JPH08304469A - Current sensor - Google Patents

Current sensor

Info

Publication number
JPH08304469A
JPH08304469A JP7105810A JP10581095A JPH08304469A JP H08304469 A JPH08304469 A JP H08304469A JP 7105810 A JP7105810 A JP 7105810A JP 10581095 A JP10581095 A JP 10581095A JP H08304469 A JPH08304469 A JP H08304469A
Authority
JP
Japan
Prior art keywords
light
current
linearly polarized
magnetic field
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7105810A
Other languages
Japanese (ja)
Inventor
Yukihisa Hirata
幸久 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7105810A priority Critical patent/JPH08304469A/en
Publication of JPH08304469A publication Critical patent/JPH08304469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE: To miniaturize a current sensor capable of detecting both a large current and a small current. CONSTITUTION: This is a current sensor for outputting a detection signal corresponding to a current value from the rotating amount of a linearly polarized light a plane of polarization of which is rotated in accordance with an intensity of a magnetic field generated by a current to be measured. A light of a light- transmitting collimator 25 is separated to two linearly polarized lights. One of the linearly polarized lights is brought to a first propagation route and the other is sent into a second propagation route. A magnetic field generated by the current to be measured is applied to the first propagation route. A magnetic field from a gap 31a of a gapped iron core 31 is impressed to the second propagation route. The rotating amount of the plane of polarization due to the Faraday effect at the first and second propagation routes is detected independently by a first analyzer 27 and a first photodetecting collimator 29, and a second analyzer 28 and a second photodetecting collimator 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電線等の中を流れる電
流をファラデー効果を利用して測定する電流センサに係
り、特に大電流及び小電流のそれぞれの測定に適した電
流センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current sensor for measuring a current flowing through an electric wire or the like by utilizing the Faraday effect, and more particularly to a current sensor suitable for measuring a large current and a small current.

【0002】[0002]

【従来の技術】従来、この種の電流センサには大電流検
出用と小電流検出用の2種類がある。図3は、大電流検
出用の電流センサの構成例を示している。同図に示す電
流センサは、送光コリメータ1から出射した測定光を偏
光子2に入射して直線偏光成分を取り出し、その直線偏
光成分の測定光を直角プリズム3を使って所望の角度で
ファラデー素子4に入射する。そして、ファラデー素子
4を通過した測定光を対向配置した直角プリズム5を使
って検光子6に入射し、この検光子6を透過した光を受
光コリメータ7に入射する。尚、各構成要素1〜7は基
板8に図3に示す配置状態で取り付けられている。
2. Description of the Related Art Conventionally, there are two kinds of current sensors of this kind, one for detecting a large current and the other for detecting a small current. FIG. 3 shows a configuration example of a current sensor for detecting a large current. In the current sensor shown in the figure, the measurement light emitted from the light-transmitting collimator 1 is incident on the polarizer 2 to extract the linearly polarized light component, and the measurement light of the linearly polarized light component is used by the right-angle prism 3 at a desired Faraday angle. It is incident on the element 4. Then, the measurement light passing through the Faraday element 4 is made incident on the analyzer 6 by using the right-angled prism 5 arranged oppositely, and the light transmitted through the analyzer 6 is made incident on the light receiving collimator 7. The components 1 to 7 are attached to the substrate 8 in the arrangement shown in FIG.

【0003】このように構成された電流センサを、被測
定電流Iが流れる電線9から所定距離離れた場所に設置
する。同図に示すように、被測定電流Iによって生じる
磁界H1の方向とファラデー素子4における直線偏光の
伝播方向とを一致させることにより、直線偏光の偏光面
が磁界H1の強さに比例して回転する。ファラデー素子
4での偏光面の回転量が検光子6での透過率となって現
れるので、検光子6を透過(又は反射)して受光コリメ
ータ7に入射した光量を検出することにより被測定電流
Iを求めることができる。
The current sensor constructed as described above is installed at a place separated from the electric wire 9 through which the measured current I flows by a predetermined distance. As shown in the figure, by making the direction of the magnetic field H1 generated by the current I to be measured and the propagation direction of the linearly polarized light in the Faraday element 4, the polarization plane of the linearly polarized light rotates in proportion to the strength of the magnetic field H1. To do. The amount of rotation of the polarization plane of the Faraday element 4 appears as the transmittance of the analyzer 6, so the amount of light that has passed through (or reflected) the analyzer 6 and is incident on the light receiving collimator 7 can be detected. I can be obtained.

