JPH08304294A - Robot running through pipe - Google Patents
Robot running through pipeInfo
- Publication number
- JPH08304294A JPH08304294A JP7115880A JP11588095A JPH08304294A JP H08304294 A JPH08304294 A JP H08304294A JP 7115880 A JP7115880 A JP 7115880A JP 11588095 A JP11588095 A JP 11588095A JP H08304294 A JPH08304294 A JP H08304294A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- robot
- wheels
- wheel
- rollers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、無線操縦によってガス
管等の管内を走行する管内走行ロボットに関し、特に管
内において円滑かつ確実に移動できる管内走行ロボット
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe traveling robot that travels in a pipe such as a gas pipe by radio control, and more particularly to an in-pipe traveling robot that can move smoothly and reliably in the pipe.
【0002】[0002]
【従来技術】現在地中には相当な長さにおよぶガス管が
埋設され、又プラント等では長大な管が複雑に配設され
ており、ガス等の流体を効率よく円滑に流動させること
および事故を未然に防止する等のため適宜に管の検査を
必要とする。ところが、地上から掘削して埋設管を全て
検査しようとすると非常に多くの手間と時間を要し、又
複雑に配管されたプラントの管を逐一目視により検査す
ることは実質的に不可能である。そこで撮影機器を備え
たロボットを管内に送り、管内の映像をロボットによっ
て写し出すなどして管内を検査する検査方法が提案され
ている。2. Description of the Related Art Gas pipes having a considerable length are buried in the ground at present, and long pipes are complicatedly arranged in plants, etc., so that fluids such as gas can be efficiently and smoothly caused and accidents can occur. It is necessary to inspect the pipes appropriately to prevent such problems. However, excavating from the ground and inspecting all the buried pipes takes a great deal of time and effort, and it is virtually impossible to visually inspect the pipes of a plant with complicated piping one by one. . Therefore, there has been proposed an inspection method of inspecting the inside of a pipe by sending a robot equipped with a photographing device into the pipe and displaying an image of the inside of the pipe by the robot.
【0003】ところで、ケーブルを用いてこのような検
査ロボットとの間で制御信号や映像信号等の通信を行な
うと、接続されたケーブルの長さにロボットの走行距離
が限定され、ケーブルの長さ毎に逐一範囲を区切って検
査を行なわなければならず多くの手間と時間がかかると
いう問題がある。又ケーブルを長くするとその保管や運
搬に手間がかかり、更にロボットがケーブルを管内に引
き込みながら走行するため走行負荷が非常に大きくなり
強力な動力を有する大型なロボットになってしまい狭い
管や屈曲の多い管では利用できないという問題があっ
た。そこで、ロボットを無線操縦で制御し、ロボットが
撮影した映像も無線通信によって送信する方法が発明さ
れた。By the way, when a control signal or a video signal is communicated with such an inspection robot using a cable, the traveling distance of the robot is limited to the length of the connected cable, and the length of the cable is limited. There is a problem that it takes a lot of time and labor because the inspection must be performed for each area. In addition, if the cable is lengthened, it will take time and labor to store and transport it, and since the robot will run while pulling the cable into the pipe, the traveling load will be very large and it will become a large robot with strong power, resulting in a narrow pipe or bending. There was a problem that it could not be used with many tubes. Therefore, a method has been invented in which a robot is controlled by wireless control and an image captured by the robot is also transmitted by wireless communication.
【0004】従来のこの種のロボットの一つに、中間に
チューブを設け、2つの走行部をチューブで屈曲自在に
連結した形式の管内走行ロボットが発明されている。こ
のロボットは、チューブで連結された前方部と後方部の
それぞれに、3つの車輪を、上方に1つ、他の2つの車
輪を下方に配置し、かつこれら車輪の上下間隔が適度に
広がるように付勢して、管内面にロボットを挿入したと
き車輪が管内面に押し付けられて自在に走行できるよう
にしていた。As one of the conventional robots of this type, there has been invented a pipe traveling robot of a type in which a tube is provided in the middle and two traveling portions are flexibly connected by a tube. This robot has three wheels, one on the upper side and the other two wheels on the lower side, in each of the front part and the rear part connected by a tube, and the vertical intervals of these wheels are appropriately widened. When the robot was inserted into the pipe inner surface, the wheels were pressed against the pipe inner surface so that the robot could travel freely.
