JPH08304033A - Measuring apparatus of dissolution rate - Google Patents

Measuring apparatus of dissolution rate

Info

Publication number
JPH08304033A
JPH08304033A JP10502895A JP10502895A JPH08304033A JP H08304033 A JPH08304033 A JP H08304033A JP 10502895 A JP10502895 A JP 10502895A JP 10502895 A JP10502895 A JP 10502895A JP H08304033 A JPH08304033 A JP H08304033A
Authority
JP
Japan
Prior art keywords
dissolution rate
resist
film thickness
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10502895A
Other languages
Japanese (ja)
Other versions
JP2737693B2 (en
Inventor
Takeshi Ofuji
武 大藤
Kaichiro Nakano
嘉一郎 中野
Katsumi Maeda
勝美 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7105028A priority Critical patent/JP2737693B2/en
Publication of JPH08304033A publication Critical patent/JPH08304033A/en
Application granted granted Critical
Publication of JP2737693B2 publication Critical patent/JP2737693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method and an apparatus by which the dissolution rate of a resist used in the lithographic process of a semiconductor can be measured with good accuracy without being influenced by the uniformity of dissolution. CONSTITUTION: The measuring apparatus is constituted of a developing part 7, of a light source part 10, a signal detection part 15 and a signal processing part 16. The signal detection part 15 comprises a means which measures the spectral spectrum of reflected light by a resist, and the signal processing part 16 comprises a means which finds the film thickness of the resist on the basis of the spectral spectrum and which measures the dissolution rate of the resist on the basis of a time-dependent change in the film thickness. It is desirable that a multichannel spectroscope 14 is used for the signal detection part 15, that an obtained signal is Fourier-transformed so as to compute the film thickness of the resist sequentially and that the dissolution rate is computed on the basis of the time-dependent change in the film thickness of the resist.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶解速度の測定装置に関
し、とくに半導体素子製造工程のリソグラフィー工程で
用いるフォトレジストについて、精度良く、かつ効率的
に溶解速度を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a dissolution rate, and more particularly to an apparatus for accurately and efficiently measuring a dissolution rate of a photoresist used in a lithography process of a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】従来この種のフォトレジストの溶解速度
測定装置は電子情報通信学会論文誌(1993年8月発
行、Vol.J76−C−2II、No.8)562頁
から570頁に示されているように、単色光による干渉
効果を利用している。図3(a)は従来の溶解速度測定
装置を示す図である。従来の溶解速度測定装置は現像容
器1、現像液2、基板支持用治具3、シリコン基板4、
フォトレジスト5、石英ガラス窓6からなる現像部7
と、ランプ光源8と凸レンズ9からなる光源部10と、
光ファイバー11、凸レンズ12からなる照射部、単色
フィルター13′、検出器14′からなる信号検出部1
5、および検出した信号を処理する信号処理部16から
構成されている。
2. Description of the Related Art Conventionally, a photoresist dissolution rate measuring apparatus of this type is shown in pages 562 to 570 of the Institute of Electronics, Information and Communication Engineers, Journal (August 1993, Vol. J76-C-2II, No. 8). As described above, the interference effect of monochromatic light is used. FIG. 3A is a diagram showing a conventional dissolution rate measuring device. The conventional dissolution rate measuring device includes a developing container 1, a developing solution 2, a substrate supporting jig 3, a silicon substrate 4,
Developing section 7 consisting of photoresist 5 and quartz glass window 6
And a light source unit 10 including a lamp light source 8 and a convex lens 9,
An optical fiber 11, an illuminating section consisting of a convex lens 12, a monochromatic filter 13 ', and a signal detecting section 1 consisting of a detector 14'.
5 and a signal processing unit 16 that processes the detected signal.

