JPH08304081A - Inertia sensor assembly - Google Patents

Inertia sensor assembly

Info

Publication number
JPH08304081A
JPH08304081A JP8096940A JP9694096A JPH08304081A JP H08304081 A JPH08304081 A JP H08304081A JP 8096940 A JP8096940 A JP 8096940A JP 9694096 A JP9694096 A JP 9694096A JP H08304081 A JPH08304081 A JP H08304081A
Authority
JP
Japan
Prior art keywords
inertial sensor
sensor assembly
planar
chip
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8096940A
Other languages
Japanese (ja)
Inventor
Schon Fitzpatrick Roger
ショーン フィッツパトリック ロジャー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Group PLC
Original Assignee
Smiths Group PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Group PLC filed Critical Smiths Group PLC
Publication of JPH08304081A publication Critical patent/JPH08304081A/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/00743D packaging, i.e. encapsulation containing one or several MEMS devices arranged in planes non-parallel to the mounting board
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5628Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0888Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values for indicating angular acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inertia sensor assembly which can be assembled easily and can sense the rotation about each axis and acceleration in a three- dimensional system comprising three orthogonal axes. SOLUTION: A chip 1' incorporates two tuning fork type sensors 2' and a pallet type one-dimensional acceleration sensor 9. A mortise 10 and a tongue 11 are formed closely to the fringe of the chip 1' such that each chip 1' is held while making an angle with respect to other chip by same technology or process as that for forming the tuning fork 2' and the pallet. Since three chips 1' are coupled through the mortise 10 and the tongue 11, quadruple rotation and double translation can be sensed in all three axes of X, Y and Z.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、慣性センサをそれ
ぞれに備える第一及び第二平面状部材からなる慣性セン
サアセンブリに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertial sensor assembly including first and second planar members each having an inertial sensor.

【0002】[0002]

【従来の技術】シリコンのようなモノリシック素材か
ら、固体慣性感知装置を微細加工することが知られてい
る。こうした感知装置は、回転加速度に基づいて検知可
能な共振を発生する〃音叉〃(固体レートジャイロの形
態)や、並進運動加速度に基づいて検知可能な変位を発
生する片持ち梁状の質量である〃へら〃(固体加速度計
の形態)を振動させるための形態を備えている。
It is known to micromachine solid state inertial sensing devices from monolithic materials such as silicon. Such a sensing device is a "tuning fork" (in the form of a solid rate gyro) that produces a detectable resonance based on rotational acceleration, or a cantilevered mass that produces a detectable displacement based on translational acceleration. It is equipped with a form for vibrating "Hera" (form of solid accelerometer).

【0003】こうした装置を微細加工する素材は、完成
した際に、このような素材が固体慣性感知装置または〃
チップ〃を作動させるのに必要な、アナログおよび/ま
たはデジタル電気的駆動装置、感知装置、演算装置及び
信号発生装置を一体に組み込むようにすることが知られ
ている。
When the material for microfabrication of such a device is completed, such a material will be a solid inertial sensing device or 〃
It is known to integrate the analog and / or digital electrical drive, sensing, arithmetic and signal generator required to operate the chip.

【0004】[0004]

【発明が解決しようとする課題】こうした従来の装置は
本来、二次元平面状素材から微細加工されるため、この
ようにして形成した音叉とへらとは、材料平面内に配置
されている。このようにして形成した音叉型レートジャ
イロが対称軸周りの回転を感知し、このようにして形成
したへら型加速度計が対称平面に直交する方向の加速度
を感知するため、素材の平面から微細加工した装置のア
レイでは、基本的に、2軸以上の軸周り回転や、一方向
以上の加速度は感知できないのが一般的である。
Since such a conventional device is originally microfabricated from a two-dimensional flat material, the tuning fork and spatula thus formed are arranged in the material plane. The tuning fork type rate gyro thus formed senses the rotation around the axis of symmetry, and the spatula type accelerometer formed in this way senses the acceleration in the direction orthogonal to the plane of symmetry. In general, an array of such devices cannot detect rotation about two or more axes and acceleration in one or more directions.