【0005】更に、ロボットが管の屈曲部において円滑
に方向転換できるよう、各車輪の外周には車輪の回転方
向に対して直角な方向に回転するローラを複数設け、管
の屈曲に合わせて車輪が横滑りするようにしていた。Further, in order to allow the robot to smoothly change the direction of the bend in the pipe, a plurality of rollers that rotate in a direction perpendicular to the direction of rotation of the wheel are provided on the outer periphery of each wheel, and the wheels are adapted to the bend of the pipe. Was skidding.
【0006】[0006]
【発明が解決しようとする課題】ところで、ケーブルを
接続させたロボットではケーブルを介して充分な電力を
供給することができるが、無線操縦によるロボットにあ
っては、搭載したバッテリの充電電力のみで全ての機器
に電力を供給することから、消費電力を極力減少させる
必要がある。そこで、トルクの大きなモータは大電力を
消費することから、トルクの小さいモータを用いてモー
タの消費電力を小さくし、しかもトルクの小さいモータ
であっても充分に管内を走行するように、管内面への車
輪の押し付け力を低減させ、ロボットの管内での走行抵
抗を小さくすることとした。By the way, although a robot to which a cable is connected can supply sufficient electric power through the cable, in a robot operated by radio, only the charging power of a battery mounted on the robot can be used. Since power is supplied to all devices, it is necessary to reduce power consumption as much as possible. Therefore, since a motor with a large torque consumes a large amount of electric power, a motor with a small torque is used to reduce the power consumption of the motor, and even a motor with a small torque can travel inside the pipe sufficiently. It was decided to reduce the pushing force of the wheel to the robot and to reduce the running resistance of the robot in the pipe.
【0007】しかしながら、各車輪に横方向に回転する
ローラが取り付けられていることから、車輪の管内面へ
の押し付け力を小さくすると、ロボットが管内で回転し
て上下の車輪が水平方向に位置した場合、ロボットの自
重を支えきれず車輪間隔が押し縮められて管の下側に下
がってしまうことがあった。このようにロボットが下方
に下がると、管とロボットとの隙間が下方で狭くなり、
ロボットのボディが管の内面に接触して走行抵抗が大き
くなり、電力消費量が増大したり、又屈曲時にロボット
の一部が管の内面に当たり、トルクの小さいモータでは
屈曲部を通過できなくなることがある。However, since the rollers that rotate in the lateral direction are attached to the wheels, if the pressing force of the wheels against the inner surface of the tube is reduced, the robot rotates in the tube and the upper and lower wheels are positioned horizontally. In such a case, the weight of the robot could not be supported and the wheel spacing was compressed, causing the robot to drop below the pipe. When the robot descends in this way, the gap between the pipe and the robot narrows downward,
The robot body comes into contact with the inner surface of the pipe to increase running resistance, which increases power consumption. Also, when the robot bends, a part of the robot hits the inner surface of the pipe and a motor with low torque cannot pass through the bend. There is.
【0008】本発明は、上記課題を解決し、車輪の押し
付け力を小さくして、消費電力を低減できるとともに屈
曲部を含め管内を円滑に走行することができる管内走行
ロボットを提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide an in-pipe running robot capable of reducing the pressing force of a wheel to reduce power consumption and smoothly traveling in a pipe including a bent portion. And
【0009】[0009]
【課題を解決するための手段】本発明では上記課題を解
決するため、前方部の後方に屈曲自在な連結部材で後方
部を連結し、前方部及び後方部のそれぞれに設けた駆動
車輪を所定の付勢力で管内面に押し付け、被検査管の外
部に設置した検査装置本体からの無線操縦で該管内を走
行するとともに、該管内において得られた情報を無線に
よって前記検査装置本体に送信する管内走行ロボットに
おいて、前方部及び後方部にそれらの長手方向中心を通
る平面内に車輪をほぼ三角形状に配置し、これら車輪の
うち2つの車輪の外周に該車輪の回転方向に対して直角
方向に回転する複数のローラを設け、かつ他の1つの車
輪にはかかるローラを設けず、少なくとも外周を摩擦力
の大きい材質で形成して管内走行ロボットを構成した。According to the present invention, in order to solve the above-mentioned problems, a rear part is connected to a rear part of a front part by a bendable connecting member, and drive wheels provided on the front part and the rear part are predetermined. The inside of the pipe that is pressed against the inner surface of the pipe by the urging force of the pipe, travels inside the pipe by radio control from the inspection device main body installed outside the pipe to be inspected, and wirelessly transmits the information obtained in the pipe to the inspection main body. In a traveling robot, wheels are arranged in a front surface and a rear portion in a plane passing through the longitudinal center thereof in a substantially triangular shape, and two wheels of these wheels are provided on the outer periphery of two wheels in a direction perpendicular to the rotation direction of the wheels. The in-pipe traveling robot is configured by providing a plurality of rotating rollers, and not providing such a roller on the other wheel, at least the outer periphery of which is made of a material having a large frictional force.
