JPH0536377U - Optical voltage / current sensor - Google Patents

Optical voltage / current sensor

Info

Publication number
JPH0536377U
JPH0536377U JP9532491U JP9532491U JPH0536377U JP H0536377 U JPH0536377 U JP H0536377U JP 9532491 U JP9532491 U JP 9532491U JP 9532491 U JP9532491 U JP 9532491U JP H0536377 U JPH0536377 U JP H0536377U
Authority
JP
Japan
Prior art keywords
voltage
light
current
faraday
pockels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9532491U
Other languages
Japanese (ja)
Inventor
修 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9532491U priority Critical patent/JPH0536377U/en
Publication of JPH0536377U publication Critical patent/JPH0536377U/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

(57)【要約】 【目的】 電圧検出部にファラディ効果を有するポッケ
ルス素子を用い、電流検出部に印加される磁界の影響を
受けることなく電圧検出が行えるようにする。 【構成】 偏光子24で直線偏光された光を1/4波長
板25で円偏光に変換して被測定電圧が印加されたファ
ラディ効果を有するポッケルス素子26に入射し電圧を
検出する電圧検出部20と、偏光子31で直線偏光され
た光を被測定電流による磁界H中に配置されたファラデ
ィ素子33に入射し電流を検出する電流検出部21とを
設け、両検出部20,21をポッケルス素子26の光軸
の方向とファラディ素子33の光軸の方向とを直交させ
て配置する。
(57) [Abstract] [Purpose] To use a Pockels element having a Faraday effect in the voltage detection unit so that voltage detection can be performed without being affected by the magnetic field applied to the current detection unit. A voltage detector that converts light linearly polarized by a polarizer 24 into circularly polarized light by a quarter-wave plate 25, enters a Pockels element 26 having a Faraday effect to which a voltage to be measured is applied, and detects the voltage. 20 and a current detector 21 for detecting the current by making the light linearly polarized by the polarizer 31 incident on the Faraday element 33 arranged in the magnetic field H due to the current to be measured, and the both detectors 20 and 21 are Pockels. The optical axis direction of the element 26 and the optical axis direction of the Faraday element 33 are arranged so as to be orthogonal to each other.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、ポッケルス素子及びファラディ素子を用いて配電線等の電圧,電流 を検出する光学式電圧電流センサに関する。 The present invention relates to an optical voltage / current sensor that detects voltage and current of a distribution line using a Pockels element and a Faraday element.

【0002】[0002]

【従来の技術】[Prior Art]

従来、配電線の電圧,電流を光学的に検出する場合、図3に示すように、ケー ス1に光学式電圧検出部2と光学式電流検出部3とを収容し、これを測定対象の 配電線4に近接して配置するようにしている。5,6は光ファイバケーブルであ る。 前記電圧検出部2は、図4に示すような構成になっており、ケース7に前記光 ファイバケーブル5に連結された光入射側,光出射側のコリメータ8A,8B, 偏光子(PBS)9,1/4波長板10,ポッケルス素子11及び検光子(PB S)12を収容し、配電線4の電圧を適当に分圧してポッケルス素子11に印加 するようにしている。 Conventionally, in the case of optically detecting the voltage and current of a distribution line, as shown in FIG. 3, an optical voltage detection unit 2 and an optical current detection unit 3 are housed in a case 1 and the optical voltage detection unit 2 and the optical current detection unit 3 are accommodated in a case to be measured. It is arranged close to the distribution line 4. 5 and 6 are optical fiber cables. The voltage detection unit 2 is configured as shown in FIG. 4, and the case 7 is connected to the optical fiber cable 5 and collimators 8A and 8B on the light incident side and the light emitting side, and a polarizer (PBS) 9 are connected. , 1/4 wave plate 10, Pockels element 11 and analyzer (PBS) 12 are accommodated, and the voltage of the distribution line 4 is appropriately divided and applied to the Pockels element 11.

