各々同時にはON状態
とならないように考慮されている。該軸2の位置を該位
置センサ11,12により測定し、測定した値を該制御部13
で演算処理した結果、該軸2の中心O′が領域VIに在る
と該制御部13で判断し、該領域VIと該固定鉄心3の中心
Oで対称な領域IIの方向に該軸2を吸引するように、該
磁極4aの該励磁コイル6aには高電位の電源21IIと通電さ
せるように該高速リレー22aIIをONとし該磁極4d,4bの各
々の該励磁コイル6d,6bには低電位の電源21Iと通電させ
るように該高速リレー22d I,22b IをONとしその他の高
速リレー22a I,22c I,22b II,22c II,22d II,22d IIをO
FFとする信号を該制御部13から出す。該制御部13から出
た信号により該高速リレー22d I,22a II,22b IのみがON
状態になり、該電源21IIから該励磁コイル6aに電流が流
れ該磁極4aが磁化され該磁極4aに磁束が通るとともに、
該電源21Iから該励磁コイル6d,6bに電流が流れ該磁極4
d,4bが磁化され該磁極4d,4bに磁束が通る。該磁極4aを
出た磁束はエアギャップを通り該軸2に取り付けられた
磁性材料を用いたスリーブ2′に到達して二手に分かれ
る。分かれた一方の磁束は、スリーブ中を時計方向に約
1/4周してエアギャップを通り該磁極4dに到達する。分
かれた他方の磁束は、スリーブ中を反時計方向に1/4周
してエアギャップを通り該磁極4bに到達する。該磁極4d
から該固定鉄心3に出た磁束は該固定鉄心2を反時計回
りに1/4周り、該磁極4bから該固定鉄心2に出た磁束は
該固定鉄心3を時計回りに1/4周して該磁極4dから出た
磁極と合流して該磁極4aに戻る。磁束が上記のように流
れると、該磁極4aと該軸2,該磁極4dと該軸2、及び該磁
極4bと該軸2に吸引力が発生するが、該磁極4dと該軸2
に発生した吸引力と該磁極4bと該軸2に発生した吸引力
はほとんど大きさが等しく方向が逆なので相互に打ち消
し合うため、該磁極4aと該軸2に発生した吸引力のみが
大きく作用して、該軸2は該磁極4aの方向に移動する。
なお、もし、磁極4bおよび4dを励機しないとすると、磁
極4aからの磁束は軸2を介して磁極4cに至りさらに固定
鉄心3を通って磁極4aに戻る。この場合、軸2は磁極4c
に近接しているので中心と反対方向の磁極4c側に吸引さ
れる。磁極4bおよび4dの励磁は軸2からの磁束を磁極4c
になるべく到達させないためである。上記の該位置セン
サ11,12の信号受け取りから吸引力による該軸2の移動
までの動作を高速度で繰り返すことにより、該軸2の中
心O′は該固定鉄心2の中心Oへと近付く。
Next, the operation of this embodiment will be described. The center of the fixed iron core 3 is O, and the region formed by the line connecting the + X side and the middle of the magnetic pole 4d and the center O and the line connecting the middle of the + X side and the magnetic pole 4a and the center O is I , A region formed by a line connecting the center O with the middle of the magnetic pole 4a and the + X side and the center O, and a region formed with a line connecting the center of the magnetic pole 4a and the + Y axis and the center O is II, and the middle of the + Y axis and the magnetic pole 4a. And a region formed by the line connecting the center O, the + Y axis, the middle of the magnetic pole 4b and the line connecting the center O is III, and the magnetic pole 4b is +
A region formed by a line connecting the middle of the Y axis and the center O, the magnetic pole 4b, and a line connecting the middle of the -X axis and the center O is IV, -X.
The region formed by the line connecting the axis and the middle of the magnetic pole 4b and the center O and the line connecting the middle of the -X axis and the magnetic pole 4c and the center O is V, and the region between the magnetic pole 4c and the -X axis. And VI to the region formed by the line connecting the center O with the value pole 4c and the middle of the -Y axis and the center O, and connecting the center O with the middle of the -Y axis and the magnetic pole 4c. VII is a region formed by a line connecting the center O with the center line O and the center line O of the magnetic pole 4d and the Y-axis and the magnetic pole 4d, and the magnetic pole 4d with a line connecting the center O of the magnetic pole 4d and the center of the Y-axis. A region VIII formed by a line connecting the center of the + X axis and the center O is defined as the region VIII, and the center of the axis 2 is defined as O ′. When a current is passed through the exciting coil 6a, the polarity of the end face of the magnetic pole 4a is N pole, and a current is passed through the exciting coil 6b.
The polarity of the end face of 4b is S pole, the polarity of the end face of the magnetic pole 4c is N pole when a current is passed through the exciting coil 6c, and the polarity of the end face of the magnetic pole 4d is S pole when a current is passed through the exciting coil 6d. The exciting coils are arranged so that the polarities of the magnetic poles adjacent to each other are different. The potentials of the power supply 22II and the power supply 22I are set so that the magnetic flux passing through the magnetic poles when the power supply 22II is energized to the excitation coil is twice the magnetic flux passing through the magnetic poles when the power supply 22I is energized to the same excitation coil. ing. The high speed relays 22a I and 22a II, 22b I and 22b I
I, 22c I and 22c II, 22d I and 22d II are considered so as not to be turned on at the same time. The position of the shaft 2 is measured by the position sensors 11 and 12, and the measured value is used by the control unit 13
As a result of the calculation processing in step S1, the control unit 13 determines that the center O'of the shaft 2 is in the region VI, and the shaft 2 is moved in the direction of the region II symmetrical with the region VI and the center O of the fixed iron core 3. The high-speed relay 22aII is turned on so as to energize the exciting coil 6a of the magnetic pole 4a with the high-potential power source 21II so that the exciting coil 6a of each of the magnetic poles 4d and 4b has a low voltage. The high-speed relays 22d I and 22b I are turned on so as to energize the power source 21I of potential, and the other high-speed relays 22a I, 22c I, 22b II, 22c II, 22d II and 22d II are turned on.
The control section 13 outputs a signal for FF. Only the high-speed relays 22d I, 22a II, 22b I are turned on by the signal output from the control unit 13.
In the state, a current flows from the power source 21II to the exciting coil 6a, the magnetic pole 4a is magnetized, and a magnetic flux passes through the magnetic pole 4a.
A current flows from the power source 21I to the exciting coils 6d and 6b and the magnetic pole 4
The d and 4b are magnetized and the magnetic flux passes through the magnetic poles 4d and 4b. The magnetic flux exiting the magnetic pole 4a reaches the sleeve 2'made of a magnetic material attached to the shaft 2 through the air gap and is divided into two parts. One of the separated magnetic fluxes is about clockwise in the sleeve.
It makes a quarter turn and passes through the air gap to reach the magnetic pole 4d. The other split magnetic flux makes 1/4 turn in the counterclockwise direction in the sleeve and reaches the magnetic pole 4b through the air gap. The magnetic pole 4d
The magnetic flux emitted from the fixed iron core 3 to the fixed iron core 3 by 1/4 turns counterclockwise around the fixed iron core 2, and the magnetic flux emitted from the magnetic pole 4b to the fixed iron core 2 makes 1/4 turn clockwise around the fixed iron core 3. And merges with the magnetic pole emerging from the magnetic pole 4d and returns to the magnetic pole 4a. When the magnetic flux flows as described above, an attractive force is generated on the magnetic pole 4a and the shaft 2, the magnetic pole 4d and the shaft 2, and the magnetic pole 4b and the shaft 2.
The attraction force generated on the magnetic pole 4b and the attraction force generated on the magnetic pole 4b and the shaft 2 have almost the same magnitude and opposite directions, so that they cancel each other out, so only the attraction force generated on the magnetic pole 4a and the shaft 2 acts greatly. Then, the shaft 2 moves in the direction of the magnetic pole 4a.
If the magnetic poles 4b and 4d are not excited, the magnetic flux from the magnetic pole 4a reaches the magnetic pole 4c via the shaft 2, passes through the fixed iron core 3, and returns to the magnetic pole 4a. In this case, shaft 2 has magnetic pole 4c
Is attracted to the side of the magnetic pole 4c in the direction opposite to the center. Excitation of the magnetic poles 4b and 4d causes the magnetic flux from the shaft 2 to pass through the magnetic pole 4c.
This is to prevent it from reaching as much as possible. The center O ′ of the shaft 2 approaches the center O of the fixed iron core 2 by repeating the operation from the signal reception of the position sensors 11 and 12 to the movement of the shaft 2 by the suction force at high speed.

