JPH08304046A - Bending measuring instrument - Google Patents

Bending measuring instrument

Info

Publication number
JPH08304046A
JPH08304046A JP11194195A JP11194195A JPH08304046A JP H08304046 A JPH08304046 A JP H08304046A JP 11194195 A JP11194195 A JP 11194195A JP 11194195 A JP11194195 A JP 11194195A JP H08304046 A JPH08304046 A JP H08304046A
Authority
JP
Japan
Prior art keywords
measured
rod
bending
shaped
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11194195A
Other languages
Japanese (ja)
Inventor
Akihisa Kawakami
明久 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA DENSHI KIKAI KK
Original Assignee
OSAKA DENSHI KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA DENSHI KIKAI KK filed Critical OSAKA DENSHI KIKAI KK
Priority to JP11194195A priority Critical patent/JPH08304046A/en
Publication of JPH08304046A publication Critical patent/JPH08304046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To simultaneously measure the bending in two directions where rod- shaped materials to be inspected cross at right angles. CONSTITUTION: A light emission part 31 and a light reception part 32 are arranged while holding a material W to be measured, laser beams are applied in parallel between them, the outer diameter in x-axis direction of the material W to be measured and a center point are obtained from the number of laser beams which are screened by the material W to be measured, and at the same time, the amount of displacement with the lower surface of the material W to be measured is obtained by a laser dilatometer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は断面角形又は丸形の金属
棒等の棒状被測定材の真直性、換言すれば曲りを測定す
る曲り測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending measuring device for measuring the straightness, that is, the bending of a rod-shaped material to be measured such as a metal rod having a square or round cross section.

【0002】[0002]

【従来の技術】従来、金属棒等の曲りの測定は測定対象
である金属棒に、予め一面を真直に仕上げたスケールを
当てがうことで、スケールと金属棒との間に隙間が形成
されるか否か、また隙間の程度を夫々目視観察して金属
棒の曲りの有無の検出、並びに概略の曲りの方向及び程
度を認識することが行われていた。しかしこのような目
視検査では曲りの有無の検出は可能であるが、曲りの方
向,程度を正確に評価することが出来ないという問題が
あった。
2. Description of the Related Art Conventionally, the bending of a metal rod or the like is measured by applying a scale whose one surface is straightened to the metal rod to be measured, thereby forming a gap between the scale and the metal rod. Whether or not the metal rod is bent, and the degree of the gap are visually observed to detect whether or not the metal rod is bent, and to recognize the approximate direction and degree of the bending. However, although such a visual inspection can detect the presence or absence of a bend, there is a problem in that the direction and degree of the bend cannot be accurately evaluated.

【0003】この対策として近年金属棒等の曲りを自動
測定する装置が提案されている。図7は従来の自動曲り
測定装置の原理説明図、図8(a)は同じくその模式的
平面図、図8(b)はスリット,目盛の部分拡大平面図
であり、図中51は定盤,52は直管蛍光灯,53は2
次元イメージセンサを示している。定盤51には図8
(a)に示す如く略一定間隔で多数の短いスリット51
aが平行に形成し、また定盤52の表面には各スリット
51a毎にこれに沿わせて、その一端から他端にわたっ
て目盛51bが刻設されている。各スリット51aは図
7に示す如くいずれも定盤51の表側から裏側にまで貫
設されている。
As a countermeasure against this, an apparatus for automatically measuring the bending of a metal rod or the like has been proposed in recent years. FIG. 7 is an explanatory view of the principle of a conventional automatic bending measuring device, FIG. 8 (a) is a schematic plan view of the same, and FIG. 8 (b) is a partially enlarged plan view of slits and scales, in which 51 is a surface plate. , 52 is a straight tube fluorescent lamp, 53 is 2
1 shows a three-dimensional image sensor. The platen 51 is shown in FIG.
As shown in (a), a large number of short slits 51 are formed at substantially regular intervals.
a are formed in parallel with each other, and a scale 51b is formed on the surface of the surface plate 52 along one slit 51a from one end to the other end. As shown in FIG. 7, each slit 51a extends from the front side to the back side of the surface plate 51.

【0004】目盛51bは図8(b)に示す如く各スリ
ット51aの一端に沿って各スリット51bの長手方向
と直交する向きに定めた基準線Qを零点としてここから
スリット51aの長手方向に目盛ってある。直管蛍光灯
52は定盤51の裏側に各スリット51a毎に、各スリ
ット51a夫々の全長にわたってこれと対向するよう平
行に設置されている。Wは金属棒等の棒状被測定材であ
って、定盤51の平坦な表面上にその略全長にわたって
スリット51bの列を横切る態様でセットされる。
As shown in FIG. 8 (b), the scale 51b is graduated in the longitudinal direction of the slit 51a from a reference line Q which is defined along one end of each slit 51a in a direction orthogonal to the longitudinal direction of the slit 51b. There is. The straight tube fluorescent lamp 52 is installed on the back side of the surface plate 51 in parallel for each slit 51a so as to face the slit 51a over the entire length of each slit 51a. W is a rod-shaped material to be measured, such as a metal rod, and is set on the flat surface of the surface plate 51 in such a manner that it crosses the row of the slits 51b over substantially the entire length thereof.

【0005】2次元イメージセンサ53はCCD等を用
いて構成されており、移動台54に装着されている。移
動台54は図8(a)に示す如く、定盤51の表面にそ
の長手方向における一側縁に沿って基準線Qと平行に設
置したリニアガイド51cに装架されており、これに2
次元イメージセンサ53が前記スリット51bの真上に
臨むように支持されている。移動台54はこれに搭載し
たモータMの駆動により、リニアガイド51cに沿って
移動されると、これによって二次元イメージセンサ53
が、スリット51aの真上をその列の一端から他端にわ
たって移動し得るようになっている。
The two-dimensional image sensor 53 is composed of a CCD or the like, and is mounted on the moving table 54. As shown in FIG. 8A, the movable table 54 is mounted on a linear guide 51c installed on the surface of the surface plate 51 along one side edge in the longitudinal direction thereof in parallel with the reference line Q, and 2
The three-dimensional image sensor 53 is supported so as to face directly above the slit 51b. When the moving table 54 is moved along the linear guide 51c by the driving of the motor M mounted on the moving table 54, the two-dimensional image sensor 53 is accordingly moved.
However, it can move right above the slit 51a from one end to the other end of the row.