【0010】又、ローラを備えていない他の1つの車輪
を、前方部の後方及び後方部の前方に配置して管内走行
ロボットを構成した。Further, another one wheel which is not provided with rollers is arranged at the rear of the front part and at the front of the rear part to construct the in-pipe running robot.
【0011】[0011]
【作用】管内走行ロボットの前後それぞれには3つの車
輪が設けてあり、そのうちの2つの車輪には外周にロー
ラが設けられているので、屈曲部においてローラが回転
して車輪が横方向に移動し、円滑に屈曲できる。そし
て、駆動力を要する場合、例えば上向きに走行する場合
には、ローラのない車輪により強力な保持力が得られ、
空転することなく上方に走行できる。更に、ロボットが
管内で回転し車輪が水平方向に向いた場合でも、車輪の
1つにはローラが設けられていないことから、ロボット
自身の重さを適確に支持して下方に下がることがなく、
管との必要な隙間を確保して管内を円滑に移動できる。Since three wheels are provided on the front and rear sides of the in-pipe running robot, and rollers are provided on the outer circumference of two of the wheels, the rollers rotate at the bent portion and the wheels move laterally. And can be bent smoothly. Then, when a driving force is required, for example, when traveling upward, a strong holding force is obtained by wheels without rollers,
It can run upward without spinning. Furthermore, even if the robot rotates in the pipe and the wheels are oriented horizontally, one of the wheels is not provided with rollers, so that the weight of the robot itself can be properly supported and lowered. Without
The required clearance with the pipe can be secured and the pipe can move smoothly.
【0012】[0012]
【実施例】本発明にかかる管内走行ロボットの一実施例
について図を用いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the in-pipe traveling robot according to the present invention will be described with reference to the drawings.
【0013】ロボット31は、図2に示すように前方部
32と、後方部34と、これら前方部32と後方部34
とを連結するチューブ33等から構成されている。As shown in FIG. 2, the robot 31 includes a front portion 32, a rear portion 34, and the front portion 32 and the rear portion 34.
It is composed of a tube 33 and the like that connect with.
【0014】前方部32は、3つの車輪35a等を三方
に有し、前方に向けた撮影用カメラ41と、カメラ41
のレンズの周囲に設置された発光ダイオードからなる照
明用ライト42と、バッテリ43等を内部に搭載してい
る。The front portion 32 has three wheels 35a and the like on three sides and has a photographing camera 41 facing forward and a camera 41.
The illumination light 42 including a light emitting diode installed around the lens of No. 1, the battery 43, and the like are mounted inside.
【0015】図1に前方部32の内部構造を示す。FIG. 1 shows the internal structure of the front portion 32.
【0016】前方部32には、上方に1つの車輪35a
が、又下方に2つの車輪35b及び車輪35cがそれぞ
れ同一面内に設置されており、各車輪35a等には、駆
動用モータ11及び減速ギア12が接続させてある。更
に、下方の車輪35bと車輪35cは、それぞれステー
13の端部に取り付けてあり、ステー13の支点14を
中心に回動自在に支持されている。又、ステー13の中
間部分にはばね15が取り付けてあり、ばね15はこれ
ら車輪35bと車輪35cとの間隔を縮める方向、すな
わち前方部32の中心に向けてステー13を付勢してい
る。バネ15の付勢力は、ロボット31を管50内に挿
入したとき車輪35a等に過大な押し付け力が発生しな
い程度の力であり、かつ管50内を走行するに充分な車
輪35a等の押し付け力が得られる力である。バネ15
のバネ力を可変にしてもよい。The front portion 32 has one wheel 35a upwardly.