【0005】3つの直交する軸周りの回転を感知するた
めに、こうした平面状アレイ装置の2つが、三次元形態
内に組み付けられている。3つの直交する軸で加速度を
感知するために、3つの装置が同様に組付けられてい
る。慣性の影響を正確に測定するためには、アセンブリ
を正確に直交するように配列しなければならない。平面
状アレイ装置は小さいので、組み付けの際、正確に直交
するように配列させ、それを維持することはコスト的に
困難である。
Two such planar array devices have been assembled in a three-dimensional configuration to sense rotation about three orthogonal axes. Three devices have been similarly assembled to sense acceleration in three orthogonal axes. In order to accurately measure the effects of inertia, the assembly must be aligned in exactly the orthogonal fashion. Since the planar array device is small, it is costly to arrange and maintain them so that they are exactly orthogonal to each other during assembly.

【0006】本発明の目的は、改良した慣性センサアセ
ンブリ及び製造方法を得ることである。
It is an object of the present invention to provide an improved inertial sensor assembly and manufacturing method.

【0007】[0007]

【課題を解決するための手段】この目的から、本発明
は、慣性センサをそれぞれに備える第一及び第二平面状
部材からなる慣性センサアセンブリにおいて、前記平面
状部材に、互いに係合し平面状部材を互いに角度をなし
た状態で保持するために配列された表面形状部を形成し
たことを特徴とするものである。
To this end, the present invention provides an inertial sensor assembly comprising first and second planar members, each having an inertial sensor, wherein said planar members are engaged with each other to form a planar shape. It is characterized in that surface features are formed so as to hold the members at an angle to each other.

【0008】[0008]

【発明の実施の形態】平面状部材は、直交するよう配列
して組み付けることが好ましい。表面形状部は、平面状
部材の端縁周辺に位置し、平面状部材の端縁に沿って交
互に設けた突起および窪みで構成することが好ましい。
少なくとも一つの平面状部材の表面形状部は、該平面状
部材に少なくとも1つの開口を備えることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION It is preferable that flat members are arranged and assembled so as to be orthogonal to each other. It is preferable that the surface-shaped portion is located around the edge of the planar member and is configured by protrusions and depressions that are alternately provided along the edge of the planar member.
The surface profile of the at least one planar member preferably comprises at least one opening in the planar member.

【0009】また、前記アセンブリは、表面形状部の係
合によって、互いに直交して組み付けられた3つの平面
状部材を有することが好ましい。
Further, it is preferable that the assembly has three planar members that are assembled orthogonally to each other by the engagement of the surface-shaped portions.

【0010】さらに、センサは、固体振動慣性センサで
あり、平面状部材のそれぞれには、互いを直角に配列し
た2つの慣性センサを有することが好ましい。センサ
は、加速度センサを有することが好ましい。また、セン
サは、平面状部材の材料から微細加工することが好まし
い。
Furthermore, the sensor is a solid vibration inertial sensor, and it is preferable that each of the planar members has two inertial sensors arranged at right angles to each other. The sensor preferably comprises an acceleration sensor. Further, it is preferable that the sensor be finely processed from the material of the planar member.

【0011】加えて、平面状部材は、センサ用関連エレ
クトロニクスで支持されることが好ましい。平面状部材
は、平面状部材の交線近傍の位置で、互いに電気的に相
互接続することが好ましい。
In addition, the planar member is preferably supported by associated electronics for the sensor. The planar members are preferably electrically interconnected with each other at a position near the line of intersection of the planar members.

【0012】[0012]

【実施例】以下、本発明の一実施例を、添付した図面に
基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】まず、図1を参照して説明すると、平面状
シリコンチップ1は、その中央部分に一体に微細加工し
た音叉型回転センサ2を組み入れて構成されている。セ
ンサ2は、音叉のアームに平行な軸X周りの回転加速度
に対して感応し、振動平面内に配置されている。また、
センサ2は、電気トラック5によって一体型演算装置6
に接続した励振ドライバー3及び共振センサ4の影響を
受け、この演算装置6を、チップの端縁にある電気コネ
クタパッド7に接続する。チップの端縁は、音叉2の形
成に利用するのと同一の技術または工程によって微細加
工するが、このとき、同一作業工程で、エッジラップ結
合形状8を形成する。この結合形状8は、チップ1の端
縁に沿って連続する矩形の突起および窪みである。
First, referring to FIG. 1, a planar silicon chip 1 is constructed by incorporating a tuning fork type rotation sensor 2 integrally finely processed in the central portion thereof. The sensor 2 is sensitive to rotational acceleration about an axis X parallel to the arm of the tuning fork and is arranged in the plane of vibration. Also,
The sensor 2 includes an electric truck 5 and an integrated arithmetic unit 6
Under the influence of the excitation driver 3 and the resonance sensor 4 connected to, the arithmetic unit 6 is connected to the electric connector pad 7 on the edge of the chip. The edge of the tip is microfabricated by the same technique or process used to form the tuning fork 2, but at this time, the edge lap connection shape 8 is formed in the same working process. The joint shape 8 is a rectangular protrusion and a depression that are continuous along the edge of the chip 1.