【0006】55は演算制御部であって、前記各直管蛍
光灯52の点灯,消灯、移動台54付設のモータMの
正,逆駆動、並びに停止制御を行うと共に、2次元イメ
ージセンサ53からの画像信号を処理し、キーボード5
5aの操作によって測定結果をCRT56に表示し、ま
たプリンタ57へ出力するようになっている。
Reference numeral 55 denotes an arithmetic and control unit, which performs lighting and extinguishing of each of the straight tube fluorescent lamps 52, forward and reverse driving of the motor M attached to the movable table 54, and stop control, and from the two-dimensional image sensor 53. The image signal of the keyboard 5
The measurement result is displayed on the CRT 56 and output to the printer 57 by the operation of 5a.

【0007】このような従来の自動曲り測定装置にあっ
ては、定盤51の表面上に棒状被測定材Wを前述した如
くスリット51aを横切る向きに載置し、直管蛍光灯5
2を点灯し、この状態で移動台54をスリット51aの
列の一端から他端側に向けて移動させつつ、2次元イメ
ージセンサ53にて棒状被測定材W及び各スリット51
aに沿って刻設してある目盛51bを撮像する。2次元
イメージセンサ53によって得た画像信号は演算制御部
55に取り込まれ、記憶される。
In such a conventional automatic bending measuring apparatus, the rod-shaped material to be measured W is placed on the surface of the surface plate 51 in a direction traversing the slit 51a as described above, and the straight tube fluorescent lamp 5 is used.
2 is turned on, and in this state, the moving table 54 is moved from one end of the row of the slits 51a toward the other end, and the rod-shaped measured material W and each slit 51 are measured by the two-dimensional image sensor 53.
An image of the scale 51b engraved along a is taken. The image signal obtained by the two-dimensional image sensor 53 is fetched and stored in the arithmetic control unit 55.

【0008】演算制御部55は記憶した画像信号を読み
出して図8(b)に示す如く各スリット51a毎に被測
定材Wによって覆い隠されておらず、且つ被測定材Wの
両側面に接して位置する各目盛(mj ,nj )…(m
j+q ,nj+q )を抽出し、これから棒状被測定材Wの各
スリット51a毎の太さ(nj −mj )…(nj+q −m
j+q )を算出すると共に、被測定材Wの中心点Oの位置
(nj −mj )・1/2…(nj+q −mj+q )・1/2
(基準線Qからの距離Lj …Lj+q )を求める。
The arithmetic control unit 55 reads the stored image signal
Take out and measure each slit 51a as shown in FIG. 8 (b).
Of the measured material W, which is not covered by the fixed material W
Scales (m in contact with both sides)j, Nj)… (M
j + q, Nj + q) Is extracted, and each of the rod-shaped measured materials W is extracted from this.
Thickness of each slit 51a (nj-Mj)… (Nj + q-M
j + q) Is calculated and the position of the center point O of the measured material W is calculated.
(Nj-Mj) ・ 1/2 ... (nj + q-Mj + q) ・ 1/2
(Distance L from the reference line Qj... Lj + q).

【0009】連続して位置する所定数(3〜数個)の各
スリット51a毎の中心点Oj …O j+q の位置が求まる
とそのうちの両端のスリット51aで求めた中心点
j ,O j+q を結ぶ直線式を求め、前記所定数の中心点
のうちから、この直線式が示す直線に対し最もずれの大
きい中心点を特定し、そのずれ量(小曲りという)を求
める。
Each of a predetermined number (three to several) that are continuously positioned
Center point O for each slit 51aj… O j + qThe position of
And the center points obtained by the slits 51a at both ends
Oj, O j + qFind the straight line connecting the
, The largest deviation from the straight line
Identifies the threshold center point and obtains the amount of deviation (called small bend)
Meru.

【0010】その後は次のスリット51aでの中心点O
が算出され、記憶部に記憶される都度、この中心点を含
むこれから所定数逆のぼった中心点までについて前述し
た演算を繰り返して小曲り量を求めてゆく。そして棒状
被測定物についてこれが横切る最後のスリット51aで
の中心点Oの位置が算出され、記憶部に記憶されると最
初と最後のスリット51aにおいて求めた中心点を結ぶ
直線式を算出し、この直線式に対応する直線に対し最も
大きくずれて位置する中心点を特定し、その中心点のず
れ量(これを大曲りという)を求める。求められた小曲
り,大曲りは演算制御部55からCRT56へ出力され
てこれに表示され、またプリンタ57へ出力され、プリ
ントアウトされる。
After that, the center point O at the next slit 51a
Each time is calculated and stored in the storage unit, the above-described calculation is repeated for the center point including this center point and a center point which is a predetermined number opposite to the center point, and the small bending amount is obtained. Then, the position of the center point O in the last slit 51a which the rod-shaped object to be measured crosses is calculated, and when it is stored in the storage unit, a straight line formula connecting the center points obtained in the first and last slits 51a is calculated, and The center point located with the largest deviation from the straight line corresponding to the straight line type is specified, and the deviation amount of this center point (this is called a large bend) is obtained. The obtained small bend and large bend are output from the arithmetic control unit 55 to the CRT 56 and displayed on the CRT 56, and also output to the printer 57 and printed out.

【0011】[0011]

【発明が解決しようとする課題】ところで上述した如き
従来装置にあっては一回の測定作業では棒状被測定材W
における2次元イメージセンサ53が対向する面内での
曲りが測定されるだけであり、異なる方向の曲りの測定
を行う場合には棒状被測定材Wの向きを変えなければな
らず、その都度棒状被測定材Wを所定角回転した位置で
その姿勢を保持するための保持手段が必要となる。
By the way, in the conventional apparatus as described above, the rod-shaped material W to be measured is required for one measurement operation.
The bending is measured only in the plane in which the two-dimensional image sensor 53 in FIG. 2 faces each other, and when measuring the bending in different directions, the orientation of the rod-shaped material to be measured W must be changed. A holding means for holding the posture of the measured material W at a position rotated by a predetermined angle is required.

【0012】またスリット51aの間隔を狭くしてもそ
れには限度があるため曲りの測定データは相隣するスリ
ット51a間の間隔に対応して離散的となり、測定間隔
が荒く信頼性が低い。更に、リニアガイド51cは真直
であることを前提として測定を行っているが、現実には
製作,組立誤差,据付誤差等の誤差は避けられないにも
かかわらず、これらの誤差を補正出来ないという問題が
あった。
Further, even if the slit 51a is narrowed, there is a limit to it, and therefore the bending measurement data becomes discrete corresponding to the interval between the adjacent slits 51a, and the measurement interval is rough and the reliability is low. Further, the linear guide 51c is measured on the assumption that it is straight, but in reality, errors such as manufacturing, assembly, and installation errors cannot be avoided, but these errors cannot be corrected. There was a problem.