なお、該固定鉄心2の中心Oの極く近傍に全ての電磁
石5a,5b,5c,5dを作動させない即ち全ての高速リレー22a
I,22a II,22b I,22b II,22c I,22c II,22d I,22d IIを
OFFとする領域を設けても上記動作に支障はない。さら
に、本実施例では該電源21I,21IIを定電流で示したが、
これらは該固定鉄心2の中心Oと該軸2の中心O′の距
離により変化させる可変電源としても上記動作に支障は
ないし、該電源21Iと21IIの他方を接地23とせず、接地2
3,23a,23b,23c,23dを共通として一定の電位をもってい
ても上記動作に支障はない。本実施例では、該軸2に磁
性材料のスリーブ2′を挿入しているが、少なくとも磁
気軸受作用をする領域に含まれる軸2部分全体を磁性材
料としてもよく、スリーブ2′や固定鉄心2は単体であ
る必要もない。
It should be noted that all the electromagnets 5a, 5b, 5c, 5d are not operated in the vicinity of the center O of the fixed iron core 2, that is, all the high speed relays 22a.
I, 22a II, 22b I, 22b II, 22c I, 22c II, 22d I, 22d II
Even if a region to be turned off is provided, the above operation is not hindered. Furthermore, although the power supplies 21I and 21II are shown as constant currents in this embodiment,
These do not hinder the above operation even as a variable power source that varies depending on the distance between the center O of the fixed iron core 2 and the center O'of the shaft 2, and the other of the power sources 21I and 21II is not grounded 23, but grounded 2
The above operation is not hindered even if 3,23a, 23b, 23c, and 23d are common and have a constant potential. In this embodiment, the sleeve 2'made of a magnetic material is inserted into the shaft 2, but at least the entire shaft 2 portion included in the region that acts as a magnetic bearing may be made of a magnetic material, and the sleeve 2'and the fixed iron core 2 may be used. Does not have to be a single entity.