【0014】図2を参照すると、慣性センサのアレイを
組み込んだ平面状シリコンチップ1′の他の構成を示
し、このアレイは、一体に微細加工した2つの音叉型回
転センサ2′を直角に配列して構成し、軸X及びY周り
の回転加速度をそれぞれ検知する。また、チップ1′
は、一体に微細加工したへら型一次元加速度センサ9を
有し、この加速度センサ9が、センサ平面に垂直な軸Z
(図示せず)の方向の並進運動加速度を検知する。端縁
の近傍において、チップ1′は、音叉2′及びへら9の
形成に利用するのと同一工程によって微細加工するが、
このとき、ほぞ孔10を本体に、また、それに適合する
ように突出したほぞ舌片11を端縁に形成し、各々に電
気コネクタパッド7(図7)を設ける。
Referring to FIG. 2, there is shown another configuration of a planar silicon chip 1'incorporating an array of inertial sensors, which array comprises two microfabricated tuning fork type rotation sensors 2'aligned at a right angle. The rotational accelerations about the axes X and Y are detected. Also, chip 1 '
Has a spatula-type one-dimensional acceleration sensor 9 which is micromachined integrally, and the acceleration sensor 9 is provided with an axis Z perpendicular to the sensor plane.
The translational acceleration in the direction (not shown) is detected. In the vicinity of the edge, the tip 1'is micromachined by the same process used to form the tuning fork 2'and spatula 9,
At this time, the tenon hole 10 is formed in the main body, and the tenon tongue piece 11 protruding so as to match the tenon hole is formed in the edge, and the electric connector pad 7 (FIG. 7) is provided on each.

【0015】図3は、図1に示した平面状シリコンチッ
プ1の3つでなるアセンブリであって、各エッジラップ
結合形状8を相互連結することで、直交する軸X,Y及
びZ周りの回転を感知できる三次元感知装置を形成す
る。
FIG. 3 is an assembly of three of the planar silicon chip 1 shown in FIG. 1 in which each edge lap connection shape 8 is interconnected to form a circle about orthogonal axes X, Y and Z. Form a three-dimensional sensing device capable of sensing rotation.

【0016】図4では、本発明の他の手段を示し、図2
の平面状アレイシリコンチップ1′の3つを組み付ける
以前を示している。組み付け後、これらのほぞ孔10及
びほぞ舌片11を相互連結して三次元感知装置を形成
し、異なる整列をした音叉センサ2′によって、3軸
X,Y及びZの回転加速度それぞれの二重感知を行うこ
とができる。また、このアセンブリは、へら型センサ9
によって同じ3軸X,Y及びZの並進運動加速度それぞ
れを各個に感知できる。さらにセンサは、各軸に対する
アセンブリの感知能力の多重度および/または冗長度を
増加させるために、互いに整列させるか、または、異な
る向きにして、各チップに一体に形成することができ
る。
In FIG. 4, another means of the present invention is shown in FIG.
It shows before assembling the three planar array silicon chips 1'of FIG. After assembly, the mortise 10 and the mortise tongue 11 are interconnected to form a three-dimensional sensing device, and the tuning fork sensors 2'having different alignments are used to double the rotational accelerations of the three axes X, Y and Z respectively. Sensing can be done. This assembly also includes a spatula sensor 9
The same translational acceleration of the three axes X, Y and Z can be sensed by each. Further, the sensors can be aligned with each other or oriented differently and integrally formed on each chip to increase the multiplicity and / or redundancy of the sensing capability of the assembly for each axis.