【0013】本発明はかかる事情に鑑みなされたもので
あって、第1の目的は棒状被測定材の2方向における曲
りを一回の測定作業で同時に、しかも正確に測定可能と
するにある。また第2の目的は移動台の走行路の曲りに
よる誤差の補正を可能とし、測定精度の格段の向上を図
れるようにすることにある。
The present invention has been made in view of the above circumstances, and a first object of the present invention is to make it possible to accurately measure the bending of a rod-shaped material to be measured in two directions simultaneously in one measurement operation. A second object is to enable the correction of an error due to the bending of the traveling path of the movable table and to significantly improve the measurement accuracy.

【0014】[0014]

【課題を解決するための手段】第1の発明に係る曲り測
定装置は、基準線に沿わせて配した棒状被測定材と基準
線との距離を測定して棒状被測定材の曲りを測定する装
置において、前記棒状被測定材の周方向の異なる2母線
夫々と対向する第1,第2の距離計と、該第1,第2の
距離計が装着されており、前記基準線と平行に移動する
移動台とを備えることを特徴とする。
A bend measuring apparatus according to a first aspect of the present invention measures a bend of a rod-shaped material to be measured by measuring a distance between the rod-shaped material to be measured arranged along a reference line and the reference line. In the device, the first and second rangefinders facing the two buses in the circumferential direction of the rod-shaped material to be measured and the first and second rangefinders are attached, and the parallel to the reference line. It is characterized by comprising a moving table for moving to.

【0015】第2の発明に係る曲り測定装置は、基準線
に沿わせて配した棒状被測定材と基準線との距離を測定
して棒状被測定材の曲りを測定する装置において、前記
棒状被測定材の周方向の異なる2母線夫々と対向する第
1,第2の距離計と、前記基準線を夫々構成する第1,
第2の基準尺と、前記第1,第2の距離計と前記第1,
第2の基準尺との距離を測定する第3,第4の距離計
と、前記第1〜第4の距離計が装着されており、前記第
1,第2の基準尺と平行に移動する移動台とを備えるこ
とを特徴とする。
A bending measuring apparatus according to a second aspect of the present invention is an apparatus for measuring the bending of a rod-shaped measured material by measuring the distance between the bar-shaped measured material arranged along a reference line and the reference line. First and second rangefinders facing the two buses of the material to be measured, which are different in the circumferential direction, and the first and second distance meters, respectively, which form the reference line.
A second reference scale, the first and second rangefinders, and the first and second
The 3rd and 4th rangefinders which measure the distance to the 2nd scale, and the 1st-4th rangefinders are attached, and it moves in parallel with the 1st and 2nd scales. And a movable table.

【0016】[0016]

【作用】第1の発明にあっては、棒状被測定材における
周方向の2母線と対向する第1の距離計と第2の距離計
とにより、2方向への棒状被測定材Wの曲りが一回の測
定作業によって同時に測定し得ることとなる。
In the first aspect of the invention, the bending of the rod-shaped material to be measured W in two directions is performed by the first distance meter and the second distance meter that face the two buses in the circumferential direction of the rod-shaped material to be measured. Can be measured simultaneously by one measurement operation.

【0017】第2の発明にあっては第3,第4の距離計
によって基準線である第1,第2の基準尺との距離を測
定することで、第1〜第4距離計を装着した移動台の走
行路の曲り、その他据付誤差、組立誤差、並びに基準尺
自体の曲りをも補正することが可能となる。
In the second aspect of the invention, the first to fourth rangefinders are mounted by measuring the distance from the first and second reference scales, which are the reference lines, by the third and fourth rangefinders. It is also possible to correct the bending of the traveling path of the movable table, other installation errors, assembly errors, and the bending of the reference scale itself.

【0018】[0018]

【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。図1は本発明に係る曲り測定装置の
斜視図である。図中1は基台、2は曲り測定ヘッド部、
1 ,S2 は基準尺、Wは棒状被測定材を示している。
なお図面には示していないが、全体を統括し、演算制御
を行う制御部が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a perspective view of a bending measuring apparatus according to the present invention. In the figure, 1 is a base, 2 is a bending measurement head,
S 1 and S 2 are standard scales, and W is a bar-shaped material to be measured.
Although not shown in the drawing, a control unit that controls the whole and performs arithmetic control is provided.

【0019】曲り測定ヘッド部2は移動台21に垂直に
立設した取付盤22の前面一側寄りに棒状被測定材Wの
x軸方向曲りを検出する第1の距離計たるレーザ寸法測
定器23を、また取付盤22の背面側には基準尺S1
基準面に対向させて基準尺S 1 の基準面との距離を測定
する第3の距離計たるレーザ変位計24を設置し、また
取付盤22の前面他側寄りに棒状被測定材Wと対向する
第2の距離計たるレーザ変位計25を、更に取付盤22
の下部に基準尺S2 の基準面と対向する第4の距離計た
るレーザ変位計26を夫々設置して構成してある。なお
ここにx軸方向は直方体形をなす基台1の短辺方向を、
またy軸方向は基台1の表面に対し鉛直方向をいう。
The bending measuring head unit 2 is perpendicular to the movable table 21.
The rod-shaped material W to be measured is placed on one side of the front surface of the vertically mounted mounting board 22.
Laser distance measurement, the first rangefinder to detect x-axis bending
A scale 23 and a standard scale S on the back side of the mounting board 22.1of
Standard scale S facing the reference plane 1Measure the distance from the reference plane
A laser displacement meter 24, which is a third rangefinder, is installed.
Opposite the other side of the front surface of the mounting board 22 and facing the rod-shaped measured material W
A laser displacement meter 25, which is a second distance meter, is attached to the mounting board 22.
Standard scale S at the bottom of2A fourth rangefinder facing the reference plane
The laser displacement gauges 26 are installed respectively. Note that
Here, the x-axis direction is the short side direction of the base 1 having a rectangular parallelepiped shape,
The y-axis direction is the direction vertical to the surface of the base 1.