However, two wheels 35b and 35c are installed in the same plane below, and the drive motor 11 and the reduction gear 12 are connected to each wheel 35a and the like. Further, the lower wheels 35b and 35c are attached to the ends of the stay 13, respectively, and are supported rotatably around a fulcrum 14 of the stay 13. Further, a spring 15 is attached to an intermediate portion of the stay 13, and the spring 15 urges the stay 13 in a direction of reducing the distance between the wheels 35b and 35c, that is, toward the center of the front portion 32. The urging force of the spring 15 is such that an excessive pressing force is not generated on the wheels 35a and the like when the robot 31 is inserted into the pipe 50, and the pressing force of the wheels 35a and the like is sufficient to run in the pipe 50. Is the power that can be obtained. Spring 15
The spring force of may be variable.
【0017】更に、上方の車輪35aと下方前方の車輪
35bは、外周にローラ16が複数設けてある。ローラ
16は、ゴム等の摩擦係数の大きい部材からなるローラ
で、図示しない軸により、車輪35a等の回転進行方向
に対して直角な方向に回転自在に取り付けられている。
又、これらローラ16とローラ16の間には、ゴム等か
らなる円形の滑り止め部材39が設けられ、ローラ16
と滑り止め部材39で形成される車輪35の外周がほぼ
円形となるように形成されている。又、下方後方の車輪
35cは、ローラ16を備えておらず、外周部にゴム等
の摩擦係数の大きい部材が取り付けられた車輪である。Further, the upper wheel 35a and the lower front wheel 35b are provided with a plurality of rollers 16 on their outer circumferences. The roller 16 is a roller made of a member having a large friction coefficient such as rubber, and is rotatably attached by a shaft (not shown) in a direction perpendicular to the direction of rotation of the wheel 35a.
A circular anti-slip member 39 made of rubber or the like is provided between the rollers 16 and 16.
The outer periphery of the wheel 35 formed by the slip prevention member 39 is formed to be substantially circular. Further, the wheel 35c on the lower rear side is a wheel which is not provided with the roller 16 and to which a member having a large friction coefficient such as rubber is attached to the outer peripheral portion.
【0018】尚、摩擦係数の大きい材質としては、ゴム
に限らず他の合成樹脂等であってもよい。The material having a large friction coefficient is not limited to rubber, but other synthetic resin or the like may be used.
【0019】チューブ33は可撓性を備えたチューブで
あり、前方部32と後方部34を接続する各種ケーブル
(図示せず)が内部に通されている。The tube 33 is a flexible tube, and various cables (not shown) connecting the front portion 32 and the rear portion 34 are passed through the inside thereof.
【0020】後方部34は、図2に示すように前方部3
2とほぼ同一の構造であり、図2及び図3に示すように
制御手段45、受信装置47と送信装置48からなる通
信装置46等を内部に搭載し、通信装置46に接続した
アンテナ40を後方に備えている。又、下方前方の車輪
35cはローラ16のないゴム製の車輪であり、他の2
つの車輪35aと車輪35bは前方部32の車輪35a
等と同様ローラ16と滑り止め部材39を有した車輪で
構成されている。The rear portion 34 is the front portion 3 as shown in FIG.
2 has substantially the same structure as that of FIG. 2, and as shown in FIGS. 2 and 3, a communication device 46 including a control unit 45, a receiving device 47 and a transmitting device 48 is mounted inside, and an antenna 40 connected to the communication device 46 is installed. Be prepared for the back. Further, the lower front wheel 35c is a rubber wheel without the roller 16, and
The wheels 35a and 35b are the wheels 35a of the front portion 32.
Similar to the above, it is composed of wheels having rollers 16 and anti-slip members 39.
【0021】制御手段45は、モータ11、カメラ4
1、ライト42、及び受信装置47等に接続し、図3に
示すコントローラ61からの指示を受信装置47を介し
て受け取り、指示に従ってモータ11等を作動制御し、
又送信装置48を介してカメラ41からの映像を送信す
る。The control means 45 includes a motor 11 and a camera 4.
1, the light 42, the receiving device 47, etc., receives an instruction from the controller 61 shown in FIG. 3 via the receiving device 47, and controls the operation of the motor 11 etc. according to the instruction.
Also, the image from the camera 41 is transmitted via the transmission device 48.