【0003】 そして、半導体レーザ等の発光素子(図示せず)からの光が光ファイバケーブ ル5を通してコリメータ8Aに入射されると、コリメータ8Aに入った光が平行 光(偏光がランダムな光)に変換され、その後偏光子9で反射され、この際に偏 光子9において直線偏光される。偏光子9で直線偏光となった光は、1/4波長 板10により円偏光に変換され、この状態でポッケルス素子11を通過する。ポ ッケルス素子11には、配電線4の電圧に比例した電圧が加えられており、ポッ ケルス素子11に加わる電界強度に応じて通過する光の偏光状態が変化し、楕円 偏光に変換される。Then, when light from a light emitting element (not shown) such as a semiconductor laser is incident on the collimator 8A through the optical fiber cable 5, the light entering the collimator 8A is parallel light (light having randomly polarized light). And then reflected by the polarizer 9, whereupon it is linearly polarized by the polarizer 9. The light linearly polarized by the polarizer 9 is converted into circularly polarized light by the quarter-wave plate 10 and passes through the Pockels element 11 in this state. A voltage proportional to the voltage of the distribution line 4 is applied to the Pockels element 11, and the polarization state of the light passing therethrough changes according to the electric field strength applied to the Pockels element 11, and is converted into elliptically polarized light.

【0004】 さらに、ポッケルス素子11を出た光は、検光子12で反射され、この際にポ ッケルス素子11による偏光状態の変化が光強度に変換され、コリメータ8Bに 入射され、光ファイバケーブル5を通して光センサ(図示せず)にて光強度が検 出される。 したがって、この電圧検出部2においては、ポッケルス素子11に加えられる 電圧が変化すると、ポッケルス素子11内を透過する際の透過光の偏光状態が変 化し、検光子12で変換される光強度も変化し、したがって光センサの出力信号 のレベルが印加電圧の変化に応じて変化することになり、電圧を検出することが できる。Further, the light emitted from the Pockels element 11 is reflected by the analyzer 12, and at this time, the change in the polarization state by the Pockels element 11 is converted into light intensity, which is made incident on the collimator 8B, and the optical fiber cable 5 The light intensity is detected by an optical sensor (not shown) through. Therefore, in the voltage detecting unit 2, when the voltage applied to the Pockels element 11 changes, the polarization state of the transmitted light passing through the Pockels element 11 changes, and the light intensity converted by the analyzer 12 also changes. Therefore, the level of the output signal of the optical sensor changes according to the change of the applied voltage, and the voltage can be detected.

【0005】 また、前記電流検出部3は、図5に示すように構成され、ケース13に前記光 ファイバケーブル6に連結された光入射側,光出射側のコリメータ14A,14 B,三角プリズム15,偏光子(PBS)16,ファラディ素子17,検光子( 偏光子16に対し光軸を中心として45度回転させたもの)18及び三角プリズ ム19を収容し、配電線4を流れる電流による磁界Hの方向がファラディ素子1 7の光軸方向になるようにしている。Further, the current detector 3 is configured as shown in FIG. 5, and the case 13 is connected to the optical fiber cable 6 and collimators 14 A and 14 B on the light incident side and the light emitting side, and a triangular prism 15 are provided. , A polarizer (PBS) 16, a Faraday element 17, an analyzer (rotated by 45 degrees about the optical axis with respect to the polarizer 16) 18 and a triangular prism 19, and a magnetic field generated by a current flowing through the distribution line 4. The direction of H is set to be the optical axis direction of the Faraday element 17.

【0006】 そして、半導体レーザ等の発光素子(図示せず)からの光が光ファイバケーブ ル6を通してコリメータ14Aに入射されると、コリメータ14Aに入った光が 平行光(偏光がランダムな光)に変換された後、三角プリズム15で全反射され 、さらに偏光子16を透過し、この際に直線偏光される。偏光子16から出た光 は、直線偏光の状態でファラディ素子17を透過し、この際ファラディ素子17 に加わる磁界強度に応じて透過する光の偏光状態が変化し、すなわち偏波面が回 転する。When light from a light emitting element (not shown) such as a semiconductor laser is incident on the collimator 14A through the optical fiber cable 6, the light entering the collimator 14A is collimated light (light having randomly polarized light). After being converted into, the light is totally reflected by the triangular prism 15, further transmitted through the polarizer 16, and is linearly polarized at this time. The light emitted from the polarizer 16 passes through the Faraday element 17 in a linearly polarized state, and the polarization state of the transmitted light changes according to the magnetic field strength applied to the Faraday element 17, that is, the plane of polarization rotates. ..