【0020】移動台21は基台1の表面の一側縁寄りの
位置に長手方向に設置した設置台27の表面に設けてあ
るリニアガイド28,28に載架してある。また移動台
21には図示しないボールナットが設けてあり、これに
は前記リニアガイド28,28間に設けたボールネジ2
9を螺合せしめてある。ボールネジ29はリニアガイド
28,28の間であって設置台27の両端に設けた支持
ブラケット29a,29aに渡して軸支してあり、その
一端に設けたサーボモータMにてボールネジ29を正逆
回転させることで、曲り測定ヘッド部2を基台1の長手
方向へ移動せしめ、前記レーザ寸法測定器23、レーザ
変位計25にて棒状被測定材Wの周方向の異なる2点夫
々を含む線(以下これを母線という)上をトレースして
ゆくようになっている。
The movable table 21 is mounted on linear guides 28, 28 provided on the surface of an installation table 27 which is longitudinally installed at a position near one side edge of the surface of the base 1. Further, the moving table 21 is provided with a ball nut (not shown), which has the ball screw 2 provided between the linear guides 28, 28.
9 is screwed together. The ball screw 29 is axially supported between the linear guides 28, 28 by supporting brackets 29a, 29a provided at both ends of the installation base 27, and the ball screw 29 is normally or reversely rotated by a servo motor M provided at one end thereof. By rotating, the bending measurement head portion 2 is moved in the longitudinal direction of the base 1, and the line including the two points in the circumferential direction of the rod-shaped material to be measured W is measured by the laser dimension measuring device 23 and the laser displacement meter 25. (Hereinafter, this is called the bus bar.)

【0021】図2はレーザ寸法測定器23の原理説明図
であり、レーザ寸法測定器23はレーザビームの発光部
31と受光部32とからなり、発光部31を棒状被測定
材Wの上方に、また受光部32を下方に位置させて棒状
被測定材Wの配置域を上,下に挟む態様で対向設置され
ている。発光部31はレーザビームをパルス状に発振す
る発振器31a及びポリゴンミラー31b、全反射ミラ
ー31c及びレンズ31dを組合せて構成され、発振器
31aから出射されたパルス状レーザビームを回転する
ポリゴンミラー31b、全反射ミラー31c及びレンズ
31dにて棒状被測定材Wを横断する同一垂直面上にお
いて下向き平行となるように投射するようにしてある。
FIG. 2 is a diagram for explaining the principle of the laser dimension measuring device 23. The laser dimension measuring device 23 is composed of a light emitting portion 31 and a light receiving portion 32 for the laser beam, and the light emitting portion 31 is located above the rod-shaped material to be measured W. Further, the light receiving section 32 is located below, and the rod-shaped measured material W is installed so as to face the arrangement area between the upper and lower sides. The light emitting unit 31 is configured by combining an oscillator 31a that oscillates a laser beam in a pulse shape, a polygon mirror 31b, a total reflection mirror 31c, and a lens 31d, and a polygon mirror 31b that rotates a pulsed laser beam emitted from the oscillator 31a The reflection mirror 31c and the lens 31d are arranged to project downwardly and in parallel on the same vertical plane that traverses the rod-shaped material to be measured W.

【0022】一方受光部32はレンズ32a及びこれに
よって集光された光が入射する光電変換器32bを備え
ており、棒状被測定材Wにて遮られることなく、レンズ
32aに達した光が光電変換器32b上の一点に入射さ
れ、検出される。光電変換器32bは各パルス状レーザ
ビーム毎に、これを受光した場合、受光しない場合夫々
の検出信号を図示しない制御部へ与える。
On the other hand, the light receiving section 32 is provided with a lens 32a and a photoelectric converter 32b on which the light condensed by the lens 32a is incident, and the light reaching the lens 32a is photoelectrically converted without being blocked by the rod-shaped material W to be measured. It is incident on one point on the converter 32b and detected. The photoelectric converter 32b gives a detection signal for each pulsed laser beam to the control unit (not shown) when the pulsed laser beam is received and when it is not received.

【0023】ポリゴンミラー31bの1面に入射するレ
ーザビームの数はレーザビームの発射回数とポリゴンミ
ラー31bの回転数とによって定まるから、1スキャン
でのレーザビームの本数は既知であり、またレーザビー
ム間の寸法Δdも既知であるから、制御部は検出信号の
数と測定条件とから棒状被測定材Wの外径を換算する。
Since the number of laser beams incident on one surface of the polygon mirror 31b is determined by the number of times the laser beam is emitted and the number of rotations of the polygon mirror 31b, the number of laser beams per scan is known, and the number of laser beams is one. Since the dimension Δd therebetween is also known, the control unit converts the outer diameter of the rod-shaped measured material W from the number of detection signals and the measurement conditions.

【0024】レーザ変位計24,25,26は構造的に
はいずれも同じであり、レーザ変位計24について示す
と図3に示す如くである。図3はレーザ変位計24の原
理説明図であり、レーザ発振器33aから出射されたレ
ーザビームをレンズ33bを通して第1の基準尺S1
基準面に投射し、これからの反射ビームを一次元アナロ
グ受光器(PSD)33cにて受光するようになってい
る。第1の基準尺S1 の基準面に曲りが存在し、その結
果基準面が真直な面f0 に対し、基準面がf1 ,f2
如くにその位置が変位しているとすると、これに対応し
て一次元アナログ受光器33c上において、光がg0
1 ,g2 の如くに変位した位置に投射される結果、一
次元アナログ受光器33cからは夫々V0 ,V1 ,V2
の位置に対応した電圧信号が制御部へ出力される。
The laser displacement meters 24, 25 and 26 are structurally the same, and the laser displacement meter 24 is as shown in FIG. FIG. 3 is a diagram for explaining the principle of the laser displacement meter 24. The laser beam emitted from the laser oscillator 33a is projected through the lens 33b onto the reference surface of the first reference scale S 1 and the reflected beam from this is received by one-dimensional analog reception. The device (PSD) 33c receives light. If there is a bend in the reference surface of the first reference scale S 1 , and as a result, the reference surface is displaced from the straight surface f 0 such that the reference surfaces are displaced as f 1 and f 2 , Correspondingly, on the one-dimensional analog photodetector 33c, the light g 0 ,
As a result of being projected at the displaced positions like g 1 and g 2 , V 0 , V 1 and V 2 are respectively emitted from the one-dimensional analog photodetector 33c.
The voltage signal corresponding to the position of is output to the control unit.