【0022】地上側に配置される検査装置60は、図3
に示すようにアンテナ20に接続された送信装置64、
69、及び受信装置66、68とを備え、コントローラ
61が制御手段63を介して送信装置64に接続し、受
信装置66が映像処理装置65を介して受信画像を映し
出すモニタ62に接続している。更に、位置検出装置6
7が受信装置68と送信装置69に接続し、位置検出の
電波を発するとともにその電波を受信して、ロボット3
1の位置情報をモニタ62に表示するように構成されて
いる。The inspection device 60 arranged on the ground side is shown in FIG.
A transmitter 64 connected to the antenna 20 as shown in FIG.
69 and receiving devices 66 and 68, the controller 61 is connected to the transmitting device 64 via the control means 63, and the receiving device 66 is connected to the monitor 62 displaying a received image via the video processing device 65. . Further, the position detection device 6
7 connects to the receiving device 68 and the transmitting device 69, emits a radio wave for position detection and receives the radio wave, and the robot 3
The position information of No. 1 is displayed on the monitor 62.
【0023】次に、ロボット31の作動について説明す
る。Next, the operation of the robot 31 will be described.
【0024】図5に示すように、ガス管50内に挿入さ
れたロボット31は、車輪35b等をばね15によって
管50の内壁に押し付け、図4に示すように管50のほ
ぼ中心に位置される。そして、例えばロボット31を前
進させるようにコントローラ61を操作すると、信号が
制御手段63から送信装置64に送られアンテナ20か
ら管50内に電波として発信される。管50内を伝わっ
た電波は、アンテナ40を通して受信装置47で受信さ
れてロボット31の制御手段45に伝えられ、モータ1
1が前進方向に駆動される。As shown in FIG. 5, the robot 31 inserted into the gas pipe 50 pushes the wheels 35b and the like against the inner wall of the pipe 50 by the spring 15, and the robot 31 is positioned substantially at the center of the pipe 50 as shown in FIG. It Then, for example, when the controller 61 is operated so as to move the robot 31 forward, a signal is sent from the control means 63 to the transmitter 64 and is transmitted as a radio wave from the antenna 20 into the tube 50. The radio wave transmitted through the pipe 50 is received by the receiving device 47 through the antenna 40, is transmitted to the control means 45 of the robot 31, and the motor 1
1 is driven in the forward direction.
【0025】モータ11が駆動されると、車輪35a等
が回転し、ロボット31が管50内を前進する。その
際、ローラ16を有する車輪35a、車輪35bは、外
周の滑り止め部材39とローラ16によってモータ11
の回転力を伝達して前進し、ローラ16を持たない車輪
35cは直接回転力を伝達する。When the motor 11 is driven, the wheels 35a etc. rotate and the robot 31 advances in the tube 50. At that time, the wheels 35a and 35b having the rollers 16 are mounted on the motor 11 by the non-slip member 39 on the outer periphery and the rollers 16.
The wheel 35c that does not have the roller 16 directly transmits the rotational force.
【0026】このようにして、車輪35a等の回転によ
りロボット31が管50内を直進する。そして、ロボッ
ト31が管50の屈曲部にかかり、ロボット31の進行
により車輪35aの向きが右左方向に変化する場合に
は、車輪35aと車輪35bのローラ16が回転し、車
輪35a等がロボット31の進行方向に対して直角な方
向に回転しながら移動し、ロボット31の向きが変更さ
れる。その際、車輪35cは横方向にずれることはない
が、残り2つの車輪35a、35bが車輪35cの接地
点を軸にして回転するように左右にずれるので車輪35
cがずれることがなくともロボット31は円滑に屈曲で
きる。In this way, the robot 31 moves straight in the tube 50 by the rotation of the wheels 35a and the like. When the robot 31 is applied to the bent portion of the pipe 50 and the direction of the wheels 35a changes to the left or right as the robot 31 advances, the rollers 16 of the wheels 35a and 35b rotate and the wheels 35a and the like move to the robot 31. The robot 31 moves while rotating in a direction perpendicular to the traveling direction of the robot 31 to change the orientation of the robot 31. At that time, the wheel 35c does not shift laterally, but the remaining two wheels 35a and 35b are displaced to the left and right so as to rotate about the grounding point of the wheel 35c as an axis.
The robot 31 can be bent smoothly even if c is not displaced.