第4図に、該軸2の中心O′が領域Vの−Y側にある
ときの該中心O′の動きの例をO1′として、該軸2の中
心O′が領域VIの−Y側にあるときの該中心O′の動き
の例をO2′として、O1′とO2′が該固定鉄心2の中心O
からδだけ、位置から該固定鉄心2の中心Oからδ
だけ、位置から該固定鉄心3の中心Oの極く近傍δ
に到達するまでの動きを示す。図中の黒丸は位置センサ
11,12により測定された点である。
In FIG. 4, an example of the motion of 'said center O when is on the -Y side area V' center of the shaft 2 O 'as, of the shaft 2 center O' O 1 is a region VI -Y Let O 2 ′ be an example of the movement of the center O ′ when it is on the side, and O 1 ′ and O 2 ′ are the center O of the fixed iron core 2.
Only from [delta] 1, [delta] from the center O of the fixed iron core 2 from position 1
Only the movement from the position until reaching the very close δ 0 of the center O of the fixed iron core 3 is shown. Black circles in the figure are position sensors
These are the points measured by 11,12.

表2に、第4図で示した軸2の中心O1′の位置と高速
リレー22a I,22a II,22b I,22b II,22c I,22c II,22d
I,22d IIのON−OFF状態及び該軸の吸引方向を示す。軸
の吸引方向で(+X,+Y)は+X軸から+Y軸へ45゜傾
いた方向へ移動することを示す。該軸2の中心O1′が領
域Vにあると高速リレー22d Iと22a IのみがONとなって
軸を+X側へ吸引し、軸の中心O′が領域VIにあると高
速リレー22a IIと22d Iと22b IのみがONとなって軸を
(+X,+Y)側へ吸引していることが判る。
Table 2 shows the position of the center O 1 ′ of the shaft 2 shown in FIG. 4 and the high speed relays 22a I, 22a II, 22b I, 22b II, 22c I, 22c II, 22d.
The ON-OFF state of I and 22d II and the suction direction of the shaft are shown. In the suction direction of the axis, (+ X, + Y) indicates that it moves in a direction inclined by 45 ° from the + X axis to the + Y axis. When the center O 1 ′ of the shaft 2 is in the region V, only the high speed relays 22d I and 22a I are turned on to suck the shaft toward the + X side, and when the center O ′ of the shaft is in the region VI, the high speed relay 22a II It can be seen that only 22d I and 22b I are turned on and the axis is attracted to the (+ X, + Y) side.