【0025】制御部はこの電圧信号から基準面の位置ず
れ量を算出する。なお、受光器としては一次元アナログ
受光器に限らず一次元ディジタル受光器(リニアダイオ
ードアレイ)を用いてもよい。また、上述の説明は基準
尺S1 の基準面に曲りが存在する場合を説明したが、こ
れに限らず、例えばリニアガイド8,8に曲りが生じて
いる場合も同様の結果が得られる。
The control section calculates the amount of displacement of the reference plane from this voltage signal. The light receiver is not limited to a one-dimensional analog light receiver, and a one-dimensional digital light receiver (linear diode array) may be used. Further, although the above description has described the case where the reference surface of the reference scale S 1 has a bend, the present invention is not limited to this, and similar results can be obtained when the linear guides 8, 8 are bent, for example.

【0026】レーザ変位計25,26は図1に示す如く
夫々変位検出対象である基準尺S2、棒状被測定材Wと
の間の寸法を調整するための微動調節具34,35を介
して取付盤22に装着されている。この微動調節具3
4,35は同じ構造であり微動調節具35について説明
するとレーザ変位計26のホルダ26cのブラケット2
6dに螺合貫通せしめたボルト26eを取付盤22の支
持ブラケット22bに螺合せしめて構成されており、ボ
ルト26eの螺合深さを調節することで、基準尺S2
レーザ変位計26との距離を調節し得るようしてある。
なお、レーザ変位計25はこれに変えてレーザ寸法測定
器23と同様に発光部,受光部を棒状被測定材Wの配置
域の両側に設定してy軸方向の曲りを測定するようにし
てもよい。
As shown in FIG. 1, the laser displacement gauges 25 and 26 are provided with fine scale adjusters 34 and 35 for adjusting the dimensions between the standard scale S 2 which is the displacement detection object and the rod-shaped material to be measured W, respectively. It is mounted on the mounting board 22. This fine movement adjuster 3
Reference numerals 4 and 35 have the same structure. To describe the fine movement adjuster 35, the bracket 2 of the holder 26c of the laser displacement meter 26 is described.
A bolt 26e threaded through 6d is screwed onto the support bracket 22b of the mounting board 22. By adjusting the screwing depth of the bolt 26e, the reference scale S 2 and the laser displacement meter 26 are adjusted. It seems that the distance can be adjusted.
Instead of the laser displacement meter 25, the laser displacement meter 25 is provided with the light emitting portion and the light receiving portion on both sides of the arrangement area of the rod-shaped material to be measured W, similarly to the laser dimension measuring device 23, to measure the bending in the y-axis direction. Good.

【0027】基準尺S1 ,S2 はいずれも断面略長方形
状をなす長尺の板状に形成されており、夫々複数の支持
台3,4に支持されて、基準尺S1 の基準面はレーザ変
位計24とx軸方向において対向し、また基準尺S2
基準面はレーザ変位計26とy軸方向において対向して
いる。支持台3は基台1上面に、その長手方向に沿うよ
う一定間隔で複数本(実施例では4本)立設されてお
り、上端部に基準尺S1 の寸法と略等しい幅の浅い凹溝
3aが形成され、各支持台3の凹溝3aに渡す態様で基
準尺S1 を着脱自在に嵌合せしめてある。
Each of the reference scales S 1 and S 2 is formed in a long plate shape having a substantially rectangular cross section, and is supported by a plurality of support bases 3 and 4, respectively, and the reference surface of the reference scale S 1 is supported. Is opposed to the laser displacement meter 24 in the x-axis direction, and the reference surface of the reference scale S 2 is opposed to the laser displacement meter 26 in the y-axis direction. A plurality of support bases 3 (four in this embodiment) are provided upright on the upper surface of the base 1 at regular intervals along the longitudinal direction thereof, and the support base 3 has a shallow recess with a width substantially equal to the size of the reference scale S 1 at the upper end. Grooves 3a are formed, and the reference scale S 1 is detachably fitted in a manner to be passed to the concave grooves 3a of each support base 3.

【0028】また基準尺S2 の支持台4は基台1上面に
その長手方向に沿うよう一定間隔で複数個固定され、夫
々基準尺S2 を嵌め込むU字形の支持溝4aを備えてお
り、ブラケットを基台1に対しねじ止めすることで固定
してある。基準尺S2 は各支持台4の支持溝4a内に渡
す態様でこれらに基準尺S2 を挿脱可能に嵌挿せしめて
ある。
A plurality of support bases 4 of the standard scale S 2 are fixed on the upper surface of the base 1 at regular intervals along the longitudinal direction thereof, and each of them is provided with a U-shaped support groove 4a into which the standard scale S 2 is fitted. The bracket is fixed to the base 1 by screwing. The reference scale S 2 is inserted in the support groove 4a of each support base 4 so that the reference scale S 2 can be inserted and removed.

【0029】棒状被測定材Wの載置台5は固定部5aと
可動部5bとからなり、固定部5aはその上端に断面矩
形状の挿通孔5cを備え、下端部に備えるブラケットを
ねじ止めにより基台1に固定してある。一方可動部5b
は同様に側面視で逆L字形に形成されており、その垂直
部を固定部5aの挿通孔5cにその上方から摺嵌せし
め、水平部を曲り測定ヘッド部2側に向けてその移動方
向と直交する方向に延在せしめてある。この水平部の先
端には被測定材の落下防止のためのストッパ5dが設け
られている。
The mounting table 5 for the rod-shaped material to be measured W is composed of a fixed portion 5a and a movable portion 5b. The fixed portion 5a has an insertion hole 5c having a rectangular cross section at its upper end, and a bracket provided at the lower end is fixed by screws. It is fixed to the base 1. On the other hand, movable part 5b
Is also formed in an inverted L shape in a side view, and the vertical portion is slidably fitted into the insertion hole 5c of the fixed portion 5a from above, and the horizontal portion is bent toward the measurement head portion 2 side. It is extended in the orthogonal direction. A stopper 5d for preventing the measured material from falling is provided at the tip of the horizontal portion.

【0030】挿通孔5cに摺嵌せしめられてその下方に
突き出した垂直部の下端には固定部5aの一側面に設け
たブラケット5eに、その下側から上側に向けて螺合貫
通せしめたボルト5fの先端を当接せしめてあり、ボル
ト5fを回転させることで可動部5bの上下位置を微動
調節し得るようにしてある。
A bolt 5 which is slidably fitted into the insertion hole 5c and protrudes downward from the lower end of the vertical portion is attached to a bracket 5e provided on one side surface of the fixing portion 5a by screwing from the lower side to the upper side. The tip of 5f is brought into contact, and the vertical position of the movable portion 5b can be finely adjusted by rotating the bolt 5f.