【0003】次に従来の溶解速度測定装置の動作を説明
する。現像容器1にアルカリ現像液(テトラメチルアン
モニウムハイドロオキサイド2.38重量%)2を満た
し、基板支持用治具3にフォトレジスト(住友化学社製
PFI−26)5を塗布したシリコン基板4を固定す
る。水銀ランプ光源8を出射した光は光ファイバーを通
って試料に照射され、その反射光は光ファイバーを通っ
て検出部に導かれ単色フィルター13′を通り、検出器
14′によって干渉信号に変換される。測定された信号
処理部16で計算値と比較されレジスト膜厚に換算され
る。
Next, the operation of the conventional dissolution rate measuring device will be described. A developing container 1 is filled with an alkaline developer (tetramethylammonium hydroxide 2.38% by weight) 2 and a silicon substrate 4 coated with a photoresist (PFI-26 manufactured by Sumitomo Chemical Co., Ltd.) 5 is fixed to a substrate supporting jig 3. To do. The light emitted from the mercury lamp light source 8 is irradiated onto the sample through the optical fiber, and the reflected light is guided to the detection section through the optical fiber, passes through the monochromatic filter 13 ', and is converted into an interference signal by the detector 14'. The measured value is compared with the calculated value in the signal processing unit 16 and converted into a resist film thickness.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のフォト
レジストの溶解速度測定装置には様々な問題点があっ
た。例えば、実際の溶解速度測定装置の検出信号には、
測定時の振動あるいは外部光等の外乱によって、様々な
ノイズ成分が重畳している。図3(b)に従来の測定方
法で測定したレジストの干渉波形の例を示す。比較的良
好に正弦波状の波形が得られているが、ノイズを伴って
いることがわかる。従って検出信号から計算されたレジ
スト膜厚も誤差を多く含み、精度の良い溶解速度の測定
は困難であった。さらに光源の水銀ランプの光量は、時
間の経過とともに減少するため、得られる干渉波形も時
間の経過とともに減衰するため、長時間に渡り安定に測
定を行うことは困難であった。
There are various problems in the above-described conventional photoresist dissolution rate measuring apparatus. For example, in the detection signal of the actual dissolution rate measuring device,
Various noise components are superimposed due to vibrations during measurement or disturbances such as external light. FIG. 3B shows an example of the interference waveform of the resist measured by the conventional measuring method. Although the sinusoidal waveform is obtained relatively well, it can be seen that it is accompanied by noise. Therefore, the resist film thickness calculated from the detection signal also contains many errors, and it was difficult to measure the dissolution rate with high accuracy. Further, since the light quantity of the mercury lamp as the light source decreases with the passage of time, the obtained interference waveform also attenuates with the passage of time, which makes it difficult to perform stable measurement for a long time.

【0005】また、従来の溶解速度測定装置では光を照
射する面積が大きいため、フォトレジストの溶解にわず
かにな不均一性が有ると干渉性が低下し、干渉波形が得
られなくなるという致命的欠点を有している。この溶解
の不均一性による干渉波形の劣化の程度は、近年、特に
解像度が良く、溶解コントラストの大きなレジストにお
いて顕著である傾向を有する。
Further, in the conventional dissolution rate measuring device, since the area irradiated with light is large, if the dissolution of the photoresist has a slight non-uniformity, the coherence is lowered and the interference waveform cannot be obtained. It has drawbacks. In recent years, the degree of deterioration of the interference waveform due to the nonuniformity of dissolution tends to be remarkable in a resist having particularly good resolution and large dissolution contrast.

【0006】このような欠点を解消するため、特開平3
−38822号公報に、干渉波形が劣化した場合の溶解
速度の計算方法が提案されているが、計算が複雑であ
り、しかも溶解速度を一義的に確定することはできない
という欠点を有している。
In order to solve such a drawback, Japanese Patent Laid-Open No. Hei 3 (1998)
Japanese Patent Laid-Open No. 38822 proposes a method of calculating a dissolution rate when an interference waveform is deteriorated, but has a drawback that the calculation is complicated and the dissolution rate cannot be uniquely determined. .