【0007】 さらに、ファラディ素子17を出た光は、検光子18を透過し、この際にファ ラディ素子17による偏波面の回転が光強度に変換され、検光子18から出た光 が三角プリズム19で全反射されてコリメータ14Bに入射され、光ファイバケ ーブル6を通して光センサ(図示せず)にて光強度が検出される。 したがって、この電流検出部3においては、配電線4に流れる電流が変化する と、ファラディ素子17に加わる磁界強度が変化してファラディ素子17の透過 光の偏光状態が変化し、検光子18で検出される光強度も変化し、したがって光 センサの出力信号のレベルが配電線4に流れる電流の変化に応じて変化すること になり、電流を検出することができる。Further, the light emitted from the Faraday element 17 passes through the analyzer 18, and at this time, the rotation of the polarization plane by the Faraday element 17 is converted into light intensity, and the light emitted from the analyzer 18 is converted into a triangular prism. The light is totally reflected by 19 and is incident on the collimator 14B, and the light intensity is detected by an optical sensor (not shown) through the optical fiber cable 6. Therefore, in the current detecting unit 3, when the current flowing through the distribution line 4 changes, the magnetic field strength applied to the Faraday element 17 changes, and the polarization state of the transmitted light of the Faraday element 17 changes, which is detected by the analyzer 18. The intensity of the emitted light also changes, so that the level of the output signal of the optical sensor changes according to the change in the current flowing through the distribution line 4, and the current can be detected.

【0008】[0008]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、前述した電圧検出部2におけるポッケルス素子11として、ファラ ディ効果を有さないものを使用した場合、この電圧検出部2を図3のように電流 検出部3に近接して、すなわち配電線4を流れる電流による磁界H中に配置して も影響はないが、この場合、ピロ電気による電界の影響を排除するためにポッケ ルス素子の6面すべてに電極(光の入射面,出射面は透明電極)を形成しなけれ ばならず、電極処理に手間がかかるといった欠点を有している。 By the way, when the Pockels element 11 which does not have the Faraday effect is used as the Pockels element 11 in the voltage detection unit 2 described above, the voltage detection unit 2 is placed close to the current detection unit 3 as shown in FIG. There is no effect even if it is placed in the magnetic field H due to the current flowing through No. 4, but in this case, in order to eliminate the effect of the electric field due to pyroelectricity, all six surfaces of the Pockels element have electrodes (light entrance and exit surfaces are It is necessary to form a transparent electrode), which has a drawback that it takes time to process the electrode.

【0009】 これに対し、BSOやBGO等のファラディ効果を有するポッケルス素子の場 合、安価に入手できる上,電圧,電流のどちらの検出にも使用でき、しかも、前 述したような電極処理が不要であり、光軸に直交する光の入射面及び出射面に透 明電極を形成してこの間につまり光軸方向に電圧を印加することにより電圧検出 が行える。On the other hand, in the case of a Pockels element having a Faraday effect such as BSO or BGO, it can be obtained at low cost, and it can be used for detection of both voltage and current, and the electrode treatment as described above can be performed. It is not necessary, and voltage detection can be performed by forming transparent electrodes on the incident surface and the emission surface of light orthogonal to the optical axis and applying a voltage between them, that is, in the optical axis direction.

【0010】 しかし、従来例で示した構造では、電圧検出部2にファラディ効果を有するポ ッケルス素子を用いると、その光軸方向に電流による磁界Hが作用するため、こ の磁界Hの影響を受けてファラディ効果による偏光状態が生じてしまい、正確な 電圧検出が行えなくなる問題を生じる。However, in the structure shown in the conventional example, when the Pockels element having the Faraday effect is used for the voltage detection unit 2, the magnetic field H due to the current acts in the optical axis direction, so that the influence of the magnetic field H is reduced. Then, the Faraday effect causes a polarization state, which causes a problem that accurate voltage detection cannot be performed.