【0027】また、ロボット31が進行方向の軸を中心
にして回転し、車輪35a等が水平方向に向いた場合で
も、車輪35cがローラ16を備えていないので、自重
を確実に支えることができ、ローラ16の回転によって
落下することがない。それにより、ロボット31の位置
が管50内で下がることがなく、常に管50の中心位置
に保持されるので、管50の内壁とロボット31との間
隔を一定に保持でき、ロボット31が管50の内面に接
触せず、又屈曲部にかかっても、支障なく円滑に進行す
ることができる。Further, even when the robot 31 rotates about the axis in the traveling direction and the wheels 35a and the like are oriented in the horizontal direction, the wheels 35c are not provided with the rollers 16 and therefore their own weight can be reliably supported. It does not fall due to the rotation of the roller 16. As a result, the position of the robot 31 does not lower in the pipe 50 and is always held at the center position of the pipe 50, so that the distance between the inner wall of the pipe 50 and the robot 31 can be kept constant, and the robot 31 can move the pipe 50. Even if it does not come into contact with the inner surface of the sheet or it is applied to the bent portion, it can proceed smoothly without any trouble.
【0028】一方、コントローラ61から撮影の指示を
送信するとカメラ41、ライト42等が作動し、管50
内を撮影し、撮影した管50内の映像信号は送信装置4
8からアンテナ40を通して管50内に発信され、管5
0内を伝わり地上のアンテナ20の映像用のアンテナに
受信され、受信装置66、映像処理手段65を介してモ
ニタ62に映し出される。On the other hand, when the controller 61 sends a photographing instruction, the camera 41, the light 42, etc. are activated and the tube 50
An image of the inside of the tube 50 is taken, and the image signal in the tube 50 taken
8 is transmitted through the antenna 40 into the pipe 50, and the pipe 5
It is transmitted through 0 and received by the image antenna of the antenna 20 on the ground, and is displayed on the monitor 62 via the receiving device 66 and the image processing means 65.
【0029】又、ロボット31の管内における位置を検
出する場合は、位置検出手段67を作動させ、パルス信
号(電波)を送信装置69からアンテナ20を介して管
50内に発信する。管50内に発信されたパルス信号
は、管50内のロボット31に当たり反射して戻るの
で、その戻った反射波を受信装置68で受信し、パルス
信号を発信してからの時間差に基づいてロボット31ま
での距離を演算する。演算された値はモニタ62に表示
されるので、ロボット31の管50内での位置を判断す
ることができる。When detecting the position of the robot 31 in the pipe, the position detecting means 67 is operated and a pulse signal (radio wave) is transmitted from the transmitter 69 into the pipe 50 through the antenna 20. Since the pulse signal transmitted in the tube 50 hits the robot 31 in the tube 50 and is reflected back, the reflected wave is received by the receiving device 68, and the robot is based on the time difference after transmitting the pulse signal. Calculate the distance to 31. Since the calculated value is displayed on the monitor 62, the position of the robot 31 in the pipe 50 can be determined.
【0030】このようにして、ロボット31は管50内
で円滑に移動でき、又管50内の状況をカメラ41で撮
影して映像で検査することにより、管50に生じた損傷
の有無及び位置等をモニタ62を通して確実に検査する
ことができる。In this way, the robot 31 can move smoothly in the tube 50, and the condition inside the tube 50 is photographed by the camera 41 and inspected by an image, so that the presence or absence of damage and the position of the tube 50 are detected. And the like can be reliably inspected through the monitor 62.
【0031】[0031]
【発明の効果】本発明の管内走行ロボットは、三方に車
輪を備えた連結型の管内走行ロボットにおいて、車輪の
外周に車輪の進行方向直角の方向に回転するローラを備
えた車輪に加え、ローラを備えない車輪を少なくとも1
つ設けることとしたので、ローラを備えた車輪によって
ロボットは容易に横滑りして屈曲部分を円滑に通過で
き、しかも、ローラを備えない車輪によって管内での位
置を確実に保持でき、管内での滑り落ちを防止すること
ができるので、ロボットが管内で回転して車輪が水平に
向いた場合であっても、自重を支えて下方に落下するこ
とがない。それにより、常に管の中心位置にロボットを
保持でき、管壁にロボットが接触することがなく、かつ
屈曲部を支障なく通過でき、管内を円滑に走行すること
ができる。The in-pipe traveling robot according to the present invention is a connected type in-pipe traveling robot having wheels on three sides, in addition to wheels provided with rollers rotating on the outer periphery of the wheels in the direction perpendicular to the traveling direction of the wheels. At least one wheel without
Since the robot is equipped with two wheels, the robot can easily slide sideways through the bends by wheels equipped with rollers, and the wheels that do not have rollers can reliably hold the position in the pipe and allow the robot to slide inside the pipe. Since it can be prevented from falling, even if the robot rotates in the pipe and the wheels are oriented horizontally, the robot does not drop downward while supporting its own weight. As a result, the robot can always be held at the center position of the pipe, the robot does not come into contact with the pipe wall, it can pass through the bent portion without hindrance, and the pipe can smoothly travel.