【0007】さらに、従来の溶解速度測定装置において
は基本的に、溶解速度は干渉波形の極大値、あるいは極
小値の間隔を基にして計算するため最低2つの極大値又
は極小値を含む必要がある。従って、溶解速度が小さい
場合、干渉波形に極大値、または極小値が表れるまでに
多大な時間を要するという欠点を有していた。例えば、
650nmの単色光を光源に用いた場合、干渉波形の極
大値または極小値の間隔は約0.1μm(≡λ/4n)
である。ここでλは測定光の波長、nはレジストの屈折
率である。実際のフォトレジストの溶解速度は1(μm
/秒)から1E−5(μm/秒)程度まで分布してお
り、ここで1E−5(μm/秒)程度の溶解速度を測定
する場合、極大値あるいは極小値を得るためには少なく
とも1E4秒(2.8時間)以上の現像時間が必要にな
る。これでは測定の効率が悪い上に、長時間に渡って反
射信号を安定に測定することが必要となり、したがっ
て、精度の良い測定は従来の装置では不可能であった。
Further, in the conventional dissolution rate measuring device, basically, the dissolution rate is calculated based on the interval of the maximum value or the minimum value of the interference waveform, so it is necessary to include at least two maximum values or minimum values. is there. Therefore, when the dissolution rate is low, there is a drawback that it takes a lot of time before the maximum value or the minimum value appears in the interference waveform. For example,
When monochromatic light of 650 nm is used as the light source, the interval between the maximum value and the minimum value of the interference waveform is about 0.1 μm (≡λ / 4n)
Is. Here, λ is the wavelength of the measurement light, and n is the refractive index of the resist. Actual photoresist dissolution rate is 1 (μm
/ Sec) to about 1E-5 (μm / sec), and when a dissolution rate of about 1E-5 (μm / sec) is measured here, at least 1E4 is required to obtain the maximum or minimum value. A developing time of more than 2 seconds (2.8 hours) is required. This results in poor measurement efficiency and requires stable measurement of the reflected signal over a long period of time, so accurate measurement was not possible with conventional devices.

【0008】本発明の目的は外部のノイズに影響され
ず、しかも溶解均一性の悪いレジストについても精度良
く効率的に溶解速度を測定できる装置を提供することに
ある。
An object of the present invention is to provide an apparatus which is not affected by external noise and can measure the dissolution rate accurately and efficiently even for a resist having poor dissolution uniformity.

【0009】[0009]

【課題を解決するための手段】本発明の溶解速度測定装
置では、少なくともレジストを現像する現像部と、光源
部と、レジストからの反射光を検出する信号検出部と、
信号検出部より得られた検出信号を処理する信号処理部
とから構成され、前記信号検出部は反射光の分光スペク
トルを測定する手段を有し、前記信号処理部は分光スペ
クトルからレジスト膜厚を求める手段と算出されたレジ
スト膜厚の時間変化からレジストの溶解速度を測定する
手段とを有することを特徴としている。ここで、信号検
出部の分光スペクトルを測定する手段がマルチチャンネ
ル分光器よりなること、また信号処理部が、検出された
分光スペクトルのフーリエ変換を逐次行うための手段
と、得られたフーリエ変換スペクトルからレジスト膜厚
を算出する手段と、算出されたレジスト膜厚の時間変化
から溶解速度を計算する手段とを有すると特に望ましい
溶解速度測定装置が得られる。
According to the dissolution rate measuring apparatus of the present invention, at least a developing section for developing a resist, a light source section, and a signal detecting section for detecting reflected light from the resist,
The signal processing unit for processing the detection signal obtained from the signal detection unit, the signal detection unit has a means for measuring the spectral spectrum of the reflected light, the signal processing unit, the resist film thickness from the spectral spectrum. It is characterized by having a means for obtaining and a means for measuring the dissolution rate of the resist from the time change of the calculated resist film thickness. Here, the means for measuring the spectral spectrum of the signal detection unit is a multi-channel spectroscope, and the signal processing unit, means for sequentially performing the Fourier transform of the detected spectral spectrum, and the obtained Fourier transform spectrum A particularly desirable dissolution rate measuring device can be obtained by having means for calculating the resist film thickness from the above and means for calculating the dissolution rate from the calculated time change of the resist film thickness.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0011】(実施例1)図1(a)は本発明の実施例
を示す図である。本発明の溶解速度測定装置が図3の従
来の装置と異なる点は、光源部10の内部がランプ光源
8、凸レンズ9のみより構成されていること、及び信号
検出部15が回折格子13、マルチチャンネル検出器1
4からなっている点である。
(Embodiment 1) FIG. 1A is a diagram showing an embodiment of the present invention. The dissolution rate measuring device of the present invention is different from the conventional device of FIG. 3 in that the inside of the light source unit 10 is composed of only the lamp light source 8 and the convex lens 9, and the signal detecting unit 15 is the diffraction grating 13 and Channel detector 1
4 points.