【0011】 本考案は、従来の技術の有するこのような問題点に留意してなされたものであ り、その目的とするところは、電圧検出部にファラディ効果を有するポッケルス 素子を用いて磁界の影響を受けることなく電圧検出を行い得る光学式電圧電流セ ンサを提供することにある。The present invention has been made in view of such problems of the conventional technique, and the purpose thereof is to use a Pockels element having a Faraday effect in the voltage detection unit to generate a magnetic field. An object is to provide an optical voltage / current sensor that can detect voltage without being affected.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

前記目的を達成するために、本考案の光学式電圧電流センサにおいては、偏光 子で直線偏光された光を円偏光に変換して被測定電圧が印加されたファラディ効 果を有するポッケルス素子に入射し電圧を検出する電圧検出部と、偏光子で直線 偏光された光を被測定電流による磁界中に配置されたファラディ素子に入射し電 流を検出する電流検出部とを、ポッケルス素子の光軸の方向とファラディ素子の 光軸の方向とを直交させて配置したものである。 In order to achieve the above object, in the optical voltage-current sensor of the present invention, light linearly polarized by a polarizer is converted into circularly polarized light and incident on a Pockels element having a Faraday effect to which a voltage to be measured is applied. The Pockels element's optical axis and the voltage detection section that detects the voltage and the current detection section that detects the current by injecting the light linearly polarized by the polarizer into the Faraday element that is placed in the magnetic field due to the current to be measured. And the direction of the optical axis of the Faraday element are orthogonal to each other.

【0013】[0013]

【作用】[Action]

前述した構成の光学式電圧電流センサにあっては、電流検出部が被測定電流に よる磁界中にファラディ素子の光軸方向と電流による磁界の方向とを一致させて 設置されるため、光軸の方向がファラディ素子のそれと直交するポッケルス素子 に対しては、その光軸に直交する方向に磁界が作用することになり、ファラディ 効果を有するポッケルス素子は磁界の影響を無視することが可能となる。 In the optical voltage / current sensor with the above-mentioned configuration, the current detector is installed in the magnetic field due to the measured current so that the optical axis direction of the Faraday element and the magnetic field direction due to the current match. For the Pockels element whose direction is orthogonal to that of the Faraday element, the magnetic field acts in the direction orthogonal to the optical axis, and the Pockels element having the Faraday effect can ignore the influence of the magnetic field. ..

【0014】[0014]

【実施例】【Example】

実施例につき、図1及び図2を用いて説明する。 (実施例1) まず、実施例1を図1を用いて説明する。同図に示すように、配電線の電圧を 光学的に検出する電圧検出部20と配電線を流れる電流を光学的に検出する電流 検出部21とは、測定対象の配電線に近接配置されている。 An example will be described with reference to FIGS. 1 and 2. Example 1 First, Example 1 will be described with reference to FIG. As shown in the figure, the voltage detection unit 20 that optically detects the voltage of the distribution line and the current detection unit 21 that optically detects the current flowing through the distribution line are placed close to the distribution line to be measured. There is.

【0015】 電圧検出部20は、ケース22に光入射側,光出射側のコリメータ23A,2 3B,偏光子24,1/4波長板25,ファラディ効果を有するポッケルス素子 26,検光子27及び三角プリズム28を収容して構成され、ポッケルス素子2 6の光の入射面及び出射面にそれぞれ形成した透明電極間に配電線の電圧を適当 に分圧した電圧が印加されている。The voltage detection unit 20 includes a case 22 having light incident side and light emitting side collimators 23 A, 23 B, a polarizer 24, a quarter-wave plate 25, a Pockels element 26 having a Faraday effect, an analyzer 27, and a triangle. A voltage obtained by appropriately dividing the voltage of the distribution line is applied between the transparent electrodes formed on the light incident surface and the light emitting surface of the Pockels element 26, which are configured to accommodate the prism 28.

【0016】 また、電流検出部21は、ケース29に光入射側,光出射側のコリメータ30 A,30B,偏光子31,1/2波長板32,ファラディ素子33及び検光子3 4を収容して構成され、配電線を流れる電流による磁界Hの方向がファラディ素 子33の光軸方向になるようにしている。Further, the current detector 21 houses the light incident side and light emitting side collimators 30 A and 30 B, the polarizer 31, the half-wave plate 32, the Faraday element 33 and the analyzer 34 in the case 29. The magnetic field H due to the current flowing through the distribution line is oriented in the optical axis direction of the Faraday element 33.