【0031】次に曲り測定動作を説明する。制御部によ
り、モータMを駆動して曲り測定ヘッド部2を基台1の
一端部寄りに移動させ、また支持台3,4には夫々基準
尺S1 ,S2 を装着する。これによって基準尺S1 の基
準面はレーザ変位計24と、また基準尺S2 の基準面は
レーザ変位計26と夫々対向位置する。更に複数の載置
台5上に渡して棒状被測定材Wを載置する。制御部によ
ってモータMを駆動すると共に、レーザ寸法測定器2
3、レーザ変位計24,25,26を動作させる。レー
ザ寸法測定器23の発光部31からは所定本数のレーザ
ビームが略一定間隔で平行に出射され、棒状被測定材W
によって遮られないレーザビームは受光部32の光電変
換器32bに入射し、検出される。
Next, the bending measurement operation will be described. The control unit drives the motor M to move the bending measurement head unit 2 toward one end of the base 1, and mounts the reference scales S 1 and S 2 on the support bases 3 and 4, respectively. This reference surface of the reference scale S 1 and the laser displacement meter 24, also the reference surface of the reference scale S 2 is s position opposing the laser displacement meter 26 and her husband. Further, the rod-shaped material W to be measured is placed on the plurality of mounting tables 5. The motor M is driven by the control unit and the laser dimension measuring device 2
3. Operate the laser displacement gauges 24, 25, 26. A predetermined number of laser beams are emitted from the light emitting portion 31 of the laser dimension measuring device 23 in parallel at substantially regular intervals, and the rod-shaped material to be measured W is measured.
The laser beam that is not blocked by is incident on the photoelectric converter 32b of the light receiving unit 32 and is detected.

【0032】制御部は検出信号の数から棒状被測定材W
の太さを算出すると共に、棒状被測定材Wの中心点Oj
の位置(x軸方向位置)が算出される。これと同期して
レーザ変位計24にてこれと基準尺S1 の基準面との距
離の変位量、換言すれば基準尺S1 に対する曲り測定ヘ
ッド2の位置ずれも逐次測定され、被測定材Wの中心点
Oのx座標はこの位置ずれ分を補正された値として算出
する。
The control unit determines the rod-shaped measured material W from the number of detected signals.
Is calculated and the center point O j of the rod-shaped material W to be measured is calculated.
Position (x-axis direction position) is calculated. Displacement of the distance between this and the synchronization with the reference plane of this and measuring standard S 1 by the laser displacement meter 24, bending positional deviation of the measuring head 2 relative to the scale S 1 in other words is also measured sequentially, the measured material The x-coordinate of the center point O of W is calculated by correcting the positional deviation.

【0033】同様にy軸方向においてもレーザ変位計2
5の変位値とレーザ変位計26の変位値とが制御部へ与
えられ、制御部はこれによって基準尺S2 の基準面から
被測定材Wまでの距離がレーザ変位計25,26間の距
離が既知であるから、これらに基づき基準面の曲り、リ
ニアガイド28の曲りに起因する位置ずれが補正された
棒状測定材Wの中心点が求まる。
Similarly, also in the y-axis direction, the laser displacement meter 2
The displacement value of No. 5 and the displacement value of the laser displacement meter 26 are given to the control unit, which causes the distance from the reference surface of the scale S 2 to the measured material W to be the distance between the laser displacement meters 25 and 26. Is known, the center point of the rod-shaped measuring material W in which the positional deviation due to the bending of the reference surface and the bending of the linear guide 28 is corrected is determined based on these values.

【0034】(1) 被測定材Wの傾斜補正 いま、図4に示す如く基準尺S1 に対し棒状被測定材W
がx軸方向に湾曲しているものとし、測定点n0 から一
定間隔a毎に測定点ni (この間の長さL)まで測定が
行われれ、測定点n0 における基準線Qからの棒状被測
定材Wのずれが零、測定点ni における基準線Qからの
棒状被測定材Wのずれがxni 、測定点ni における基
準線に対する被測定材Wのずれをxni (=Δx)とす
る。測定点n0 における被測定材Wの中心点O0 と、最
終測定点ni における被測定材Wの中心点Oi とを結ぶ
直線を補正ラインMLとし、この補正ラインMLと基準
線Qとのなす角度θだけ基準線Qを回転させる。
[0034] (1) slope compensation current of the measured material W, the scale S 1 to the rod-shaped object to be measured material W as shown in FIG. 4
Is curved in the x-axis direction, measurement is performed from the measurement point n 0 to the measurement points n i (the length L between them) at regular intervals a, and a bar shape from the reference line Q at the measurement points n 0 is measured. deviation of the measured material W is zero, deviation xn i of the rod-shaped object to be measured material W from the reference line Q at the measurement point n i, the deviation of the measured material W with respect to the reference line at the measurement point n i xn i (= Δx ). Between the center O 0 of the measured material W at the measurement point n 0, a straight line connecting the center point O i of the measured material W and the correction line ML in the final measurement point n i, this correction line ML and the reference line Q The reference line Q is rotated by the angle θ formed by.

【0035】そしてこれに対応して各測定点n0 〜ni
夫々における各中心点O0 〜Oi 位置のずれ量を基準線
Qに対するずれから、補正ラインMLに対するずれ量に
換算する。この換算は長さLに対してずれ量Δxとなる
よう中心点から補正ラインMLの長さに対応して各中心
点O0 〜Oi の位置ずれ量を修正すればよい。このよう
な傾斜補正を行った測定データに基づいて大曲り値,小
曲り値を逐次算出する。
Correspondingly, the measurement points n 0 to n i
The shift amount of each central point O 0 to O i position is converted from the shift amount with respect to the reference line Q to the shift amount with respect to the correction line ML. This conversion may be performed by correcting the positional deviation amount of each of the center points O 0 to O i corresponding to the length of the correction line ML from the center point so that the deviation amount Δx with respect to the length L is obtained. The large bend value and the small bend value are sequentially calculated based on the measurement data on which the inclination correction is performed.