【図1】本発明にかかるロボットの一実施例を示す断面
図である。FIG. 1 is a sectional view showing an embodiment of a robot according to the present invention.
【図2】本発明にかかるロボットの一実施例を示す断面
図である。FIG. 2 is a cross-sectional view showing an embodiment of a robot according to the present invention.
【図3】本発明にかかるロボットの制御ブロック図であ
る。FIG. 3 is a control block diagram of a robot according to the present invention.
【図4】本発明にかかるロボットの一実施例を示す断面
図である。FIG. 4 is a cross-sectional view showing an embodiment of a robot according to the present invention.
【図5】ロボットの全体を示す断面図である。FIG. 5 is a cross-sectional view showing the entire robot.
11 モータ 12 減速ギア 13 ステー 15 バネ 16 ローラ 20、40 アンテナ 31 ロボット 32 前方部 33 チューブ 34 後方部 35a、35b、35c 車輪 39 滑り止め部材 41 カメラ 42 ライト 43 バッテリ 45、63 制御手段 46 通信装置 47、66 受信装置 48、64、69 送信装置 50 管 61 コントローラ 62 モニター 67 位置検出装置 11 Motor 12 Reduction Gear 13 Stay 15 Spring 16 Roller 20, 40 Antenna 31 Robot 32 Front Part 33 Tube 34 Rear Part 35a, 35b, 35c Wheel 39 Non-Slip Member 41 Camera 42 Light 43 Battery 45, 63 Control Means 46 Communication Device 47 , 66 Receiver 48, 64, 69 Transmitter 50 Pipe 61 Controller 62 Monitor 67 Position detector
Claims (4)
方部を連結し、前記前方部及び後方部のそれぞれに駆動
車輪を設け、該車輪を所定の付勢力で管内面に押し付
け、被検査管の外部に設置した検査装置本体からの無線
操縦で該管内を走行するとともに、該管内において得ら
れた情報を無線によって前記検査装置本体に送信する管
内走行ロボットにおいて、 前記前方部及び後方部にそれらの長手方向中心を通る平
面内に前記車輪をほぼ三角形状に配置し、該車輪のうち
2つの車輪の外周に該車輪の回転方向に対して直角方向
に回転する複数のローラを設け、かつ他の1つの車輪に
は前記ローラを設けず、少なくとも外周を摩擦力の大き
い材質で形成したことを特徴とする管内走行ロボット。1. A rear part is connected to a rear part of the front part by a bendable connecting member, drive wheels are provided on the front part and the rear part, respectively, and the wheels are pressed against the inner surface of the pipe by a predetermined biasing force. In the in-pipe running robot that travels in the pipe by radio control from the inspection device body installed outside the inspection pipe and transmits the information obtained in the pipe to the inspection device body by radio, the front portion and the rear portion. The wheels are arranged in a substantially triangular shape in a plane passing through the longitudinal center thereof, and a plurality of rollers that rotate in a direction perpendicular to the rotation direction of the wheels are provided on the outer circumference of two wheels of the wheels, In addition, the inside traveling robot is characterized in that the roller is not provided on the other one wheel and at least the outer periphery is formed of a material having a large frictional force.
輪を、前記前方部の後方及び前記後方部の前方に配置し
たことを特徴とする管内走行ロボット。2. The in-pipe traveling robot, characterized in that another wheel without the roller is arranged behind the front portion and in front of the rear portion.
て、該ローラ間に滑り止め部材を設けたことを特徴とす
る請求項1又は2に記載の管内走行ロボット。3. The in-pipe traveling robot according to claim 1, wherein a non-slip member is provided between the rollers in the wheel provided with the plurality of rollers.