【0017】 ここで、前記電圧検出部20におけるポッケルス素子26の光軸の方向は電流 検出部21におけるファラディ素子33の光軸の方向と直交するように設定され ており、したがって、前記磁界Hの方向はポッケルス素子26に対しその光軸に 直交する方向となる。 なお、ファラディ素子33が配電線を流れる電流による磁界を受けるための具 体的な構成としては、例えば、配電線を包囲するC形コアの磁路が開いた部分に ケース29を挿入配置することが考えられる。Here, the direction of the optical axis of the Pockels element 26 in the voltage detection unit 20 is set to be orthogonal to the direction of the optical axis of the Faraday element 33 in the current detection unit 21, and therefore the magnetic field H The direction is perpendicular to the optical axis of the Pockels element 26. The Faraday element 33 receives the magnetic field due to the current flowing through the distribution line. For example, the case 29 may be inserted and arranged in the portion where the magnetic path of the C-shaped core surrounding the distribution line is open. Can be considered.

【0018】 また、光学バイアス用の1/2波長板32を偏光子31とファラディ素子33 との間に介在させたのは、あらかじめ直線偏光を45度傾斜させることにより、 検光子34を光軸に対して45度回転させて取り付けるのを不要にし、組立作業 の向上を図ったものである。Further, the half-wave plate 32 for optical bias is interposed between the polarizer 31 and the Faraday element 33 because the linearly polarized light is tilted in advance by 45 degrees so that the analyzer 34 can be moved along the optical axis. Since it is not necessary to rotate it by 45 degrees and attach it, the assembly work is improved.

【0019】 このような構成にあっては、光ファイバケーブルからの光が電圧検出部20の コリメータ23Aに入射されると、コリメータ23Aで平行光となった後,偏光 子24で直線偏光され、さらに1/4波長板25により円偏光に変換され、ポッ ケルス素子26を通過する。この際、ポッケルス素子26に加わる電界強度に応 じて通過する光の偏光状態が変化し、楕円偏光に変換され、その後検光子27に おいて偏光状態の変化が光強度に変換され、三角プリズム28で全反射されてコ リメータ23Bにより光ファイバケーブルに入射され、図外の光センサで光強度 の検出が行われる。In such a configuration, when the light from the optical fiber cable is incident on the collimator 23A of the voltage detection unit 20, it becomes parallel light by the collimator 23A and is then linearly polarized by the polarizer 24. Further, it is converted into circularly polarized light by the quarter-wave plate 25 and passes through the Pockels element 26. At this time, the polarization state of the light passing therethrough changes in accordance with the electric field strength applied to the Pockels element 26, and is converted into elliptically polarized light. Then, in the analyzer 27, the change in the polarization state is converted into light intensity, and the triangular prism is used. The light is totally reflected at 28 and is incident on the optical fiber cable by the collimator 23B, and the light intensity is detected by an optical sensor (not shown).

【0020】 一方、電流検出部21のコリメータ30Aに光ファイバケーブルからの光が入 射されると、コリメータ30Aで平行光となった後,偏光子31で直線偏光され 、さらに1/2波長板32において偏波面が45度回転され、ファラディ素子3 3を通過する。この際、ファラディ素子33に加わる磁界Hの磁界強度に応じて 通過する光の偏波面が回転し、この偏波面の回転が検光子34で光強度に変換さ れ、コリメータ30Bにより光ファイバケーブルに入射され、図外の光センサで 光強度の検出が行われる。On the other hand, when the light from the optical fiber cable is incident on the collimator 30A of the current detector 21, the collimator 30A forms parallel light, which is then linearly polarized by the polarizer 31 and further ½ wavelength plate. At 32, the plane of polarization is rotated by 45 degrees and passes through the Faraday element 33. At this time, the polarization plane of the light passing therethrough is rotated according to the magnetic field strength of the magnetic field H applied to the Faraday element 33, and the rotation of this polarization plane is converted into the light strength by the analyzer 34, and the collimator 30B converts it into an optical fiber cable. The light is incident and the light intensity is detected by an optical sensor (not shown).