【0036】(2) 大曲り値の算出 図5は横軸に補正ラインMLを、また縦軸に各測定点n
0 〜ni 毎の中心点O 0 〜Oi のずれ量をとって示す説
明図であり、棒状被測定材Wの最初の測定点O 0 と、最
後の測定点Oi とを結ぶ補正ラインMLに対して補正を
行った後の中心点O0 〜Oi のずれ量をxn1 ′,xn
2 ′…xni ′として示してある。この間の最大ずれ量
をxmax′を求め、これを大曲り値とする。
(2) Calculation of large bend value In FIG. 5, the horizontal axis represents the correction line ML, and the vertical axis represents each measurement point n.
0~ NiCenter point O for each 0~ OiTheory showing the amount of deviation
It is a clear view, and the first measurement point O of the rod-shaped measured material W 0And the
Later measurement point OiCorrect the correction line ML connecting
Center point O after going0~ OiThe deviation amount of xn1′, Xn
2′… XniIt is shown as'. Maximum deviation during this period
Is obtained as xmax ′, and this is set as a large bending value.

【0037】(3) 小曲り値の算出 小曲り量は図5に示す如く予め定めた所定距離P内にお
ける各測定点n0 〜n 4 において、最初の測定点n0
最後の測定点n4 とにおける中心点xn0 ′〜xn4
を結ぶ直線を新たな補正ラインML1 として前述した図
4に示したのと同様の補正を行い、図6(a)に示す如
く距離Pの範囲内での最大ずれ量Xmax′を算出し、
これを小曲り値SB1 とする。
(3) Calculation of small bending amount The small bending amount is within a predetermined distance P as shown in FIG.
Each measurement point n0~ N FourAt the first measurement point n0When
Last measurement point nFourCenter point xn at and0'~ XnFour
A new correction line ML1Figure as above
As shown in FIG. 6A, the same correction as that shown in FIG.
The maximum deviation amount Xmax 'within the range of the distance P is calculated,
This is a small bend value SB1And

【0038】図6(a)は補正ラインを横軸とし、ずれ
量を縦軸にとった小曲り値を示す説明図であり、測定点
0 〜n4 での間の小曲り値SB1 が求められる。図6
(b)は同様に測定点を1ずつずらせて測定点n1 〜n
5 の間の小曲り値SB2 を、図6(c)は測定点n2
らn6 の間の小曲り値SB3 を示している。なおy軸方
向における傾斜補正,大曲り,小曲り値の算出過程も前
述したx軸方向における場合と実質的に同じである。
FIG. 6 (a) is an explanatory diagram showing the small bend value with the correction line on the horizontal axis and the shift amount on the vertical axis, and the small bend value SB 1 between the measurement points n 0 to n 4. Is required. Figure 6
Similarly, in (b), the measurement points are shifted by one, and measurement points n 1 to n
The small bend value SB 2 between 5 and FIG. 6C shows the small bend value SB 3 between the measurement points n 2 to n 6 . The process of tilt correction in the y-axis direction and the calculation of the large bend value and the small bend value are substantially the same as those in the x-axis direction described above.

【0039】なお上述した実施例では直交する2方向、
即ちx軸方向,y軸方向の曲りを測定する場合について
説明したが、これに限らず、所定角度θだけ交叉する2
方向の曲り測定にも適用可能である。また上述した実施
例では曲り測定ヘッド部2と棒状被測定材Wとの距離、
並びに曲り測定ヘッド部2と基準尺S1 ,S2 の基準面
との距離を同時的に行う場合を説明したが、例えば、最
初に基準尺S1 ,S2 の基準面とのずれを測定し、実際
の曲り測定に際しては棒状被測定材Wの基準尺S1 ,S
2 との距離の測定は行わずに、レーザ寸法測定器23,
レーザ変位計25のみを動作させて測定を行ってもよ
い。
In the above-described embodiment, two orthogonal directions are used.
That is, the case of measuring the bending in the x-axis direction and the y-axis direction has been described, but the present invention is not limited to this.
It is also applicable to direction bending measurement. Further, in the above-described embodiment, the distance between the bending measurement head portion 2 and the rod-shaped measured material W,
Also, a case has been described in which the distance between the bending measurement head unit 2 and the reference planes of the reference scales S 1 and S 2 is performed simultaneously. For example, first, the deviation between the reference scales of the reference scales S 1 and S 2 is measured. However, in the actual bending measurement, the reference scales S 1 and S of the rod-shaped material W to be measured are used.
2 does not measure the distance to the laser dimension measuring device 23,
The measurement may be performed by operating only the laser displacement meter 25.

【0040】[0040]

【発明の効果】以上の如く第1の発明にあっては被測定
材を測定作業途中で移動させることなく曲り測定ヘッド
部にて2方向の曲り,外径測定を同時的に行うことが出
来ることとなり、作業効率が極めて高い。
As described above, according to the first aspect of the present invention, the bending measuring head portion can simultaneously measure the bending in two directions and the outer diameter without moving the material to be measured during the measurement operation. Therefore, the work efficiency is extremely high.

【0041】第2の発明にあっては曲り測定ヘッドと被
測定材との距離と同時に、曲り測定ヘッドと第1,第2
の基準尺との寸法も同時に測定出来ることとなって、基
準尺自体の曲り,据付,組立誤差が存在してもこれを補
正することが出来て、高い測定精度が得られる。
According to the second aspect of the invention, at the same time as the distance between the bending measuring head and the material to be measured, the bending measuring head and the first and second
Since it is possible to measure the dimensions of the standard scale at the same time, even if there is a bending, installation, or assembly error of the standard scale, this can be corrected and a high measurement accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る曲り測定装置の斜視図である。FIG. 1 is a perspective view of a bending measuring apparatus according to the present invention.

【図2】レーザ寸法測定器の原理説明図である。FIG. 2 is a diagram illustrating the principle of a laser dimension measuring device.

【図3】レーザ変位計の原理説明図である。FIG. 3 is a diagram illustrating the principle of a laser displacement meter.

【図4】棒状被測定材Wの傾斜補正を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing inclination correction of a rod-shaped material to be measured W.

【図5】棒状被測定材Wの大曲りの算出態様を示す説明
図である。
FIG. 5 is an explanatory diagram showing a manner of calculating a large bend of the rod-shaped measured material W.

【図6】棒状被測定材Wの小曲りの算出態様を示す説明
図である。
FIG. 6 is an explanatory diagram showing a mode of calculating a small bend of the rod-shaped measured material W.

【図7】従来装置の模式的正面図である。FIG. 7 is a schematic front view of a conventional device.