【0004】一方、小電流検出用の電流センサは、図4
に示すように大電流検出用の電流センサと同様の構成要
素が取り付けられた基板8の一部を、ギャップ付き鉄心
11のギャップ部分に挿入した構成となっている。尚、
図3に示すセンサと同一構成要素には同一符号を付して
いる。
On the other hand, a current sensor for detecting a small current is shown in FIG.
As shown in, a part of the substrate 8 to which the same constituent elements as the current sensor for large current detection are attached is inserted into the gap portion of the iron core 11 with a gap. still,
The same components as those of the sensor shown in FIG. 3 are designated by the same reference numerals.

【0005】このように構成された電流センサを被測定
電流Iが流れる電線10が鉄心11の中心に位置するよ
うに配置する。電線10に流れる被測定電流Iに応じた
磁場H2が鉄心11のギャップ間に生じ、ファラデー素
子4を伝播する直線偏光の偏光面が磁場H2の強さに比
例して回転する。従って、受光コリメータ7に入射した
光量を検出することにより、上述した大電流検出用の電
流センサと同様に、被測定電流Iを求めることができ
る。
The current sensor constructed as described above is arranged so that the electric wire 10 through which the current I to be measured flows is located at the center of the iron core 11. A magnetic field H2 corresponding to the measured current I flowing through the electric wire 10 is generated in the gap of the iron core 11, and the plane of polarization of the linearly polarized light propagating through the Faraday element 4 rotates in proportion to the strength of the magnetic field H2. Therefore, by detecting the amount of light incident on the light receiving collimator 7, the measured current I can be obtained as in the case of the current sensor for detecting a large current described above.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たように大電流検出用の電流センサと小電流検出用の電
流センサとが独立した別々のものとして構成されていた
ので、この2種類の電流センサを組み合わせて大電流か
ら小電流までの広い範囲の電流を測定可能な電流センサ
を構成しようとすると、多数の部品が重複してセンサが
大型化するといった問題が生じる。
However, as described above, the current sensor for detecting a large current and the current sensor for detecting a small current are configured as independent and separate, so that these two types of current sensors are used. If a current sensor that can measure a wide range of current from large current to small current is configured by combining the above, there arises a problem that a large number of parts are overlapped and the sensor becomes large.

【0007】また、従来の電流センサは、上記したよう
に測定光を偏光子に入射する際に生じる反射光を電流測
定には何等利用していないため、測定光の一部を無駄に
消費していた。
Further, since the conventional current sensor does not utilize the reflected light generated when the measuring light is incident on the polarizer as described above for current measurement, a part of the measuring light is wasted. Was there.

【0008】本発明は、以上のような実情に鑑みてなさ
れたもので、大電流から小電流までの電流測定に適用可
能で、部品点数が少なくコンパクト化が容易で、しかも
測定光を効率良く使用できる電流センサを提供すること
を目的とする。
The present invention has been made in view of the above circumstances and is applicable to current measurement from a large current to a small current, has a small number of parts, can be easily made compact, and can efficiently measure light. It is an object to provide a current sensor that can be used.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために以下のような手段を講じた。請求項1に対
応する本発明は、被測定電流により生じた磁界の強さに
応じて偏光面が回転した直線偏光を受光し、前記偏光面
の回転量に基づいて前記被測定電流の電流値に応じた検
出信号を出力する電流センサにおいて、光を出射する送
光コリメータと、この送光コリメータから出射した光を
反射光及び透過光に分離して2つの直線偏光を作る偏光
ビームスプリッタと、この偏光ビームスプリッタで作ら
れた一方の直線偏光が入射して前記被測定電流による磁
界方向に伝播すると共に当該直線偏光の偏光面を磁界の
強さに応じて回転させる第1の光伝播経路と、この第1
の光伝播経路から出射した一方の直線偏光が入射する第
1の検光子と、この第1の検光子を透過した光を受光す
る第1の受光コリメータと、前記偏光ビームスプリッタ
で作られた他方の直線偏光が入射して所定方向に伝播す
ると共に当該直線偏光の偏光面を磁界の強さに応じて回
転させる第2の光伝播経路と、この第2の光伝播経路か
ら出射した他方の直線偏光が入射する第2の検光子と、
この第2の検光子を透過した光を受光する第2の受光コ
リメータと、前記第2の光伝播経路の両端をギャップ内
に挟み込んだギヤップ付き鉄心とを備える。
The present invention has taken the following means in order to achieve the above object. The present invention corresponding to claim 1 receives linearly polarized light whose polarization plane is rotated according to the strength of a magnetic field generated by the current to be measured, and based on the rotation amount of the polarization plane, the current value of the current to be measured. In a current sensor that outputs a detection signal according to, a light-transmitting collimator that emits light, a polarizing beam splitter that splits the light emitted from the light-transmitting collimator into reflected light and transmitted light, and forms two linearly polarized lights, One of the linearly polarized light beams produced by this polarization beam splitter is incident on and propagates in the magnetic field direction due to the current to be measured, and the polarization plane of the linearly polarized light is rotated according to the strength of the magnetic field. , This first
A first analyzer on which one linearly polarized light emitted from the light propagation path is incident, a first light receiving collimator for receiving the light transmitted through the first analyzer, and the other formed by the polarization beam splitter. Second light propagation path that rotates the polarization plane of the linearly polarized light of which is incident on and propagates in a predetermined direction according to the strength of the magnetic field, and the other straight line of light emitted from the second light propagation path. A second analyzer on which polarized light is incident,
A second light receiving collimator that receives the light that has passed through the second analyzer and an iron core with a gear that sandwiches both ends of the second light propagation path in a gap are provided.