【0021】 ところで、電圧検出部20と電流検出部21とは近接配置され、電流検出部2 1のファラディ素子33に印加される磁界Hが電圧検出部20のポッケルス素子 26にも作用することになるが、この場合、ポッケルス素子26の光軸の方向と ファラディ素子33の光軸の方向とが直交し、ポッケルス素子26にその光軸に 直交する方向に磁界Hが作用するため、ファラディ効果を有するポッケルス素子 26においては、磁界Hの影響を無視することが可能となる。By the way, the voltage detection unit 20 and the current detection unit 21 are arranged close to each other, and the magnetic field H applied to the Faraday element 33 of the current detection unit 21 also acts on the Pockels element 26 of the voltage detection unit 20. However, in this case, since the direction of the optical axis of the Pockels element 26 and the direction of the optical axis of the Faraday element 33 are orthogonal to each other and the magnetic field H acts on the Pockels element 26 in the direction orthogonal to the optical axis, the Faraday effect is produced. In the Pockels element 26 that it has, it becomes possible to ignore the influence of the magnetic field H.

【0022】 (実施例2) つぎに、実施例2を図2を用いて説明する。同図において、前記と異なる点は 、1つのケース35に電圧検出部20と電流検出部21とを収容して両者を一体 化した点であり、光ファイバケーブルからの光を光入射側のコリメータ36Aに より平行光に変換し、これを偏光子37でP偏光とS偏光との2つの直線偏光に 分離し、電圧検出部20にP偏光を用い、電流検出部21にS偏光を用いるよう にしたものである。36B,36Cは光出射側のコリメータである。Second Embodiment Next, a second embodiment will be described with reference to FIG. In the figure, the difference from the above is that the voltage detection unit 20 and the current detection unit 21 are housed in one case 35 and the two are integrated, and the light from the optical fiber cable is collimated on the light incident side. 36A converts the light into parallel light, and the polarizer 37 separates the light into two linearly polarized lights of P-polarized light and S-polarized light. P-polarized light is used for the voltage detection unit 20 and S-polarized light is used for the current detection unit 21. It is the one. Reference numerals 36B and 36C are collimators on the light emitting side.

【0023】 この場合、ポッケルス素子26の光軸とファラディ素子33の光軸とが直交す るため、ファラディ素子33にその光軸方向に印加される磁界Hに対し、ポッケ ルス素子26の光軸が直交することになり、ファラディ効果を有するポッケルス 素子26においては、磁界Hの影響を無視することが可能となる。In this case, since the optical axis of the Pockels element 26 and the optical axis of the Faraday element 33 are orthogonal to each other, the optical axis of the Pockels element 26 is affected by the magnetic field H applied to the Faraday element 33 in the optical axis direction. Are orthogonal to each other, and in the Pockels element 26 having the Faraday effect, the influence of the magnetic field H can be ignored.

【0024】 特に、この実施例の場合、両検出部20,21を一体化して1つのケース35 に収容するため、光ファイバケーブル,コリメータ,偏光子等をそれぞれ1個削 減できる上、電圧電流センサ全体の小型化が実現し、配置スペースの点でも非常 に有利なものとなる。In particular, in the case of this embodiment, since the two detectors 20 and 21 are integrated and housed in one case 35, one optical fiber cable, collimator, polarizer and the like can be reduced, and voltage and current can be reduced. The overall size of the sensor has been reduced, which is also extremely advantageous in terms of installation space.

【0025】[0025]

【考案の効果】 本考案は、以上説明したように構成されているため、つぎに記載する効果を奏 する。 ファラディ効果を有するポッケルス素子を用いた電圧検出部とファラディ素子 を用いた電流検出部とを両素子のそれぞれの光軸の方向を互いに直交させて配置 したので、ファラディ素子の光軸方向に印加される磁界がポッケルス素子の光軸 に対し直交し、ポッケルス素子において磁界の影響を無視することが可能となり 、電圧、電流の検出精度が高まり、しかも、ファラディ効果を有するポッケルス 素子の採用により、素子に対する電極処理が軽減され、かつ安価になる効果が得 られる。EFFECTS OF THE INVENTION Since the present invention is configured as described above, it has the following effects. Since the voltage detection section using the Pockels element having the Faraday effect and the current detection section using the Faraday element are arranged so that the optical axes of both elements are orthogonal to each other, the voltage is applied in the optical axis direction of the Faraday element. The magnetic field generated by the Pockels element is orthogonal to the optical axis of the Pockels element, and the influence of the magnetic field can be ignored in the Pockels element. The voltage and current detection accuracy is improved, and the Pockels element, which has the Faraday effect, is used. Electrode treatment is reduced, and the cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による光学式電圧電流センサの実施例1
を示す概略構成図である。
FIG. 1 is a first embodiment of an optical voltage / current sensor according to the present invention.
It is a schematic block diagram which shows.