【0012】本発明の溶解速度測定装置の動作について
説明する。現像容器1にアルカリ現像液(テトラメチル
アンモニウムハイドロオキサイド2.38重量%)2を
満たし、基板支持用治具3に被測定レジスト(住友化学
社製PFI−26)5を塗布したシリコン基板4を固定
する。水銀ランプ光源8を出射した光は光ファイバーを
通って試料に照射され、その反射光は光ファイバーを通
って分光測定部に導かれ分光スペクトルが測定される。
測定された分光スペクトルは信号処理部16で、あらか
じめ計測しておいた水銀ランプの分光スペクトルと比較
され、反射率の分光スペクトルが計算される。測定され
た分光スペクトル波形の一例を図1(b)に示す。一般
に、薄膜の分光スペクトル測定において、反射率の最大
値および最小値を与える波長は次式で与えられる。
The operation of the dissolution rate measuring apparatus of the present invention will be described. A developing container 1 is filled with an alkaline developer (tetramethylammonium hydroxide 2.38% by weight) 2, and a substrate supporting jig 3 is coated with a resist to be measured (PFI-26 manufactured by Sumitomo Chemical Co., Ltd.) 5 on a silicon substrate 4. Fix it. The light emitted from the mercury lamp light source 8 is applied to the sample through the optical fiber, and the reflected light is guided to the spectroscopic measurement unit through the optical fiber and the spectral spectrum is measured.
The measured spectrum is compared with the spectrum of the mercury lamp measured in advance in the signal processing unit 16, and the spectrum of reflectance is calculated. An example of the measured spectral spectrum waveform is shown in FIG. Generally, in the measurement of the spectral spectrum of a thin film, the wavelength that gives the maximum value and the minimum value of the reflectance is given by the following equation.

【0013】λmax =4nd/(2k−1) λmin =4nd/2k ここでnはレジストの屈折率、dは測定時のレジストの
膜厚、kは正の整数である。図1(b)の測定例はn=
1.65,d=733nmであるので可視光量域のλmax
とλmin はそれぞれ λmax =691nm,539nm,440nm,3272nm λmin =806nm,605nm,484nm,403nm となる。従って、逆に膜厚dは得られた分光スペクトル
のλmax ,λmin から、次式を用いて求めることができ
る。
Λ max = 4 nd / (2k-1) λ min = 4 nd / 2k where n is the refractive index of the resist, d is the film thickness of the resist at the time of measurement, and k is a positive integer. In the measurement example of FIG.
Since 1.65 and d = 733 nm, λ max in the visible light amount range
And λ min are respectively λ max = 691 nm, 539 nm, 440 nm, 3272 nm λ min = 806 nm, 605 nm, 484 nm, 403 nm. Therefore, conversely, the film thickness d can be obtained from the obtained spectral spectra λ max and λ min using the following equation.

【0014】d=λmax (2k−1)/4n d=λmin (2k)/4n この方法によるレジスト膜厚の測定を例えば50mse
c間隔で行い、さらに溶解速度は次式から計算する。 溶解速度R={レジスト膜厚d(t1)−レジスト膜厚
d(t2)}/(t2−t1) ここでt2,t1はそれぞれレジストの測定時間であ
る。
D = λ max (2k−1) / 4n d = λ min (2k) / 4n The measurement of the resist film thickness by this method is, for example, 50 mse.
It is carried out at intervals of c, and the dissolution rate is calculated from the following formula. Dissolution rate R = {resist film thickness d (t1) -resist film thickness d (t2)} / (t2-t1) Here, t2 and t1 are resist measurement times, respectively.

【0015】以上説明した中で、特に分光スペクトルか
らレジスト膜厚を求める際に、分光スペクトルをフーリ
エ変換することで、レジスト膜厚をより正確に算出する
ことができる。
In the above description, the resist film thickness can be more accurately calculated by Fourier-transforming the spectral spectrum, especially when obtaining the resist film thickness from the spectral spectrum.

【0016】一般に、単層薄膜の垂直入射における反射
率Rは以下の式で表される。
Generally, the reflectance R of a single-layer thin film at normal incidence is expressed by the following equation.

【0017】R2=f(sin2(δ/2)) ここで fは任意の関数 δ=4πnd/λ である。R2 = f (sin2 (δ / 2)) where f is an arbitrary function δ = 4πnd / λ.