【0010】請求項2に対応する本発明は、上記構成の
電流センサにおいて、第1の光伝播経路及び第2の光伝
播経路を1つのファラデー素子内に形成した。請求項3
に対応する本発明は、上記電流センサを構成している送
光コリメータ、偏光ビームスプリッタ、第1,第2の光
伝播経路、第1,第2の検光子、第1,第2の受光コリ
メータを、同一基板面上に配置した。
According to a second aspect of the present invention, in the current sensor having the above structure, the first light propagation path and the second light propagation path are formed in one Faraday element. Claim 3
The present invention corresponding to the present invention relates to the light-transmitting collimator, the polarization beam splitter, the first and second light propagation paths, the first and second analyzers, and the first and second light-receiving collimators constituting the current sensor. Were placed on the same substrate surface.

【0011】請求項4に対応する本発明は、第1,第2
の光伝播経路、又はファラデー素子をジンクセレン(Z
nSe)で構成した。請求項5に対応する本発明は、被
測定電流が流れる導線をガス絶縁して収納すると共にガ
スパージ用バルブが複数取り付けられたガス密封形収納
容器に、請求項1〜請求項4のいずれかに記載の電流セ
ンサを配置した。
The present invention corresponding to claim 4 is based on the first and second aspects.
Of the light propagation path of Faraday element or zinc selenium (Z
nSe). The present invention corresponding to claim 5 is a gas-sealed storage container in which a conducting wire through which a current to be measured flows is gas-insulated and stored, and a plurality of gas purging valves are attached to the storage container according to any one of claims 1 to 4. The current sensor described was arranged.

【0012】[0012]

【作用】本発明は、以上のような手段を講じたことによ
り次のような作用を奏する。請求項1に対応する本発明
によれば、送光コリメータから出射した光が偏光ビーム
スプリッタに入射して2つの直線偏光になる。一方の直
線偏光が第1の光伝播経路に入射して伝播するとき被測
定電流による磁界により偏光面が回転する。第1の光伝
播経路から出射した直線偏光が第1の検光子を通って第
1の受光コリメータで受光される。一方、他方の直線偏
光が第2の光伝播経路に入射して伝播するときギャップ
付き鉄心のギャップ間の磁界が第2の光伝播経路に印加
され、直線偏光の偏光面が回転する。第2の光伝播経路
から出射した直線偏光が第2の検光子を通って第2の受
光コリメータで受光される。
The present invention has the following effects by taking the above measures. According to the present invention corresponding to claim 1, the light emitted from the light-transmitting collimator enters the polarization beam splitter and becomes two linearly polarized lights. When one linearly polarized light is incident on the first light propagation path and propagates, the polarization plane is rotated by the magnetic field generated by the current to be measured. The linearly polarized light emitted from the first light propagation path passes through the first analyzer and is received by the first light receiving collimator. On the other hand, when the other linearly polarized light enters the second light propagation path and propagates, the magnetic field between the gaps of the iron core with gap is applied to the second light propagation path, and the polarization plane of the linearly polarized light rotates. The linearly polarized light emitted from the second light propagation path passes through the second analyzer and is received by the second light receiving collimator.

【0013】請求項2に対応する本発明によれば、第1
の光伝播経路及び第2の光伝播経路を1つのファラデー
素子内に形成するので、センサ全体がコンパクト化され
ると共に部品点数が削減される。
According to the present invention corresponding to claim 2,
Since the light propagation path and the second light propagation path are formed in one Faraday element, the entire sensor can be made compact and the number of parts can be reduced.

【0014】請求項3に対応する本発明によれば、電流
センサの所定の構成要素を同一基板面上に配置したの
で、センサ全体をコンパクト化できる。請求項4に対応
する本発明によれば、第1,第2の光伝播経路又はファ
ラデー素子をジンクセレン(ZnSe)で構成したの
で、直線偏光の偏光面を被測定電流の大きさに応じて正
確に回転させることができる。
According to the present invention corresponding to claim 3, since the predetermined components of the current sensor are arranged on the same substrate surface, the entire sensor can be made compact. According to the present invention corresponding to claim 4, since the first and second light propagation paths or the Faraday element are made of zinc selenium (ZnSe), the polarization plane of the linearly polarized light is accurately determined according to the magnitude of the measured current. Can be rotated.