【図2】本考案の実施例2を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a second embodiment of the present invention.

【図3】センサの配電線への取付状態を示し、(A)は
正面図、(B)は側面図である。
3A and 3B show how the sensor is attached to a distribution line, FIG. 3A being a front view and FIG. 3B being a side view.

【図4】従来例の電圧検出部を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a voltage detection unit of a conventional example.

【図5】従来例の電流検出部を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a conventional current detection unit.

【符号の説明】[Explanation of symbols]

20 電圧検出部 21 電流検出部 24,31,37 偏光子 25 1/4波長板 26 ポッケルス素子 27,34 検光子 32 1/2波長板 33 ファラディ素子 20 Voltage Detector 21 Current Detector 24, 31, 37 Polarizer 25 1/4 Wave Plate 26 Pockels Element 27, 34 Analyzer 32 1/2 Wave Plate 33 Faraday Element

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 偏光子で直線偏光された光を円偏光に変
換して被測定電圧が印加されたファラディ効果を有する
ポッケルス素子に入射し電圧を検出する電圧検出部と、
偏光子で直線偏光された光を被測定電流による磁界中に
配置されたファラディ素子に入射し電流を検出する電流
検出部とを設け、前記両検出部を前記ポッケルス素子の
光軸の方向と前記ファラディ素子の光軸の方向とを直交
させて配置してなる光学式電圧電流センサ。
1. A voltage detection unit for converting linearly polarized light by a polarizer into circularly polarized light and making it incident on a Pockels element having a Faraday effect to which a voltage to be measured is applied and detecting the voltage.
A linearly polarized light with a polarizer is provided to a Faraday element arranged in a magnetic field due to the current to be measured, and a current detecting section for detecting a current is provided, and the both detecting sections are arranged in the direction of the optical axis of the Pockels element and An optical voltage / current sensor which is arranged so as to be orthogonal to the optical axis direction of the Faraday element.
JP9532491U 1991-10-23 1991-10-23 Optical voltage / current sensor Pending JPH0536377U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9532491U JPH0536377U (en) 1991-10-23 1991-10-23 Optical voltage / current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9532491U JPH0536377U (en) 1991-10-23 1991-10-23 Optical voltage / current sensor

Publications (1)

Publication Number Publication Date
JPH0536377U true JPH0536377U (en) 1993-05-18

Family

ID=14134558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9532491U Pending JPH0536377U (en) 1991-10-23 1991-10-23 Optical voltage / current sensor

Country Status (1)

Country Link
JP (1) JPH0536377U (en)

Similar Documents

Publication Publication Date Title
EP0254396A1 (en) A direct current magneto-optic current transformer
RU2086988C1 (en) Fiber-optic device for measurement of current strength
JP2007057324A (en) Fiber optic measuring system
US4232264A (en) Arrangement for the magneto-optical measurement of currents
JPS63305259A (en) Voltage detecting apparatus
Ghosh et al. Observation of the Faraday effect via beam deflection in a longitudinal magnetic field
WO2017018953A1 (en) Multi functional sample holder and high resolution detection system for magneto optical kerr effect measurements
JPH0536377U (en) Optical voltage / current sensor
US5502373A (en) Magneto-optical current measurement apparatus
JPS5938663A (en) Current measuring apparatus using optical fiber
JPS63196865A (en) Optical current measuring apparatus
KR950009869B1 (en) Measuring device for voltage and current
JPS60138480A (en) Optical magnetic field sensor
JP3041637B2 (en) Optical applied DC current transformer
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPH056539Y2 (en)
SU1585769A1 (en) Method of measuring hysteresis curves of ferromagnetic materials
JPH08304469A (en) Current sensor
SU757990A1 (en) Optronic current meter
JPH0843454A (en) Overcurrent detection method and device
JPS6041732B2 (en) polarization analyzer
Frigo et al. An optical space domain reflectometer based on the Faraday effect
JP2665917B2 (en) 4-beam splitter prism
JPH06174810A (en) Magneto-optical field measuring equipment
JPS5957170A (en) Electric current measuring apparatus