【0017】図5aは、図2に示したシリコンチップ
1′の6つによる閉鎖されたアセンブリ12を示し、こ
のアセンブリ12は、3軸すべてにおいて、四重の回転
感知と、二重の並進運動感知とを行うことができる。図
5bには、アセンブリ12の取り付けに適した台座状キ
ャリアチップ13を示す。これは窪み14を有し、窪み
14は、図5cに示すように、アセンブリ12のほぞ舌
片11を収容する。キャリアチップ13は、アセンブリ
12との電気的な接続を受け入れるために整列したコネ
クタパッド15と、トラック16及び、他の電気的な装
置(図示せず)に、この一体化アセンブリを電気的に接
続するための形状をした端子パッド17を有する。
FIG. 5a shows a six-piece closed assembly 12 of the silicon chip 1'shown in FIG. 2, which assembly 12 has quadruple rotation sensing and double translational movement in all three axes. It can perform sensing and sensing. FIG. 5 b shows a pedestal carrier chip 13 suitable for mounting the assembly 12. It has a recess 14 which receives the tenon 11 of the assembly 12, as shown in Figure 5c. The carrier chip 13 electrically connects this integrated assembly to the connector pads 15 and tracks 16 and other electrical devices (not shown) that are aligned to receive the electrical connection with the assembly 12. The terminal pad 17 has a shape for

【0018】図6は、図1に示したシリコンチップ1の
2つが互いに整合する結合形態を示し、各チップ1のエ
ッジラップ結合形状8にある電気コネクタパッド7を拡
大して示した部分図である。2つのチップにあるパッド
7は、図7に示す、はんだプラグ18や、図8に示す、
ワイヤボンディングによって電気的に接続できる。
FIG. 6 is a partially enlarged view showing an electrical connector pad 7 in an edge-wrap coupling shape 8 of each chip 1 in which the two silicon chips 1 shown in FIG. 1 are aligned with each other. is there. The pads 7 on the two chips are the solder plug 18 shown in FIG. 7 and the pad 7 shown in FIG.
It can be electrically connected by wire bonding.

【0019】図9aは、図2に示したセンサチップ1′
の2つにある適合するほぞ孔10及びほぞ舌片11の表
面構造を示している。ほぞ孔及びほぞ舌片が結合するた
めの形状の表面にある電気コネクタパッド7は、2つの
チップの合わせ面上で、互いに接続するように配列され
る。ほぞ孔10及びほぞ舌片11の形状は、楔形状であ
るから、図9bに示すように組み付けた場合、締まりば
めの残留応力圧が、各電気コネクタパッド7間の接続を
維持する。
FIG. 9a shows a sensor chip 1'shown in FIG.
2 shows the surface structure of the matching tenon 10 and tenon tongue 11 in two of the above. The electrical connector pads 7, which are on the surface shaped for the mortise and tenon tongue to join, are arranged to connect to each other on the mating surfaces of the two chips. Since the tenon 10 and tenon tongue 11 are wedge-shaped, the residual stress pressure of the interference fit maintains the connection between the electrical connector pads 7 when assembled as shown in FIG. 9b.

【0020】図10aでは、図1に示したシリコンチッ
プ1のエッジラップ結合形状を示し、電導性突出部7′
は、エッジラップ結合形状を形成するために使用される
フォトエッジング材料除去工程によって、一部が飛び出
した状態に形成する。
FIG. 10a shows the edge-wrapped shape of the silicon chip 1 shown in FIG.
Are formed in a partially protruding state by the photo-edging material removing process used to form the edge-wrap bonded shape.

【0021】2つのチップ1を互いに組み付けるとき、
一方のチップ上の突出部7′は、図10bに示すよう
に、他方のチップのエッジラップ結合形状上のパッド7
に歪んだ状態に接続され、チップを電気的に接続する。
When the two chips 1 are assembled together,
The protrusion 7'on one chip has a pad 7 on the edge-wrapped feature of the other chip, as shown in Figure 10b.
Connected in a distorted state, electrically connecting the chip.

【0022】図11aは、互いに整合した図1に示した
シリコンチップ1のエッジラップ結合形状8の相互連結
状態を示し、外部に配置した電導パッド7及びトラック
5の他の構成を示す。パッド7は、他の電気組付構成要
素20によって相互接続され、この構成要素20は、ト
ラック5″によって各自を相互接続する電導突出部7″
を有する非伝動キャリア材料で構成する。図11cに示
すように、突出部7″は直角に突き出し、チップ1上の
パッド7に接続する位置にあるから、2つのチップ上の
回路間を電気的に接続できる。
FIG. 11a shows the interconnection of the edge-wrapped shapes 8 of the silicon chip 1 shown in FIG. 1 aligned with each other, showing another configuration of the electrically conductive pads 7 and the tracks 5 arranged on the outside. The pads 7 are interconnected by other electrical assembly components 20, which electrically conductive projections 7 "interconnect each with a track 5".
A non-transmission carrier material having As shown in FIG. 11c, the projecting portion 7 ″ projects at a right angle and is in a position where it is connected to the pad 7 on the chip 1, so that the circuits on the two chips can be electrically connected.