【0015】請求項5に対応する本発明によれば、導線
をガス絶縁して収納するガス密封形収納容器に、請求項
1〜請求項4に記載の電流センサが設けられるので、電
流センサの占有スペースを小さくすることができる。
According to the present invention corresponding to claim 5, since the current sensor according to any one of claims 1 to 4 is provided in the gas-sealed container for gas-insulating and housing the conducting wire, the current sensor of the current sensor is provided. The occupied space can be reduced.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。図
1には、本発明の一実施例に係る電流センサの構成が示
されている。本実施例の電流センサは、基板21の一方
の基板面21aにファラデー素子22が設けられてい
る。ファラデー素子22は、所定の厚さを有する方形状
の板材からなり、強さの異なる磁界H1と磁界H2とを
異なる領域に平行に印加可能な寸法を有している。ファ
ラデー素子22はジンクセレン(ZnSe)で構成して
いる。
Embodiments of the present invention will be described below. FIG. 1 shows the configuration of a current sensor according to an embodiment of the present invention. In the current sensor of this embodiment, a Faraday element 22 is provided on one substrate surface 21a of the substrate 21. The Faraday element 22 is made of a rectangular plate material having a predetermined thickness, and has a size capable of applying a magnetic field H1 and a magnetic field H2 having different strengths to different regions in parallel. The Faraday element 22 is composed of zinc selenium (ZnSe).

【0017】ファラデー素子22の一端面に対向して偏
光ビームスプリッタ23及び直角プリズム24が配置さ
れている。偏光ビームスプリッタ23に対して送光コリ
メータ25がその出射端面を偏光ビームスプリッタ23
の入射面に対面するように配置されている。偏光ビーム
スプリッタ23は、送光コリメータ25から入射する測
定光を互いに直交する2方向の直線偏光成分に分離し
て、その第1の直線偏光成分を進行方向を90度曲げて
ファラデー素子22の一端面に入射し、且つ、その第2
の直線偏光成分を直角プリズム24側へ透過させる偏光
面を有する。直角プリズム24は、偏光ビームスプリッ
タ23から入射する第2の直線偏光成分がその進行方向
を90度曲げられてファラデー素子22の一端面に入射
するように配置されている。
A polarization beam splitter 23 and a right-angle prism 24 are arranged so as to face one end face of the Faraday element 22. The light-transmitting collimator 25 has its exit end face with respect to the polarization beam splitter 23.
Is arranged so as to face the incident surface of. The polarization beam splitter 23 splits the measurement light incident from the light-transmitting collimator 25 into two linearly polarized light components orthogonal to each other, bends the first linearly polarized light component in the traveling direction by 90 degrees, and forms one of the Faraday elements 22. Incident on the end face, and the second
Has a plane of polarization for transmitting the linearly polarized light component of (4) to the right-angle prism 24 side. The right-angled prism 24 is arranged so that the second linearly polarized light component incident from the polarization beam splitter 23 is bent by 90 degrees in its traveling direction and is incident on one end face of the Faraday element 22.

【0018】一方、ファラデー素子22の他端面に対向
して直角プリズム26及び大電流検出側の検光子(以
下、「第1の検光子」と呼ぶ)27が設けられている。
直角プリズム26は、ファラデー素子22から出射した
第2の直線偏光成分をその進行方向を90度曲げて小電
流検出側の検光子(以下、「第2の検光子」と呼ぶ)2
8に入射するように配置されている。第1の検光子27
は、直角プリズム26,第2の検光子28間の光路と干
渉しない所までファラデー素子22の他端面から離れた
位置であって、ファラデー素子22から出射した第1の
直線偏光成分が入射し得る位置に配置されている。第1
の検光子27の出射端面に対向して大電流検出側の受光
コリメータ(以下、「第1の受光コリメータ」と呼ぶ)
29が配置され、また第2の検光子28の出射端面に対
向して小電流検出側の受光コリメータ(以下、「第2の
受光コリメータ」と呼ぶ)30が配置されている。
On the other hand, a right-angle prism 26 and a large current detection side analyzer (hereinafter referred to as "first analyzer") 27 are provided facing the other end surface of the Faraday element 22.
The right-angle prism 26 bends the second linearly polarized light component emitted from the Faraday element 22 by 90 degrees in its traveling direction, and an analyzer on the small current detection side (hereinafter, referred to as “second analyzer”) 2
8 is arranged so as to enter. First analyzer 27
Is a position distant from the other end surface of the Faraday element 22 to a position where it does not interfere with the optical path between the right-angled prism 26 and the second analyzer 28, and the first linearly polarized light component emitted from the Faraday element 22 can enter. It is located in a position. First
The light receiving collimator on the large current detection side (hereinafter, referred to as “first light receiving collimator”) facing the emission end surface of the analyzer 27 of FIG.
29 is arranged, and a light receiving collimator (hereinafter, referred to as “second light receiving collimator”) 30 on the small current detection side is arranged so as to face the emission end surface of the second analyzer 28.