本実施例によれば、軸の吸引方向が8方向の場合、
磁極の数は吸引方向の半分の4個と従来形の1/4です
み、同一吸引力を得るための磁極端部の総面積は従来形
の50%以下と小さく、励磁コイルの収納スペースも含め
た固定鉄心側の体積は従来形の50%程度となり、従来形
に比べコンパクトである、磁極の数の2倍の数の方向
に軸を吸引できるので、軸の移動方向が従来形の8磁極
4方向では90゜変わるのに対し4磁極8方向では45゜変
わるだけで良く、移動がスムーズになる、固定鉄心が
共通であるので磁極相互の位置合わせの手間が不要であ
る、固定鉄心の外周が円周形であるのでハウジングの
製作が容易で組立が簡単である、磁極に巻く励磁コイ
ルを固定鉄心とは別個に製作できるので生産性が良い、
励磁コイルの製作数が従来形の半分で、1個当りの巻
数も従来形に比べ3割程度しか増えず、省資源である、
という効果がある。
According to the present embodiment, when the suction direction of the shaft is 8 directions,
The number of magnetic poles is four, which is half of the direction of attraction, which is 1/4 of that of the conventional type. The total area of the magnetic pole ends to obtain the same attractive force is 50% or less of that of the conventional type, and the exciting coil storage space is also small. The volume of the fixed iron core side including it is about 50% of the conventional type, which is more compact than the conventional type, and the shaft can be attracted in the direction of twice the number of magnetic poles. It changes 90 ° in the direction of 4 magnetic poles, but only needs to change 45 ° in the direction of 4 magnetic poles, which makes the movement smoother. Since the fixed iron core is common, there is no need to align the magnetic poles with each other. Since the outer circumference is circular, the housing is easy to assemble and easy to assemble. The exciting coil wound around the magnetic pole can be manufactured separately from the fixed iron core, resulting in good productivity.
The number of manufactured excitation coils is half that of the conventional type, and the number of turns per coil is only about 30% higher than the conventional type, which is resource saving.
There is an effect.

第5図は他の実施例であり、第3図と同じものは、構
成が同一なので省略する。
FIG. 5 shows another embodiment, and the same parts as those in FIG.

本実施例が第3図の実施例と構成で異なる点は、電源
として正の電位をもつ電源21Iと負の電位をもつ電源21I
IIの二つを有し、高速リレーとして該正の電位をもつ電
源22IをON−OFFする高速リレー22a I,22b I,22c I,22d
Iと該負の電位をもつ電源21IIIとアース23a,23b,23c,23
dの切換を行う高速リレー22a III,22b III,22c III,22d
IIIを有することである。
The present embodiment differs from the embodiment shown in FIG. 3 in the configuration, that a power source 21I having a positive potential and a power source 21I having a negative potential are used as power sources.
A high-speed relay 22a I, 22b I, 22c I, 22d that has two of II and turns on and off the power supply 22I having the positive potential as a high-speed relay.
I and the power supply 21III having the negative potential and the earth 23a, 23b, 23c, 23
High-speed relay 22a III, 22b III, 22c III, 22d for switching d
III.

本実施例の動作で第3図の実施例の動作とほとんど同
一なので、高速リレーの動作についてのみ説明し他は省
略する。
Since the operation of this embodiment is almost the same as the operation of the embodiment shown in FIG. 3, only the operation of the high speed relay will be described and the others will be omitted.

軸2の中心O′が領域VIに在るときは、該正の電位を
もつ電源21I側の高速リレーの内22d I,22a I,22b IをO
N、残りの22c IをOFFとし、該負の電位をもつ電源21III
側の高速リレーの内22a IIIの電源側に切り換え、残り
の22b III,22c III,22d IIIはアース側のままとするこ
とにより、該軸2の領域II側へ吸引し、該軸2の中心
O′を固定鉄心3の中心O側へ近づけされるように動作
する。
When the center O'of the shaft 2 is in the area VI, 22d I, 22a I, 22b I of the high speed relay on the power source 21I side having the positive potential are turned on.
N, the remaining 22c I is turned off, and the power supply 21III with the negative potential
Switch to the power supply side of 22a III among the high speed relays on the side, and leave the remaining 22b III, 22c III, 22d III on the ground side to attract to the area II side of the shaft 2 and to the center of the shaft 2. It operates so that O ′ is brought closer to the center O side of the fixed iron core 3.