【0023】相互接続は、他の形態でも可能である。平
面状チップを直角するように配列して組み付けることは
重要なことではない。これらを互いに組み付ける場合、
必ずしも直角である必要はない。慣性センサは、それ自
身、平面状部材の材料から形成するのが好ましいが、慣
性センサを独立して形成し、その後、相互係合する表面
形成部で形成した取り付けボードに取り付けることも可
能である。
The interconnections are possible in other forms. It is not important to assemble the planar chips in a right angle arrangement. When these are assembled together,
It does not necessarily have to be a right angle. The inertial sensor is preferably formed from the material of the planar member itself, but it is also possible to form the inertial sensor independently and then attach it to a mounting board formed with interengaging surface formations. .

【0024】アセンブリの剛性および/または構造の無
欠性は、幾何学的な結合形状及び電気的な接続の性質に
依存する。従来のボンディングまたはポッティング技術
は、構造体の剛性を改善するために利用できる。
The rigidity of the assembly and / or the integrity of the structure depends on the nature of the geometrical coupling geometry and the electrical connections. Conventional bonding or potting techniques can be utilized to improve the rigidity of the structure.

【0025】形成中または、形成後、そして組み立て前
に、平面状装置にあるセンサの形状をさまざまに変更す
ることで、振動による共振や、他のセンサ間の望ましく
ないクロスカップリングの影響を回避することができ
る。
By varying the shape of the sensor in the planar device during or after formation and before assembly, vibration resonance and the effects of unwanted cross-coupling between other sensors are avoided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】エッジラップ結合形状を有したセンサチップの
平面図である。
FIG. 1 is a plan view of a sensor chip having an edge lap connection shape.

【図2】複数のセンサと、ほぞ孔及びほぞ舌片が結合し
ている他の形状を有したチップの平面図である。
FIG. 2 is a plan view of a chip having a plurality of sensors and another shape in which a mortise and tenon pieces are combined.

【図3】図1に示したセンサチップの3つによるアセン
ブリの斜視図である。
3 is a perspective view of the three-sensor assembly shown in FIG. 1. FIG.

【図4】図2に示したセンサチップの3つによるアセン
ブリの分解図である。
4 is an exploded view of the three-sensor assembly shown in FIG. 2. FIG.

【図5】aは図2に示したセンサチップの6つによるア
センブリの斜視図である。bは図5aに示したアセンブ
リを取り付けられる台座状キャリアチップの斜視図であ
る。cは図5bに示したキャリアチップに取り付けた図
5aに示したアセンブリの斜視図である。
5a is a perspective view of an assembly of six of the sensor chips shown in FIG. 2. FIG. 5b is a perspective view of a pedestal carrier chip to which the assembly shown in FIG. 5a can be attached. 5c is a perspective view of the assembly shown in FIG. 5a attached to the carrier chip shown in FIG. 5b.

【図6】図1に示したセンサチップの2つの間での結合
を示す部分斜視図である。
FIG. 6 is a partial perspective view showing the coupling between the two sensor chips shown in FIG.

【図7】2つのセンサチップ間の電気的な接続を示す断
面図である。
FIG. 7 is a cross-sectional view showing an electrical connection between two sensor chips.

【図8】2つのセンサチップ間の電気的な接続を示す他
の断面図である。
FIG. 8 is another cross-sectional view showing an electrical connection between two sensor chips.

【図9】aは図2に示した2つのセンサチップの結合形
状を示した前部アセンブリの部分斜視図である。bは図
9aに示したセンサチップの2つの間での結合状態を示
す部分斜視図である。
9a is a partial perspective view of the front assembly showing the combined shape of the two sensor chips shown in FIG. 2. FIG. 9b is a partial perspective view showing a coupled state between the two sensor chips shown in FIG. 9a. FIG.

【図10】aは組み付け前の図1に示したセンサチップ
の電気コネクタを有する結合形状の他の部分斜視図であ
る。bは図10aに示したセンサチップの2つの間での
結合状態を示す部分斜視図である。
10A is another partial perspective view of the coupling shape having the electrical connector of the sensor chip shown in FIG. 1 before assembly. FIG. FIG. 10b is a partial perspective view showing a coupled state between the two sensor chips shown in FIG. 10a.