【0018】すなわち、反射率R2はδ、すなわち1/
λの周期関数であるので分光スペクトルを1/λでフー
リエ展開することによって膜厚dの分布が求められる。
このフーリエ変換を用いた場合、レジスト膜厚分布が情
報として出力されるため、レジストの溶解反応が不均一
に生じている場合においても正確に溶解速度を測定する
ことができる。
That is, the reflectance R2 is δ, that is, 1 /
Since it is a periodic function of λ, the distribution of the film thickness d can be obtained by performing Fourier expansion of the spectral spectrum with 1 / λ.
When this Fourier transform is used, the resist film thickness distribution is output as information, so that the dissolution rate can be accurately measured even when the resist dissolution reaction occurs unevenly.

【0019】本実施例によれば、検出信号の強度には直
接依存せずにレジスト膜厚を測定できるため、外乱に影
響されず精度の良い測定が行え、かつレジストが均一に
溶解していない場合でも精度良く測定が可能である。ま
た、レジスト膜厚の時間的変化が非常に小さい場合でも
レジスト膜厚が瞬時にして測定できるため、特に溶解速
度が小さい場合に、短時間で正確な溶解速度が計測でき
る。
According to the present embodiment, since the resist film thickness can be measured without directly depending on the intensity of the detection signal, accurate measurement can be performed without being affected by disturbance and the resist is not uniformly dissolved. Even in this case, accurate measurement is possible. Further, since the resist film thickness can be measured instantly even when the temporal change of the resist film thickness is very small, an accurate dissolution rate can be measured in a short time especially when the dissolution rate is small.

【0020】(実施例2)本発明の第2の実施例につい
て図2を用いて説明する。図2の実施例ではシリコン基
板4上のフォトレジスト5に現像液2を滴下し、その現
像液2中に光ファイバー11を挿入し、光源部10から
の光を照射し、その反射光を光ファイバー11を通じて
分光測定部に導入し分光スペクトルが測定される。測定
された分光スペクトルは信号処理部16で、あらかじめ
計測しておいた水銀ランプの分光スペクトルと比較さ
れ、反射率の分光スペクトルが計算され、分光スペクト
ルを基にレジスト膜厚が計算される。
(Embodiment 2) A second embodiment of the present invention will be described with reference to FIG. In the embodiment of FIG. 2, the developing solution 2 is dropped on the photoresist 5 on the silicon substrate 4, the optical fiber 11 is inserted into the developing solution 2, the light from the light source unit 10 is irradiated, and the reflected light is reflected by the optical fiber 11. Is introduced into the spectroscopic measurement section through and the spectroscopic spectrum is measured. The measured spectral spectrum is compared with the spectral spectrum of the mercury lamp measured in advance in the signal processing unit 16, the spectral spectrum of the reflectance is calculated, and the resist film thickness is calculated based on the spectral spectrum.

【0021】この第2の実施例においては、通常の半導
体素子製造工程におけるウェハ処理工程に容易に導入で
きるため、溶解速度の測定だけでなく、現像プロセスの
in−situモニターとしても使用することができ
る。
In the second embodiment, since it can be easily introduced into the wafer processing process in the usual semiconductor device manufacturing process, it can be used not only for measuring the dissolution rate but also as an in-situ monitor for the developing process. it can.

【0022】以上レジストの溶解速度の測定装置につい
て説明したが、本発明はレジストの現像時の溶解速度だ
けでなく、化学増幅レジストの露光後の熱処理時のレジ
スト膜厚変化、シリル化工程のシリル化量の制御、ある
いはエッチング工程における被エッチング物の膜厚変化
の測定などにも適用できることは明らかである。
Although the apparatus for measuring the dissolution rate of the resist has been described above, the present invention is not limited to the dissolution rate at the time of developing the resist, but also changes in the resist film thickness during the heat treatment after exposure of the chemically amplified resist, and the silylation step. It is obvious that the method can be applied to the control of the amount of conversion or the measurement of the change in the film thickness of the object to be etched in the etching process.