【0019】また、本実施例の電流センサは、基板21
に対して垂直な状態でファラデー素子22をギャップ部
31aに収納する鉄心31を備えている。鉄心31は、
所定の内径を有するリング状をなしており、その一部が
ファラデー素子22を直角プリズム24,26の外側か
ら収納できるだけの長さに切欠かれギャップ部31aが
形成されている。この鉄心31のギャップ部31aは、
ファラデー素子22に対して、図1(b)中上方より第
2の直線偏光成分が伝播する領域にのみ掛かるように配
置されている。被測定電流Iが流れる電線32をこのギ
ャップ付き鉄心31の中心に配置する。
Further, the current sensor of this embodiment is composed of the substrate 21.
An iron core 31 for housing the Faraday element 22 in the gap portion 31a in a state perpendicular to the is provided. The iron core 31 is
It has a ring shape having a predetermined inner diameter, and a part thereof is notched to a length such that the Faraday element 22 can be accommodated from the outside of the right-angle prisms 24 and 26, and a gap portion 31a is formed. The gap 31a of the iron core 31 is
The Faraday element 22 is arranged so as to cover only the region where the second linearly polarized light component propagates from above in FIG. The electric wire 32 through which the measured current I flows is arranged at the center of the iron core 31 with a gap.

【0020】以上のように構成された本実施例では、電
線32が大電流の被測定電流Iを流すような場合、電線
32に被測定電流Iが流れると磁界が発生し、被測定電
流Iがファラデー素子22における第1の直線偏光通過
位置に所定強さの磁界H1を作る。磁界H1の方向はフ
ァラデー素子22における第1の直線偏光成分の伝播方
向と一致する図示矢印方向である。
In the present embodiment configured as described above, when the electric current 32 to be measured is a large current flowing through the electric wire 32, a magnetic field is generated when the electric current 32 to be measured flows through the electric wire 32, and the electric current I to be measured is generated. Creates a magnetic field H1 of a predetermined strength at the first linearly polarized light passing position in the Faraday element 22. The direction of the magnetic field H1 is the direction of the arrow shown in the figure, which coincides with the propagation direction of the first linearly polarized light component in the Faraday element 22.

【0021】送光コリメータ25から測定光を出射する
と、偏光ビームスプリッタ23で第1の直線偏光成分が
90度の角度で反射し、磁界H1が印加されているファ
ラデー素子22に対して磁界方向と平行な角度で入射さ
れる。第1の直線偏光成分がファラデー素子22を通過
するときに作用するファラデー効果により、第1の直線
偏光成分の偏光面が磁界H1に比例した角度だけ回転す
る。この偏光面が回転した第1の直線偏光成分がファラ
デー素子22から出射して第1の検光子27に入射し、
第1の検光子27において第1の直線偏光成分の所定の
一成分のみが取り出されて第1の受光コリメータ29で
受光される。第1の受光コリメータ29にて受光された
光量から磁界H1を求め、その求めた磁界H1から被測
定電流Iを計算する。
When the measurement light is emitted from the light-transmitting collimator 25, the first linearly polarized light component is reflected by the polarization beam splitter 23 at an angle of 90 degrees, and the Faraday element 22 to which the magnetic field H1 is applied is in the magnetic field direction. It is incident at parallel angles. Due to the Faraday effect that acts when the first linearly polarized light component passes through the Faraday element 22, the polarization plane of the first linearly polarized light component rotates by an angle proportional to the magnetic field H1. The first linearly polarized light component whose polarization plane is rotated is emitted from the Faraday element 22 and is incident on the first analyzer 27,
Only a predetermined one component of the first linearly polarized light component is extracted by the first analyzer 27 and received by the first light receiving collimator 29. The magnetic field H1 is obtained from the amount of light received by the first light receiving collimator 29, and the measured current I is calculated from the obtained magnetic field H1.