なお、該固定鉄心3の中心Oの極く近傍に全ての電磁
石5a,5b,5c,5dを作動させない即ち全ての正の電位をも
つ電源21I側の高速リレー22a I,22b I,22c I,22d IをOF
Fとする領域を設けても上記動作に支障はない。さら
に、本実施例では電源21I,21IIIを定電源で示したが、
これらは該固定鉄心3の中心Oと該軸2の中心O′の距
離により変化させる可変電源としても上記動作に支障は
ない。また、負の電位をもつ電源21III側のON−OFFと
し、正の電位をもつ電源21I側アースと切り換えて使用
しても支障はない。
It should be noted that all the electromagnets 5a, 5b, 5c, 5d are not operated in the immediate vicinity of the center O of the fixed iron core 3, that is, all the high-speed relays 22a I, 22b I, 22c I, having a positive potential on the side of the power source 21I, 22d I OF
The above operation is not hindered even if the area F is provided. Further, although the power supplies 21I and 21III are shown as constant power supplies in this embodiment,
Even if these are variable power sources that are changed by the distance between the center O of the fixed iron core 3 and the center O ′ of the shaft 2, they do not hinder the above operation. Further, there is no problem even if the power source 21III side having a negative potential is turned on and off and the power source 21I side having a positive potential is switched and used.

表3に、第4図で示した軸2の中心O2′の位置と高速
リレー22a I,22b I,22c I,22d I,22a III,22b III,22c
III,22d IIIの状態及び該軸2の吸引方向を示す。軸の
吸引方向で(+X,+Y)は+X軸から+Y軸側へ45゜傾
いた方向へ移動することを示す。該軸の中心O2′が領域
VIにあると正の電位をもつ電位をもつ電源21I側の高速
リレーのうち22d I,22a I,22b Iの3個がONとなり、負
の電位をもつ電源21III側に高速リレー22a IIIのみが切
り換って軸2を(+X,+Y)側へ吸引し、該軸2の中心
O2′が領域VIIにあると正の電位をもつ電源21側の高速
リレーのうち22a Iと22b IのみがONとなり負の電位をも
つ電源21IIIの高速リレーは全てアース側に切り換って
おり軸を+Y側へ吸引していることが判る。
The position of the center O 2 ′ of the shaft 2 shown in FIG. 4 and the high speed relays 22a I, 22b I, 22c I, 22d I, 22a III, 22b III, 22c are shown in Table 3.
The state of III, 22d III and the suction direction of the shaft 2 are shown. In the suction direction of the axis, (+ X, + Y) indicates that the axis moves from the + X axis toward the + Y axis by 45 °. The center O 2 ′ of the axis is the region
In VI, among the high-speed relays on the power supply 21I side with positive potential, 22d I, 22a I, 22b I are turned on, and only the high-speed relay 22a III on the power supply 21III side with negative potential is turned on. Switch to suction the shaft 2 to the (+ X, + Y) side, and center the shaft 2
When O 2 ′ is in region VII, only the high speed relays 22a I and 22b I of the power supply 21 side with positive potential are turned on and all the high speed relays of power supply 21 III with negative potential are switched to the ground side. It can be seen that the cage shaft is attracted to the + Y side.

本実施例によれば、第3図の実施例の効果の他に高速
リレー22a Iと22a III,22b Iと22b III,22c Iと22c II
I,22d Iと22d IIIを同時に操作でき、第3図の実施例に
比べより高速度で応答できる効果がある。
According to this embodiment, in addition to the effects of the embodiment of FIG. 3, high speed relays 22a I and 22a III, 22b I and 22b III, 22c I and 22c II are provided.
I, 22d I and 22d III can be operated at the same time, and there is an effect that a response can be made at a higher speed as compared with the embodiment of FIG.