請求項1〜3のいずれか1項に記載の管内走行ロボッ
ト。4. The in-pipe traveling robot according to claim 1, wherein the other one wheel is made of rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115880A JPH08304294A (en) | 1995-05-15 | 1995-05-15 | Robot running through pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115880A JPH08304294A (en) | 1995-05-15 | 1995-05-15 | Robot running through pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08304294A true JPH08304294A (en) | 1996-11-22 |
Family
ID=14673466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7115880A Withdrawn JPH08304294A (en) | 1995-05-15 | 1995-05-15 | Robot running through pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08304294A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100467792B1 (en) * | 2001-08-11 | 2005-01-26 | 서울도시가스 주식회사 | Robot for internal inspection of pipe |
JP2009109352A (en) * | 2007-10-30 | 2009-05-21 | Ishikawa Tekkosho:Kk | Self-propelled inside-of-tube inspection robot for egg-shaped pipe |
JP2012526993A (en) * | 2009-05-14 | 2012-11-01 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Non-tethered piping system inspection system |
JP2013079840A (en) * | 2011-10-03 | 2013-05-02 | Kosaka Laboratory Ltd | Surface roughness measuring device |
CN106383174A (en) * | 2016-08-22 | 2017-02-08 | 合肥德泰科通测控技术有限公司 | An ultrasonic wave fracture detecting method for an external wall of a metal tube |
CN110645881A (en) * | 2019-09-30 | 2020-01-03 | 卓爱忠 | Pipe inner wall walking device for measuring roughness of long pipe and working method thereof |
JP2023104397A (en) * | 2022-01-17 | 2023-07-28 | 三菱重工パワーインダストリー株式会社 | Inspection device for piping |
-
1995
- 1995-05-15 JP JP7115880A patent/JPH08304294A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100467792B1 (en) * | 2001-08-11 | 2005-01-26 | 서울도시가스 주식회사 | Robot for internal inspection of pipe |
JP2009109352A (en) * | 2007-10-30 | 2009-05-21 | Ishikawa Tekkosho:Kk | Self-propelled inside-of-tube inspection robot for egg-shaped pipe |
JP2012526993A (en) * | 2009-05-14 | 2012-11-01 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Non-tethered piping system inspection system |
JP2013079840A (en) * | 2011-10-03 | 2013-05-02 | Kosaka Laboratory Ltd | Surface roughness measuring device |
CN106383174A (en) * | 2016-08-22 | 2017-02-08 | 合肥德泰科通测控技术有限公司 | An ultrasonic wave fracture detecting method for an external wall of a metal tube |
CN110645881A (en) * | 2019-09-30 | 2020-01-03 | 卓爱忠 | Pipe inner wall walking device for measuring roughness of long pipe and working method thereof |
JP2023104397A (en) * | 2022-01-17 | 2023-07-28 | 三菱重工パワーインダストリー株式会社 | Inspection device for piping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7188568B2 (en) | Self-propelled vehicle for movement within a tubular member | |
EP0212456B1 (en) | Piping travelling apparatus | |
JPH05185931A (en) | In-tube traveling vehicle | |
JPH08304294A (en) | Robot running through pipe | |
CN112394730B (en) | Pipeline detection device | |
JP2760393B2 (en) | Self-propelled pipeline inspection device and traveling belt used for the device | |
JPS6120843A (en) | Travelling instrument for inspecting inside pipe | |
CN111853423A (en) | Pipeline branch pipe detection system | |
JP6681295B2 (en) | Mobile device | |
JPS6129759A (en) | Inspecting and running device for conduit tube | |
KR100853962B1 (en) | Exploration carriage with cable laying functions | |
KR102290731B1 (en) | Independent car for detecting and cleaning pipe route | |
JPH08304293A (en) | Robot running through pipe | |
JPH08188149A (en) | Insertion jig for robot which runs in pipe | |
JPH08304060A (en) | In-pipe running robot | |
JPH01153386A (en) | Crawler vehicle for small diameter pipe line | |
JP2011011638A (en) | In-pipe self-advancing device | |
JPH0214243Y2 (en) | ||
CN217762653U (en) | Pipeline inspection robot | |
JP7541327B2 (en) | In-pipe travel device | |
JPH08244602A (en) | Pipe interior traveling robot | |
JP7259501B2 (en) | Power cable meandering detection device and power cable meandering detection system | |
JPH08304051A (en) | Device for inspecting inside of pipe | |
JPH07277184A (en) | Truck for checking inside of tube | |
JPS63170180A (en) | Pipe traveling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020806 |