【0022】また、電線32が小電流の被測定電流Iを
流すような場合、電線32に被測定電流Iが流れると磁
界が発生し、その磁界に応じた所定強さの磁界H2が鉄
心31のギャップ部31aに発生する。すなわち、一対
の直角プリズム24,26で挟まれたファラデー素子2
2の第2の直線偏光成分の通路に、ギャップ付き鉄心3
1が磁界H2を作る。
Further, when the electric current 32 to be measured is a small current flowing through the electric wire 32, a magnetic field is generated when the electric current I to be measured flows through the electric wire 32, and a magnetic field H2 having a predetermined strength corresponding to the magnetic field is generated. Occurs in the gap portion 31a. That is, the Faraday element 2 sandwiched between the pair of right-angle prisms 24 and 26.
In the passage of the second linearly polarized light component of 2, the iron core 3 with a gap
1 creates a magnetic field H2.

【0023】送光コリメータ25から測定光を出射する
と、偏光ビームスプリッタ23を第2の直線偏光成分が
透過して直角プリズム24に入射し、そこで90度の角
度で反射して磁界H2が印加されているファラデー素子
22に対して磁界方向と平行な角度で入射される。第2
の直線偏光成分がファラデー素子22を通過するとき
に、その偏光面が磁界H2に比例した角度だけ回転す
る。この偏光面が回転した第2の直線偏光成分がファラ
デー素子22から出射し、直角プリズム26で反射され
て第2の検光子28に入射する。ファラデー素子22で
偏光面の回転した第1の直線偏光成分の所定の一成分の
みが第2の検光子28において取り出されて第2の受光
コリメータ30で受光される。第2の受光コリメータ3
0にて受光された光量から磁界H2を求め、その求めた
磁界H2から被測定電流Iを計算することができる。
When the measurement light is emitted from the light-transmitting collimator 25, the second linearly polarized light component is transmitted through the polarization beam splitter 23 and is incident on the rectangular prism 24, where it is reflected at an angle of 90 degrees and a magnetic field H2 is applied. The light is incident on the Faraday element 22 at an angle parallel to the magnetic field direction. Second
When the linearly polarized light component of is passed through the Faraday element 22, its plane of polarization is rotated by an angle proportional to the magnetic field H2. The second linearly polarized light component whose polarization plane is rotated is emitted from the Faraday element 22, is reflected by the rectangular prism 26, and is incident on the second analyzer 28. Only a predetermined one component of the first linearly polarized light component whose polarization plane is rotated by the Faraday element 22 is extracted by the second analyzer 28 and received by the second light receiving collimator 30. Second light receiving collimator 3
The magnetic field H2 can be obtained from the amount of light received at 0, and the measured current I can be calculated from the obtained magnetic field H2.

【0024】このように本実施例によれば、偏光ビーム
スプリッタ23での反射光となる第1の直線偏光成分を
大電流検出用の測定光として使用し、偏光ビームスプリ
ッタ23での透過光となる第2の直線偏光成分を小電流
検出用の測定光として使用し、第1,第2の直線偏光成
分を1つのファラデー素子22を通過させると共に第2
の直線偏光成分の通過経路の両端を鉄心31のギャップ
部31aに収納するようにしたので、送光コリメータ2
5、偏光子(偏光ビームスプリッタ23)及びファラデ
ー素子22を大電流検出と小電流検出の双方で共用で
き、部品点数を削減できる。また、大電流検出と小電流
検出の2つのセンサの機能を同一平面となる一つの基板
21上に配置した構成要素で実現できることから、セン
サ全体のコンパクト化を図ることができる。さらに、偏
光ビームスプリッタ23での反射光を大電流検出用とし
て使用し、透過光を小電流検出用として使用するので、
測定光を効率良く使用できる。
As described above, according to this embodiment, the first linearly polarized light component, which is the reflected light at the polarization beam splitter 23, is used as the measurement light for detecting the large current, and the first linearly polarized light component is transmitted through the polarization beam splitter 23. The second linearly polarized light component is used as measurement light for detecting a small current, and the first and second linearly polarized light components are passed through one Faraday element 22 and
Since both ends of the passage of the linearly polarized light component of are accommodated in the gap portion 31a of the iron core 31, the light transmitting collimator 2
5. The polarizer (polarizing beam splitter 23) and the Faraday element 22 can be commonly used for both large current detection and small current detection, and the number of parts can be reduced. Further, since the functions of the two sensors for large current detection and small current detection can be realized by the constituent elements arranged on one substrate 21 on the same plane, the sensor as a whole can be made compact. Further, since the reflected light from the polarization beam splitter 23 is used for detecting a large current and the transmitted light is used for detecting a small current,
The measuring light can be used efficiently.