以上のように本発明の各実施例によれば、磁極の数が
軸の吸引方向の数の半分で良いので、磁極端部総面積は
従来形に比べ45〜50%と小さくでき、また磁極に巻く励
磁コイルの総占有体積も従来形に比べ50%程度と小さく
できるので、軸方向長さを短くし、磁極の半径方向長さ
の短い即ち外径を小さくしたコンパクトな磁気軸受とな
る効果及びアーマチャの最小軸径を従来形の2/3程度の
小形な磁気軸受となる効果がある。
As described above, according to each embodiment of the present invention, since the number of magnetic poles may be half the number in the suction direction of the shaft, the total magnetic pole end area can be reduced to 45 to 50% as compared with the conventional type, and the magnetic poles can be reduced. Since the total occupied volume of the exciting coil wound around the coil can be reduced to about 50% compared to the conventional type, the axial length is shortened and the radial length of the magnetic pole is shortened, that is, the outer diameter is reduced, resulting in a compact magnetic bearing. Also, it has the effect of providing a magnetic bearing that is as small as about 2/3 of the conventional type with a minimum shaft diameter of the armature.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、軸を吸引する方向に
最も近い磁極およびこの磁極に隣接している2個のうち
少なくとも一方の磁極の各励磁コイルにそれぞれ独立に
通電し、各磁極を独立に制御できるので、励磁コイル同
士で組み合わせを変えることができ、軸の吸引方向を3
方向以上に、例えば励磁コイルを有する3個の磁極を配
置した場合は、最大6方向にすることができ、かつ磁極
の数以上にすることができる。その結果、吸引制御する
方向が多くなり、より高速に固定鉄心の中心に軸を移動
させることができる。
As described above, according to the present invention, the magnetic pole closest to the direction in which the shaft is attracted and each exciting coil of at least one of the two magnetic poles adjacent to the magnetic pole are independently energized, and each magnetic pole is Since they can be controlled independently, the combination of exciting coils can be changed, and the suction direction of the shaft can be set to 3
When three magnetic poles having an exciting coil are arranged in more than one direction, the maximum number of directions can be six, and the number of magnetic poles can be more than one. As a result, the suction control direction is increased, and the shaft can be moved to the center of the fixed iron core at a higher speed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の磁気軸受の軸直角断面の制御系統
図、第2図は軸中心O′の動きを示す説明図、第3図は
本発明の磁気軸受の他の実施例の軸直角断面の制御系統
図、第4図は軸中心O′の動きを示す説明図、第5図は
本発明の他の実施例の軸直角断面の制御系統図である。 2……軸、3……固定鉄心、4a,4b,4c,4d……磁極、6a,
6b,6c,6d……励磁コイル、11……X軸位置センサ、12…
…Y軸位置センサ、13……制御部、21I,21II,21III……
電源、22a I,22b I,22c I,22d I,22a II,22b II,22c I
I,22d II,22a III,22b III,22c III,22d III……高速リ
レー、23,23a,23b,23c,23d……接地。
FIG. 1 is a control system diagram of a cross section perpendicular to the axis of the magnetic bearing of the present invention, FIG. 2 is an explanatory view showing the movement of the shaft center O ′, and FIG. 3 is a shaft of another embodiment of the magnetic bearing of the present invention. FIG. 4 is a control system diagram showing a movement of the shaft center O ′, and FIG. 5 is a control system diagram showing a cross section perpendicular to the axis of another embodiment of the present invention. 2 ... Axis, 3 ... Fixed core, 4a, 4b, 4c, 4d ... Magnetic pole, 6a,
6b, 6c, 6d …… Excitation coil, 11 …… X axis position sensor, 12…
… Y-axis position sensor, 13 …… Control unit, 21I, 21II, 21III ……
Power supply, 22a I, 22b I, 22c I, 22d I, 22a II, 22b II, 22c I
I, 22d II, 22a III, 22b III, 22c III, 22d III …… High speed relay, 23,23a, 23b, 23c, 23d …… Ground.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】軸まわりに、励磁コイルを有する4以上偶
数個の磁極を配置した磁気軸受において、前記各磁極を
共通の固定鉄心に形成するとともに、前記磁極の各々の
端面の磁極が互いに隣り合う同士でN極とS極と異なる
ように励磁コイルに通電されるものであって、軸を吸引
する方向の両側に位置する2個の磁極もしくは軸を吸引
する方向に最も近い磁極とこの磁極に隣接している2個
の磁極との3個の磁極の各励磁コイルにそれぞれ独立に
通電して各磁極を独立に制御し、磁極間方向および磁極
方向の一方向に制御することを特徴とする磁気軸受。
1. In a magnetic bearing in which an even number of magnetic poles of 4 or more having an excitation coil are arranged around an axis, each magnetic pole is formed on a common fixed iron core, and magnetic poles on respective end faces of the magnetic poles are adjacent to each other. The exciting coil is energized so as to be different from the N pole and the S pole when they match each other, and the two magnetic poles located on both sides in the direction of attracting the shaft or the magnetic pole closest to the direction of attracting the shaft and this magnetic pole. The two magnetic poles adjacent to the two magnetic poles and the three magnetic poles are independently energized to independently control the respective magnetic poles, and the magnetic poles are controlled in one direction between the magnetic poles and one direction. Magnetic bearings.
JP61023818A 1986-02-07 1986-02-07 Magnetic bearing Expired - Lifetime JPH0830496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61023818A JPH0830496B2 (en) 1986-02-07 1986-02-07 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023818A JPH0830496B2 (en) 1986-02-07 1986-02-07 Magnetic bearing