【図11】aは図1に示した形式の組み付けされたセン
サチップを示す部分斜視図である。bは図11aに示し
た組み付けされたセンサチップを結合するのに好適な電
気的相互接続要素を示す部分斜視図である。cは図11
aに示す、相互連結した2つのセンサチップを、図11
bに示した相互接続要素によって電気的に接続した結合
状態を示す部分斜視図である。
11a is a partial perspective view showing an assembled sensor chip of the type shown in FIG. 1. FIG. FIG. 11b is a partial perspective view showing an electrical interconnection element suitable for coupling the assembled sensor chip shown in FIG. 11a. c is FIG.
The two interconnected sensor chips shown in FIG.
FIG. 6 is a partial perspective view showing a combined state in which the components are electrically connected by the interconnection element shown in FIG.

【符号の説明】[Explanation of symbols]

1 平面状シリコンチップ 2 音叉型回転レートセンサ 3 励振ドライバー 4 共振センサ 6 一体型演算装置 7 電気コネクタパッド 8 エッジラップ結合形状 9 へら型一次元加速度センサ 10 ほぞ孔 11 ほぞ舌片 12 アセンブリ 13 台座状キャリアチップ 14 窪み 15 コネクタパッド 16 トラック 17 端子パッド 18 はんだプラグ 20 電気組付構成要素 1 Planar Silicon Chip 2 Tuning Fork Type Rotation Rate Sensor 3 Excitation Driver 4 Resonance Sensor 6 Integrated Computing Unit 7 Electrical Connector Pad 8 Edge Wrap Joint Shape 9 Spatula Type One-Dimensional Accelerometer 10 Mortise Hole 11 Mortise 12 Assembly 13 Pedestal Shape Carrier chip 14 Recess 15 Connector pad 16 Track 17 Terminal pad 18 Solder plug 20 Electrical assembly components

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 慣性センサをそれぞれに備える第一及び
第二平面状部材からなる慣性センサアセンブリにおい
て、 平面状部材(1,1′)に、互いに係合し平面状部材を
互いに角度をなした状態で保持するために配列された表
面形状部(8,10,11)を形成したことを特徴とす
る慣性センサアセンブリ。
1. An inertial sensor assembly comprising first and second planar members each having an inertial sensor, wherein planar members (1, 1 ') are engaged with each other so that the planar members form an angle with each other. Inertial sensor assembly, characterized in that it has surface features (8, 10, 11) arranged to hold it in place.
【請求項2】 平面状部材(1,1′)を、直交するよ
う配列して組み付けたことを特徴とする請求項1に記載
の慣性センサアセンブリ。
2. The inertial sensor assembly according to claim 1, wherein the planar members (1, 1 ') are assembled so as to be orthogonal to each other.
【請求項3】 表面形状部(8,10,11)は、平面
状部材の端縁周辺に位置することを特徴とする請求項1
または2に記載の慣性センサアセンブリ。
3. The surface shape portion (8, 10, 11) is located near the edge of the planar member.
Or the inertial sensor assembly according to 2.
【請求項4】 表面形状部を、平面状部材(1)の端縁
に沿って交互に設けた突起及び窪み(8)によって構成
したことを特徴とする請求項3に記載の慣性センサアセ
ンブリ。
4. Inertial sensor assembly according to claim 3, characterized in that the surface profile is constituted by projections and depressions (8) arranged alternately along the edge of the planar member (1).
【請求項5】 少なくとも一つの平面状部材(1′)の
表面形状部は、該平面状部材に少なくとも1つの開口
(10)を備えたことを特徴とする請求項1乃至4のい
ずれか一項に記載の慣性センサアセンブリ。
5. The surface profile of at least one planar member (1 ′) comprises at least one opening (10) in said planar member. Inertial sensor assembly according to paragraph.
【請求項6】 前記アセンブリは、表面形状部(8,1
0,11)の係合によって、互いに直交して組み付けら
れた3つの平面状部材(1,1′)を有することを特徴
とする請求項1乃至5のいずれか一項に記載の慣性セン
サアセンブリ。
6. The assembly comprises surface features (8,1).
Inertial sensor assembly according to any one of claims 1 to 5, characterized in that it has three planar members (1,1 ') assembled orthogonally to each other by the engagement of (0,11). .
【請求項7】 センサは、固体振動慣性センサ(2,
2′)であることを特徴とする請求項1乃至6のいずれ
か一項に記載の慣性センサアセンブリ。
7. A solid vibration inertial sensor (2,
Inertial sensor assembly according to any one of claims 1 to 6, characterized in that it is 2 ').
【請求項8】 平面状部材のそれぞれは、互いを直角に
配列した2つの振動慣性センサ(2′)を有することを
特徴とする請求項7に記載の慣性センサアセンブリ。
8. Inertial sensor assembly according to claim 7, characterized in that each of the planar members comprises two vibration inertial sensors (2 ') arranged at right angles to each other.
【請求項9】 センサは、加速度センサ(9)を有する
ことを特徴とする請求項1乃至8のいずれか一項に記載
の慣性センサアセンブリ。
9. Inertial sensor assembly according to any one of claims 1 to 8, characterized in that the sensor comprises an acceleration sensor (9).
【請求項10】 センサ(2,2′)は、平面状部材
(1,1′)の材料から微細加工されることを特徴とす
る請求項1乃至9のいずれか一項に記載の慣性センサア
センブリ。
10. Inertial sensor according to claim 1, characterized in that the sensor (2, 2 ′) is microfabricated from the material of the planar member (1, 1 ′). assembly.
【請求項11】 平面状部材(1,1′)を、センサ
(2,2′)用関連エレクトロニクスで支持したことを
特徴とする請求項1乃至10のいずれか一項に記載の慣
性センサアセンブリ。
11. Inertial sensor assembly according to any one of the preceding claims, characterized in that the planar member (1,1 ') is supported by associated electronics for the sensor (2,2'). .
【請求項12】 平面状部材(1,1′)は、平面状部
材の交線近傍の位置(7)で、互いに電気的に相互接続
することを特徴とする請求項1乃至11のいずれか一項
に記載の慣性センサアセンブリ。
12. The planar members (1, 1 ′) are electrically interconnected with each other at a position (7) near the intersection of the planar members. An inertial sensor assembly according to claim 1.
JP8096940A 1995-04-19 1996-04-18 Inertia sensor assembly Ceased JPH08304081A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9507930:7 1995-04-19
GBGB9507930.7A GB9507930D0 (en) 1995-04-19 1995-04-19 Inertial sensor assemblies