【0025】図2に示すように、上記一実施例の電流セ
ンサを、被測定電流Iの流れる電線32がガス密封形の
収納容器40の中に配設された設備に適用できる。収納
容器40には、電線32をガス絶縁するためのガスを容
器内に充填するためのガスパージ用バルブ41が取り付
けられる。本発明は上記実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲内で種々変形実施可
能である。
As shown in FIG. 2, the current sensor of the above embodiment can be applied to equipment in which the electric wire 32 through which the current I to be measured flows is arranged in a gas-tight type storage container 40. A gas purging valve 41 for filling the container with a gas for gas-insulating the electric wire 32 is attached to the storage container 40. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上詳記したように本発明によれば、偏
光ビームスプリッタで分離する2つの偏光成分のうち一
方を大電流検出用に使用し、他方を小電流検出用に使用
するようにしたので、部品点数を削減できると共に大電
流及び小電流の双方を検出可能なセンサを同一平面上に
構成することができ、センサ全体の小形化、コンパクト
化が容易で、しかも測定光を効率良く使用できる。
As described above in detail, according to the present invention, one of the two polarization components separated by the polarization beam splitter is used for detecting a large current, and the other is used for detecting a small current. As a result, it is possible to reduce the number of parts and to configure a sensor that can detect both large and small currents on the same plane, making it easy to downsize and compact the entire sensor, and to efficiently measure light. Can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る電流センサの構成図で
ある。
FIG. 1 is a configuration diagram of a current sensor according to an embodiment of the present invention.

【図2】上記一実施例の電流センサを装備したガス密封
形の収納容器を示す図である。
FIG. 2 is a view showing a gas-tight type storage container equipped with the current sensor of the one embodiment.

【図3】従来の大電流検出用の電流センサの構成図であ
る。
FIG. 3 is a configuration diagram of a conventional current sensor for detecting a large current.

【図4】従来の小電流検出用の電流センサの構成図であ
る。
FIG. 4 is a configuration diagram of a conventional small current detection current sensor.

【符号の説明】[Explanation of symbols]

21…基板、22…ファラデー素子、23…偏光ビーム
スプリッタ、24,26…直角プリズム、27…第1の
検光子、28…第2の検光子、29…第1の受光コリメ
ータ、30…第2の受光コリメータ、31…鉄心、31
a…ギャップ部、32…電線、40…収納容器。
21 ... Substrate, 22 ... Faraday element, 23 ... Polarization beam splitter, 24, 26 ... Right angle prism, 27 ... First analyzer, 28 ... Second analyzer, 29 ... First light receiving collimator, 30 ... Second Light receiving collimator, 31 ... Iron core, 31
a ... Gap part, 32 ... Electric wire, 40 ... Storage container.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定電流により生じた磁界の強さに応
じて偏光面が回転した直線偏光を受光し、前記偏光面の
回転量に基づいて前記被測定電流の電流値に応じた検出
信号を出力する電流センサにおいて、 光を出射する送光コリメータと、この送光コリメータか
ら出射した光を反射光及び透過光に分離して2つの直線
偏光を作る偏光ビームスプリッタと、この偏光ビームス
プリッタで作られた一方の直線偏光が入射して前記被測
定電流による磁界方向に伝播すると共に当該直線偏光の
偏光面を磁界の強さに応じて回転させる第1の光伝播経
路と、この第1の光伝播経路から出射した一方の直線偏
光が入射する第1の検光子と、この第1の検光子を透過
した光を受光する第1の受光コリメータと、前記偏光ビ
ームスプリッタで作られた他方の直線偏光が入射して所
定方向に伝播すると共に当該直線偏光の偏光面を磁界の
強さに応じて回転させる第2の光伝播経路と、この第2
の光伝播経路から出射した他方の直線偏光が入射する第
2の検光子と、この第2の検光子を透過した光を受光す
る第2の受光コリメータと、前記第2の光伝播経路の両
端をギャップ内に挟み込んだギヤップ付き鉄心とを具備
したことを特徴とする電流センサ。
1. A detection signal, which receives linearly polarized light whose polarization plane is rotated according to the strength of a magnetic field generated by the current to be measured, and which is based on the rotation amount of the polarization plane and which corresponds to the current value of the current to be measured. In a current sensor that outputs, a light-transmitting collimator that emits light, a polarization beam splitter that splits the light emitted from this light-transmitting collimator into reflected light and transmitted light to create two linearly polarized light, and this polarization beam splitter A first light propagation path that makes one of the created linearly polarized light incident and propagates in the magnetic field direction by the current to be measured and rotates the polarization plane of the linearly polarized light according to the strength of the magnetic field; A first analyzer on which one linearly polarized light emitted from the light propagation path is incident, a first light receiving collimator for receiving the light transmitted through the first analyzer, and the other of the other formed by the polarization beam splitter. straight A second light propagation path to rotate in accordance with the polarization plane of the linearly polarized light to the intensity of the magnetic field with propagating in a predetermined direction polarization incident, the second
Second linearly-polarized light emitted from the second light propagation path, a second light-receiving collimator that receives light transmitted through the second analyzer, and both ends of the second light-propagation path. A current sensor, comprising: an iron core with a gear that sandwiches the core in a gap.
【請求項2】 第1の光伝播経路及び第2の光伝播経路
を、1つのファラデー素子内に形成したことを特徴とす
る請求項1記載の電流センサ。
2. The current sensor according to claim 1, wherein the first light propagation path and the second light propagation path are formed in one Faraday element.
【請求項3】 送光コリメータ、偏光ビームスプリッ
タ、第1,第2の光伝播経路、第1,第2の検光子、第
1,第2の受光コリメータを、同一基板面上に配置した
ことを特徴とする請求項1または請求項2記載の電流セ
ンサ。
3. A light-transmitting collimator, a polarization beam splitter, first and second light propagation paths, first and second analyzers, and first and second light-receiving collimators are arranged on the same substrate surface. The current sensor according to claim 1 or 2, characterized in that.
【請求項4】 第1,第2の光伝播経路、又はファラデ
ー素子をジンクセレン(ZnSe)で構成したことを特
徴とする請求項1〜請求項3のいずれかに記載の電流セ
ンサ。
4. The current sensor according to claim 1, wherein the first and second light propagation paths or the Faraday element is made of zinc selenium (ZnSe).
【請求項5】 被測定電流が流れる導線をガス絶縁して
収納すると共に複数のガスパージ用バルブが取り付けら
れたガス密封形収納容器において、 請求項1〜請求項4のいずれかに記載の電流センサを、
ギヤップ付き鉄心の中心部を導線が通るように収納容器
内に配置したことを特徴とするガス密封形収納容器。
5. A gas-sealed storage container in which a conducting wire through which a current to be measured flows is housed in a gas-insulated manner, and a plurality of gas purging valves are attached, wherein the current sensor according to any one of claims 1 to 4. To
A gas-tight storage container, characterized in that the core of the geared core is arranged in the storage container so that the conductors pass through it.
JP7105810A 1995-04-28 1995-04-28 Current sensor Pending JPH08304469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105810A JPH08304469A (en) 1995-04-28 1995-04-28 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105810A JPH08304469A (en) 1995-04-28 1995-04-28 Current sensor