Publications (2)

Publication Number Publication Date
JPS62184223A JPS62184223A (en) 1987-08-12
JPH0830496B2 true JPH0830496B2 (en) 1996-03-27

Family

ID=12120932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023818A Expired - Lifetime JPH0830496B2 (en) 1986-02-07 1986-02-07 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPH0830496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111265A (en) * 2022-07-21 2022-09-27 重庆开山流体机械有限公司 Asymmetric electromagnetic bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237648A (en) * 1975-08-23 1977-03-23 Padana Ag Electromagnetic bearing device
JPS5983829A (en) * 1982-11-02 1984-05-15 Seiko Instr & Electronics Ltd Low-power consumption radial electromagnet for magnetic bearing
JPS5999118A (en) * 1982-11-30 1984-06-07 Toshiba Corp Magnetic bearing device
JPS59151619A (en) * 1983-02-16 1984-08-30 Yaskawa Electric Mfg Co Ltd Control device of magnetic bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237648A (en) * 1975-08-23 1977-03-23 Padana Ag Electromagnetic bearing device
JPS5983829A (en) * 1982-11-02 1984-05-15 Seiko Instr & Electronics Ltd Low-power consumption radial electromagnet for magnetic bearing
JPS5999118A (en) * 1982-11-30 1984-06-07 Toshiba Corp Magnetic bearing device
JPS59151619A (en) * 1983-02-16 1984-08-30 Yaskawa Electric Mfg Co Ltd Control device of magnetic bearing

Also Published As

Publication number Publication date
JPS62184223A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
US5081388A (en) Magnetic induction motor
US5302874A (en) Magnetic bearing and method utilizing movable closed conductive loops
JP4767488B2 (en) Magnetic levitation pump
EP1566879A1 (en) Actuator
JP2000145773A (en) Magnetic bearing device
US4631430A (en) Linear force motor
US5032751A (en) Magnetic fluid bearing
US4275371A (en) Electromagnetic rotary actuator
EP0605247A2 (en) Coil assembly retainer for electric motor
JP2005061578A (en) Magnetic bearing
US6870285B2 (en) Long stroke linear voice coil actuator with the proportional solenoid type characteristic
JPH0830496B2 (en) Magnetic bearing
JPH0126271B2 (en)
JP2001248639A (en) Stator unit of magnetic bearing and control type magnetic bearing
JP4220859B2 (en) Magnetic bearing
JPS6399742A (en) Magnetic bearing integrating type motor
JPS6211218B2 (en)
JPH0785638B2 (en) Rotating electric machine with magnetic bearing
JP3268843B2 (en) Variable spring constant linear actuator
JPS58137618A (en) Magnetic bearing
JP2519537Y2 (en) Magnetic bearing control circuit
JPS6244059A (en) Magnetic levitation type linear motor
JPH11215794A (en) Single-turn type linear vibrating actuator
EP1076402A2 (en) A permanent magnet electric motor
JPS59117915A (en) Magnetic bearing device