Publications (1)

Publication Number Publication Date
JPH08304081A true JPH08304081A (en) 1996-11-22

Family

ID=10773183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096940A Ceased JPH08304081A (en) 1995-04-19 1996-04-18 Inertia sensor assembly

Country Status (4)

Country Link
JP (1) JPH08304081A (en)
DE (1) DE19610554B4 (en)
FR (1) FR2733321A1 (en)
GB (1) GB9507930D0 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037195A1 (en) * 1996-03-29 1997-10-09 Ngk Insulators, Ltd. Oscillation gyro sensor, composite sensor and process of producing gyro sensor
JP2007040961A (en) * 2005-03-04 2007-02-15 Sony Corp Vibration gyro-sensor
JP2016045138A (en) * 2014-08-25 2016-04-04 セイコーエプソン株式会社 Sensor device, support substrate assembly, electronic equipment, and mobile body
KR101724332B1 (en) * 2015-12-16 2017-04-07 국방과학연구소 Inertial measurement unit
JP2019144240A (en) * 2018-02-23 2019-08-29 アトランティック・イナーシャル・システムズ・リミテッドAtlantic Inertial Systems Limited Inertial measurement units and method for manufacturing inertial measurement units
WO2020208670A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Outdoor unit for air-conditioner

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003369A (en) * 1997-05-19 1999-12-21 Continental Teves, Inc. Method for manufacturing encapsulated semiconductor devices
JP2000097707A (en) 1998-09-18 2000-04-07 Fujitsu Ltd Acceleration sensor
FR2861464B1 (en) * 2003-10-28 2006-02-17 Commissariat Energie Atomique MOTION DETECTOR WITH SIX DEGREES OF FREEDOM WITH THREE POSITION SENSORS AND METHOD OF MANUFACTURING A SENSOR
SE528404C2 (en) * 2004-10-20 2006-11-07 Imego Ab The sensor arrangement
DE102005023591A1 (en) * 2005-05-18 2006-11-30 Hl-Planar Technik Gmbh Field measuring device, measuring module for a field measuring device and method of production for a plurality of measuring modules
DE102005047873B4 (en) * 2005-10-06 2010-10-14 Günthner, Wolfgang, Dipl.-Ing. Miniaturized inertial measuring system
US7237437B1 (en) * 2005-10-27 2007-07-03 Honeywell International Inc. MEMS sensor systems and methods
FR2903812B1 (en) * 2006-07-13 2008-10-31 Commissariat Energie Atomique INTEGRATED CIRCUIT DISTRIBUTED TO AT LEAST TWO NON-PARALLEL PLANS AND METHOD FOR PRODUCING THE SAME
DE102009001247A1 (en) * 2009-02-27 2010-09-09 Sensordynamics Ag Micro-electro-mechanical sensor
DE102014207766A1 (en) * 2014-04-24 2015-10-29 Continental Teves Ag & Co. Ohg Monitor 3-axis inertial sensor with 2-axis inertial sensor
DE102016122042B4 (en) 2015-11-20 2022-02-17 Jena Optronik Gmbh Sensor assembly for determining the position of an object
WO2019143838A1 (en) * 2018-01-17 2019-07-25 Cubic Corporation Cuboid inertial measurement unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012316A (en) * 1989-03-28 1991-04-30 Cardiac Pacemakers, Inc. Multiaxial transducer interconnection apparatus
DE9113744U1 (en) * 1991-11-05 1992-01-16 SMT & Hybrid GmbH, O-8012 Dresden Three-dimensional micromechanical acceleration sensor with integrated electronics