Publications (1)

Publication Number Publication Date
JPH08304469A true JPH08304469A (en) 1996-11-22

Family

ID=14417465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105810A Pending JPH08304469A (en) 1995-04-28 1995-04-28 Current sensor

Country Status (1)

Country Link
JP (1) JPH08304469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037948A1 (en) * 1998-12-21 2000-06-29 Abb Ab Electric current sensors
CN116908515A (en) * 2023-09-14 2023-10-20 合肥工业大学 Differential optical current sensor for lightning current detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037948A1 (en) * 1998-12-21 2000-06-29 Abb Ab Electric current sensors
CN116908515A (en) * 2023-09-14 2023-10-20 合肥工业大学 Differential optical current sensor for lightning current detection
CN116908515B (en) * 2023-09-14 2023-12-05 合肥工业大学 Differential optical current sensor for lightning current detection

Similar Documents

Publication Publication Date Title
US4539519A (en) Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect
RU2086988C1 (en) Fiber-optic device for measurement of current strength
JPH04220567A (en) Magnetic-flux-density measuring apparatus
EP0774669B1 (en) Optical fiber magnetic-field sensor
US20220268818A1 (en) Interference type optical magnetic field sensor device
JPH08304469A (en) Current sensor
CN103038647B (en) Current detection device
JP3140546B2 (en) Optical magnetic field measuring apparatus and method
JPS59107273A (en) Photocurrent and magnetic field sensor
CA2268913C (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JPS59145977A (en) Magnetic field measuring device
JP2012229954A (en) Optical fiber current sensor
JP3041637B2 (en) Optical applied DC current transformer
CN2319815Y (en) Double incident light path back type optical current sensor head
JP2715145B2 (en) Optical current transformer
Song et al. A faraday effect based clamp-on magneto-optical current transducer for power systems
JPS5937461A (en) Optical current transformer
JP3494525B2 (en) Optical fiber current measuring device
SU789686A1 (en) Density meter
De Carvalho Sagnac interferometry for accurate sensing of non-reciprocal effects
SU517854A1 (en) Farad cell for measuring current characteristics
JPH04366783A (en) Photomagnetic field and current sensor
SU757990A1 (en) Optronic current meter
JPH0536377U (en) Optical voltage / current sensor
JPH06337275A (en) Photocurrent sensor