【0023】[0023]

【発明の効果】以上説明したように本発明の溶解速度測
定装置によれば、検出部に分光器を含み、反射信号の分
光スペクトルを測定することによって安定して精度良く
溶解速度が測定できる。また、検出部の分光器にマルチ
チャンネルスペクトロメータをもちいることによって容
易に高速度で分光スペクトルを得ることができる。さら
に、検出された分光スペクトルのフーリエ変換を逐次行
い、得られたフーリエ変換スペクトルからレジスト膜厚
を算出することによって、溶解反応が不均一に生じてい
る場合においても、正確にレジスト膜厚が測定されるた
め溶解速度が正確に測定できるという効果を有する。
As described above, according to the dissolution rate measuring apparatus of the present invention, the dissolution rate can be stably and accurately measured by including the spectroscope in the detection unit and measuring the spectral spectrum of the reflected signal. Further, by using a multi-channel spectrometer as the spectroscope of the detection unit, it is possible to easily obtain a spectroscopic spectrum at a high speed. Furthermore, the Fourier transform of the detected spectrum is performed sequentially, and the resist film thickness is calculated from the obtained Fourier transform spectrum, so that the resist film thickness can be accurately measured even when the dissolution reaction is nonuniform. Therefore, there is an effect that the dissolution rate can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の第1の実施例を示す図である。 (b)本発明によって測定された分光スペクトル例であ
る。
FIG. 1A is a diagram showing a first embodiment of the present invention. (B) An example of a spectrum measured by the present invention.

【図2】本発明の第2の実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】(a)従来の溶解速度測定方法を示す図であ
る。 (b)従来の測定法で測定された干渉波形例である。
FIG. 3 (a) is a diagram showing a conventional dissolution rate measuring method. (B) An example of an interference waveform measured by a conventional measurement method.

【符号の説明】[Explanation of symbols]

1 現像容器 2 現像液 3 基板支持用治具 4 シリコン基板 5 フォトレジスト 6 石英ガラス窓 7 現像部 8 ランプ光源 9 凸レンズ 10 光源部 11 光ファイバー 12 凸レンズ 13 回折格子 13′ 単色フィルター 14 マルチチャンネル検出器 14′ 検出器 15 信号検出部 16 信号処理部 DESCRIPTION OF SYMBOLS 1 developing container 2 developing solution 3 substrate supporting jig 4 silicon substrate 5 photoresist 6 quartz glass window 7 developing section 8 lamp light source 9 convex lens 10 light source section 11 optical fiber 12 convex lens 13 diffraction grating 13 'monochromatic filter 14 multi-channel detector 14 ′ Detector 15 Signal detector 16 Signal processor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 569Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/30 569Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともレジストを現像する現像部と、
光源部と、光源からの光を照射する照射部と、レジスト
からの反射光を検出する信号検出部と、信号検出部より
得られた検出信号を処理する信号処理部とから構成され
るレジストの溶解速度測定装置において、前記信号検出
部は反射光の分光スペクトルを測定する手段を有し、前
記信号処理部は分光スペクトルからレジスト膜厚を求め
る手段と算出されたレジスト膜厚の時間変化からレジス
トの溶解速度を測定する手段とを有することを特徴とす
る溶解速度測定装置。
1. A developing unit for developing at least a resist,
A light source unit, an irradiation unit that irradiates light from the light source, a signal detection unit that detects reflected light from the resist, and a signal processing unit that processes a detection signal obtained from the signal detection unit. In the dissolution rate measuring device, the signal detection unit has a unit for measuring a spectral spectrum of reflected light, and the signal processing unit has a unit for obtaining a resist film thickness from the spectral spectrum and a resist based on a temporal change in the calculated resist film thickness. And a means for measuring the dissolution rate of the solution.
【請求項2】信号検出部の分光スペクトルを測定する手
段が、グレーティング分光器、プリズム分光器、または
マルチチャンネル分光器よりなることを特徴とする請求
項1記載の溶解速度測定装置。
2. The dissolution rate measuring device according to claim 1, wherein the means for measuring the spectral spectrum of the signal detecting section comprises a grating spectrometer, a prism spectrometer, or a multichannel spectrometer.
【請求項3】信号処理部が、検出された分光スペクトル
のフーリエ変換を逐次行う手段と、得られたフーリエ変
換スペクトルからレジスト膜厚を算出する手段と、算出
されたレジスト膜厚の時間変化から溶解速度を計算する
手段とを有することを特徴とする請求項1ないし2記載
の溶解速度測定装置。
3. A signal processing unit for sequentially performing a Fourier transform of the detected spectral spectrum, a unit for calculating a resist film thickness from the obtained Fourier transform spectrum, and a time change of the calculated resist film thickness. 3. A dissolution rate measuring device according to claim 1, further comprising means for calculating a dissolution rate.
JP7105028A 1995-04-28 1995-04-28 Dissolution rate measuring device Expired - Fee Related JP2737693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105028A JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105028A JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Publications (2)