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037195A1 (en) * 1996-03-29 1997-10-09 Ngk Insulators, Ltd. Oscillation gyro sensor, composite sensor and process of producing gyro sensor
US6065339A (en) * 1996-03-29 2000-05-23 Ngk Insulators, Ltd. Vibration gyro sensor, combined sensor and method for producing vibration gyro sensor
US6244110B1 (en) 1996-03-29 2001-06-12 Ngk Insulators, Ltd. Vibration gyro sensor, combined sensor, and method for producing vibration gyro sensor
US6321599B2 (en) 1996-03-29 2001-11-27 Ngk Insulators, Ltd. Vibration gyro sensor, combined sensor, and method for producing vibration gyro sensor
JP2007040961A (en) * 2005-03-04 2007-02-15 Sony Corp Vibration gyro-sensor
US7723905B2 (en) 2005-03-04 2010-05-25 Sony Corporation Vibrating gyrosensor driven with offset potential
JP2016045138A (en) * 2014-08-25 2016-04-04 セイコーエプソン株式会社 Sensor device, support substrate assembly, electronic equipment, and mobile body
KR101724332B1 (en) * 2015-12-16 2017-04-07 국방과학연구소 Inertial measurement unit
JP2019144240A (en) * 2018-02-23 2019-08-29 アトランティック・イナーシャル・システムズ・リミテッドAtlantic Inertial Systems Limited Inertial measurement units and method for manufacturing inertial measurement units
WO2020208670A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Outdoor unit for air-conditioner

Also Published As

Publication number Publication date
GB9507930D0 (en) 1995-06-14
DE19610554A1 (en) 1996-10-24
DE19610554B4 (en) 2006-09-21
FR2733321A1 (en) 1996-10-25

Similar Documents

Publication Publication Date Title
JPH08304081A (en) Inertia sensor assembly
JP3091766B2 (en) Surface-mounted piezoelectric ceramic accelerometer and method of manufacturing the same
US6269697B1 (en) Angular velocity sensor using piezoelectric element
EP2269000B1 (en) Inertial measurement unit
EP0460089B1 (en) A sensor element intended for a gyro
TWI613418B (en) Micro-electromechanical apparatus with pivot element
JPH07502592A (en) Micromechanical tuning fork angular velocity sensor
JPH073337B2 (en) Flat inertial sensor
JP2003502644A (en) Wedge mount for integrated circuit sensors
US5284059A (en) Rotation sensor
WO2004081584A1 (en) Acceleration sensor and inclination-detecting method
CN103370603B (en) Vibratory gyroscope and corresponding manufacturing method thereof
US6907782B2 (en) Micromechanical inertial sensor
US5880368A (en) Inertial sensors
JPH1010148A (en) Attitude sensing chip for semiconductor
GB2300047A (en) Inertial sensor assembly
EP0802417A2 (en) Semiconductor acceleration sensor
JPH03214013A (en) Angular-velocity sensor
JP3650555B2 (en) Touch sensor
JPH08201418A (en) Acceleration sensor mounting structure
JP2008051629A (en) Sensor module
JP4529286B2 (en) Angular velocity sensor
US6085590A (en) Multisensor with parametric rotor drive
JP7452382B2 (en) Multi-axis inertial force sensor
JP2581901B2 (en) Piezoelectric acceleration pickup

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20050628