【図8】従来装置の模式的平面図及び部分拡大図であ
る。
FIG. 8 is a schematic plan view and a partially enlarged view of a conventional device.

【符号の説明】[Explanation of symbols]

1 基台 2 曲り測定ヘッド部 3,4 支持台 5 載置台 23 レーザ寸法測定器 24,25,26 レーザ変位計 W 棒状被測定材 S1 ,S2 基準尺1 Base 2 Bending Measuring Head 3, 4 Support 5 Mounting Table 23 Laser Dimension Measuring Device 24, 25, 26 Laser Displacement Meter W Rod-like Measuring Material S 1 , S 2 Standard Scale

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基準線に沿わせて配した棒状被測定材と
前記基準線との距離を測定して棒状被測定材の曲りを測
定する装置において、前記棒状被測定材の周方向の異な
る2母線夫々と対向する第1,第2の距離計と、該第
1,第2の距離計が装着されており、前記基準線と平行
に移動する移動台とを備えることを特徴とする曲り測定
装置。
1. An apparatus for measuring the bending of a rod-shaped measured material by measuring a distance between the rod-shaped measured material arranged along a reference line and the reference line, wherein the rod-shaped measured material has different circumferential directions. A bend comprising: first and second rangefinders facing each of the two busbars; and a moving table on which the first and second rangefinders are mounted and which moves parallel to the reference line. measuring device.
【請求項2】 基準線に沿わせて配した棒状被測定材と
前記基準線との距離を測定して棒状被測定材の曲りを測
定する装置において、前記棒状被測定材の周方向の異な
る2母線夫々と対向する第1,第2の距離計と、前記基
準線を夫々構成する第1,第2の基準尺と、前記第1,
第2の距離計と前記第1,第2の基準尺との距離を測定
する第3,第4の距離計と、前記第1〜第4の距離計が
装着されており、前記第1,第2の基準尺と平行に移動
する移動台とを備えることを特徴とする曲り測定装置。
2. An apparatus for measuring the bending of a rod-shaped measured material by measuring a distance between the rod-shaped measured material arranged along a reference line and the reference line, wherein the rod-shaped measured material has different circumferential directions. First and second rangefinders facing the two busbars respectively; first and second scales respectively constituting the reference lines;
The 3rd and 4th rangefinders which measure the distance between the 2nd rangefinder and the 1st and 2nd standard scales, and the 1st-4th rangefinders are attached, and the 1st and 1st. A bend measuring device, comprising: a movable table that moves in parallel with the second reference scale.
JP11194195A 1995-05-10 1995-05-10 Bending measuring instrument Pending JPH08304046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11194195A JPH08304046A (en) 1995-05-10 1995-05-10 Bending measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11194195A JPH08304046A (en) 1995-05-10 1995-05-10 Bending measuring instrument

Publications (1)

Publication Number Publication Date
JPH08304046A true JPH08304046A (en) 1996-11-22

Family

ID=14573989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11194195A Pending JPH08304046A (en) 1995-05-10 1995-05-10 Bending measuring instrument

Country Status (1)

Country Link
JP (1) JPH08304046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009648A1 (en) * 2005-02-25 2006-08-31 Universität Rostock Measuring thermal expansion of dental sample, by scanning in two spatial directions and at several set temperatures in measuring chamber
JP2013104719A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal External surface bend measuring-method for steel pipe
JP2015137994A (en) * 2014-01-24 2015-07-30 大日本印刷株式会社 Straightness measuring device, straightness measuring method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189081A (en) * 1983-03-15 1984-10-26 Mazda Motor Corp Automatic inspecting device for shank bending of welding gun
JPS61105409A (en) * 1984-10-30 1986-05-23 Matsushita Electric Ind Co Ltd Measuring instrument for quantity of end curvature
JPH01239410A (en) * 1988-03-18 1989-09-25 Fuji Electric Co Ltd Measuring method for perpendicularity of body to be measured

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189081A (en) * 1983-03-15 1984-10-26 Mazda Motor Corp Automatic inspecting device for shank bending of welding gun
JPS61105409A (en) * 1984-10-30 1986-05-23 Matsushita Electric Ind Co Ltd Measuring instrument for quantity of end curvature
JPH01239410A (en) * 1988-03-18 1989-09-25 Fuji Electric Co Ltd Measuring method for perpendicularity of body to be measured

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009648A1 (en) * 2005-02-25 2006-08-31 Universität Rostock Measuring thermal expansion of dental sample, by scanning in two spatial directions and at several set temperatures in measuring chamber
DE102005009648B4 (en) * 2005-02-25 2007-02-08 Universität Rostock Method and device for measuring the thermal expansion of a specimen
JP2013104719A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal External surface bend measuring-method for steel pipe
JP2015137994A (en) * 2014-01-24 2015-07-30 大日本印刷株式会社 Straightness measuring device, straightness measuring method and program

Similar Documents

Publication Publication Date Title
US7796278B2 (en) Method for precisely measuring position of a part to be inspected at a part inspection station
US7907267B2 (en) Optical method and system for generating calibration data for use in calibrating a part inspection system
US8237935B2 (en) Method and system for automatically inspecting parts and for automatically generating calibration data for use in inspecting parts
US7812970B2 (en) Method and system for inspecting parts utilizing triangulation
US6067165A (en) Position calibrating method for optical measuring apparatus
US20100238435A1 (en) Calibration device for use in an optical part measuring system
EP2075530A2 (en) Surveying instrument and surveying compensation method
EP0661520A1 (en) Laser surveying system
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
JP2009031120A (en) Method and device for adjusting thickness measuring instrument
JP6430874B2 (en) Measuring method
JPH08304046A (en) Bending measuring instrument
JP5290038B2 (en) Measuring apparatus and measuring method
CN116381708A (en) High-precision laser triangular ranging system
JPH0123041B2 (en)
JP2007155401A (en) Displacement sensor and shape measuring apparatus
EP0381633A2 (en) System to automatically compensate the transversal oscillation of the scanning plane in a laser scanner for profile measurement by means of a special device
US20030142324A1 (en) Optoelectronic measuring method and distance measuring device for carrying out the method
KR20070015267A (en) Light displacement measuring apparatus
JPH06258040A (en) Laser displacement meter
JPS62287107A (en) Center position measuring instrument
JP2006184091A (en) In-plane direction displacement gauge
JP6779151B2 (en) Measuring method
JP2004028792A (en) Non-contact sectional shape measurement method and measurement device
JP2728331B2 (en) Flatness measurement device