Publication Number Publication Date
JPH08304033A true JPH08304033A (en) 1996-11-22
JP2737693B2 JP2737693B2 (en) 1998-04-08

Family

ID=14396585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105028A Expired - Fee Related JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Country Status (1)

Country Link
JP (1) JP2737693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059525A1 (en) * 2000-02-09 2001-08-16 Advanced Micro Devices, Inc. Method and apparatus for controlling photoresist baking processes
CN112229987A (en) * 2020-08-14 2021-01-15 陕西彩虹新材料有限公司 Method for testing alkali dissolution rate of linear phenolic resin for photoresist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217705A (en) * 1985-03-22 1986-09-27 Dainippon Screen Mfg Co Ltd Film thickness measuring device
JPS63302307A (en) * 1987-06-02 1988-12-09 Hitachi Ltd Optical film thickness measurement
JPH0534114A (en) * 1991-07-29 1993-02-09 Hitachi Ltd Detecting apparatus for change in film thickness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217705A (en) * 1985-03-22 1986-09-27 Dainippon Screen Mfg Co Ltd Film thickness measuring device
JPS63302307A (en) * 1987-06-02 1988-12-09 Hitachi Ltd Optical film thickness measurement
JPH0534114A (en) * 1991-07-29 1993-02-09 Hitachi Ltd Detecting apparatus for change in film thickness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059525A1 (en) * 2000-02-09 2001-08-16 Advanced Micro Devices, Inc. Method and apparatus for controlling photoresist baking processes
US6362116B1 (en) 2000-02-09 2002-03-26 Advanced Micro Devices, Inc. Method for controlling photoresist baking processes
KR100747129B1 (en) * 2000-02-09 2007-08-09 어드밴스드 마이크로 디바이시즈, 인코포레이티드 Method and apparatus for controlling photoresist baking processes
CN112229987A (en) * 2020-08-14 2021-01-15 陕西彩虹新材料有限公司 Method for testing alkali dissolution rate of linear phenolic resin for photoresist

Also Published As

Publication number Publication date
JP2737693B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US6160621A (en) Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
Konnerth et al. In-situ measurement of dielectric thickness during etching or developing processes
US7327475B1 (en) Measuring a process parameter of a semiconductor fabrication process using optical metrology
NL2010211A (en) Inspection apparatus and method.
JPH0252205A (en) Film thickness measuring method
JPWO2011045967A1 (en) Film thickness measuring apparatus and film thickness measuring method
US7580129B2 (en) Method and system for improving accuracy of critical dimension metrology
JPH0945604A (en) Exposure method and aligner
JP2737693B2 (en) Dissolution rate measuring device
WO2003007327A2 (en) Shallow-angle interference process and apparatus for determining real-time etching rate
EP0134453B1 (en) Method for exposure dose calculation of photolithography projection printers
US7411665B2 (en) Method for wavelength calibration of an optical measurement system
JPH07243814A (en) Measuring method of line width
US5216487A (en) Transmissive system for characterizing materials containing photoreactive constituents
US20050144579A1 (en) Method of calibrating semiconductor line width
JPH05259125A (en) Method and apparatus for monitoring of etching in dry etching apparatus
JP3261660B2 (en) Monitoring method of etching in dry etching
TWI837357B (en) Absorption spectroscopic system, program recording medium and absorbance measurement method
RU2148853C1 (en) Process determining depth of position of modified surface layer in polymer film
US6450683B1 (en) Optical temperature measurement as an in situ monitor of etch rate
JPH07142363A (en) Method and apparatus for manufacture of semiconductor integrated circuit device
Robertson et al. Photoresist dissolution rates: a comparison of puddle, spray, and immersion processes
JPH0443943A (en) Method and apparatus for analyzing photoresist
JPH0265225A (en) Coating process of photoresist
JP3869180B2 (en) Pattern formation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees