JP2737693B2 - Dissolution rate measuring device - Google Patents

Dissolution rate measuring device

Info

Publication number
JP2737693B2
JP2737693B2 JP7105028A JP10502895A JP2737693B2 JP 2737693 B2 JP2737693 B2 JP 2737693B2 JP 7105028 A JP7105028 A JP 7105028A JP 10502895 A JP10502895 A JP 10502895A JP 2737693 B2 JP2737693 B2 JP 2737693B2
Authority
JP
Japan
Prior art keywords
resist
dissolution rate
spectrum
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7105028A
Other languages
Japanese (ja)
Other versions
JPH08304033A (en
Inventor
武 大藤
嘉一郎 中野
勝美 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7105028A priority Critical patent/JP2737693B2/en
Publication of JPH08304033A publication Critical patent/JPH08304033A/en
Application granted granted Critical
Publication of JP2737693B2 publication Critical patent/JP2737693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶解速度の測定装置に関
し、とくに半導体素子製造工程のリソグラフィー工程で
用いるフォトレジストについて、精度良く、かつ効率的
に溶解速度を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a dissolution rate, and more particularly, to an apparatus for accurately and efficiently measuring a dissolution rate of a photoresist used in a lithography process in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】従来この種のフォトレジストの溶解速度
測定装置は電子情報通信学会論文誌(1993年8月発
行、Vol.J76−C−2II、No.8)562頁
から570頁に示されているように、単色光による干渉
効果を利用している。図3(a)は従来の溶解速度測定
装置を示す図である。従来の溶解速度測定装置は現像容
器1、現像液2、基板支持用治具3、シリコン基板4、
フォトレジスト5、石英ガラス窓6からなる現像部7
と、ランプ光源8と凸レンズ9からなる光源部10と、
光ファイバー11、凸レンズ12からなる照射部、単色
フィルター13′、検出器14′からなる信号検出部1
5、および検出した信号を処理する信号処理部16から
構成されている。
2. Description of the Related Art Conventionally, this type of photoresist dissolution rate measuring apparatus is shown on pages 562 to 570 of the Institute of Electronics, Information and Communication Engineers (August 1993, Vol. J76-C-2II, No. 8). As described above, the interference effect by monochromatic light is used. FIG. 3A shows a conventional dissolution rate measuring device. A conventional dissolution rate measuring device includes a developing container 1, a developing solution 2, a substrate supporting jig 3, a silicon substrate 4,
Developing part 7 consisting of photoresist 5 and quartz glass window 6
A light source unit 10 including a lamp light source 8 and a convex lens 9;
Irradiation unit composed of optical fiber 11, convex lens 12, signal detection unit 1 composed of monochromatic filter 13 'and detector 14'
5, and a signal processing unit 16 for processing the detected signal.

【0003】次に従来の溶解速度測定装置の動作を説明
する。現像容器1にアルカリ現像液(テトラメチルアン
モニウムハイドロオキサイド2.38重量%)2を満た
し、基板支持用治具3にフォトレジスト(住友化学社製
PFI−26)5を塗布したシリコン基板4を固定す
る。水銀ランプ光源8を出射した光は光ファイバーを通
って試料に照射され、その反射光は光ファイバーを通っ
て検出部に導かれ単色フィルター13′を通り、検出器
14′によって干渉信号に変換される。測定された信号
処理部16で計算値と比較されレジスト膜厚に換算され
る。
Next, the operation of a conventional dissolution rate measuring device will be described. A silicon substrate 4 in which a developing container 1 is filled with an alkali developing solution (tetramethylammonium hydroxide 2.38% by weight) 2 and a photoresist (PFI-26 manufactured by Sumitomo Chemical Co., Ltd.) 5 is coated on a substrate supporting jig 3 is fixed. I do. The light emitted from the mercury lamp light source 8 is applied to the sample through the optical fiber, and the reflected light is guided to the detection unit through the optical fiber, passes through the monochromatic filter 13 ', and is converted into an interference signal by the detector 14'. The measured value is compared with the calculated value by the signal processing unit 16 and converted into a resist film thickness.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のフォト
レジストの溶解速度測定装置には様々な問題点があっ
た。例えば、実際の溶解速度測定装置の検出信号には、
測定時の振動あるいは外部光等の外乱によって、様々な
ノイズ成分が重畳している。図3(b)に従来の測定方
法で測定したレジストの干渉波形の例を示す。比較的良
好に正弦波状の波形が得られているが、ノイズを伴って
いることがわかる。従って検出信号から計算されたレジ
スト膜厚も誤差を多く含み、精度の良い溶解速度の測定
は困難であった。さらに光源の水銀ランプの光量は、時
間の経過とともに減少するため、得られる干渉波形も時
間の経過とともに減衰するため、長時間に渡り安定に測
定を行うことは困難であった。
The above-mentioned conventional photoresist dissolution rate measuring apparatus has various problems. For example, the detection signal of the actual dissolution rate measuring device includes:
Various noise components are superimposed due to vibration during measurement or disturbance such as external light. FIG. 3B shows an example of an interference waveform of a resist measured by a conventional measurement method. It can be seen that a sinusoidal waveform is obtained relatively well, but with noise. Therefore, the resist film thickness calculated from the detection signal also includes many errors, and it is difficult to measure the dissolution rate with high accuracy. Further, since the light quantity of the mercury lamp as the light source decreases with the passage of time, the obtained interference waveform also attenuates with the passage of time, so that it has been difficult to perform stable measurement over a long period of time.

【0005】また、従来の溶解速度測定装置では光を照
射する面積が大きいため、フォトレジストの溶解にわず
かな不均一性が有ると干渉性が低下し、干渉波形が得ら
れなくなるという致命的欠点を有している。この溶解の
不均一性による干渉波形の劣化の程度は、近年、特に解
像度が良く、溶解コントラストの大きなレジストにおい
て顕著である傾向を有する。
[0005] Further, in the conventional dissolution rate measuring device, since the area irradiated with light is large, it is difficult to dissolve the photoresist.
When there is considerable non-uniformity, coherence is reduced, and there is a fatal defect that an interference waveform cannot be obtained. In recent years, the degree of deterioration of the interference waveform due to the non-uniform dissolution tends to be remarkable in recent years, particularly in resists having good resolution and large dissolution contrast.

【0006】このような欠点を解消するため、特開平3
−38822号公報に、干渉波形が劣化した場合の溶解
速度の計算方法が提案されているが、計算が複雑であ
り、しかも溶解速度を一義的に確定することはできない
という欠点を有している。
[0006] In order to solve such a disadvantage, Japanese Patent Laid-Open Publication No.
JP-A-38822 proposes a method for calculating the dissolution rate when the interference waveform is deteriorated, but has the drawback that the calculation is complicated and the dissolution rate cannot be uniquely determined. .

【0007】さらに、従来の溶解速度測定装置において
は基本的に、溶解速度は干渉波形の極大値、あるいは極
小値の間隔を基にして計算するため最低2つの極大値又
は極小値を含む必要がある。従って、溶解速度が小さい
場合、干渉波形に極大値、または極小値が表れるまでに
多大な時間を要するという欠点を有していた。例えば、
650nmの単色光を光源に用いた場合、干渉波形の極
大値または極小値の間隔は約0.1μm(≡λ/4n)
である。ここでλは測定光の波長、nはレジストの屈折
率である。実際のフォトレジストの溶解速度は1(μm
/秒)から1E−5(μm/秒)程度まで分布してお
り、ここで1E−5(μm/秒)程度の溶解速度を測定
する場合、極大値あるいは極小値を得るためには少なく
とも1E4秒(2.8時間)以上の現像時間が必要にな
る。これでは測定の効率が悪い上に、長時間に渡って反
射信号を安定に測定することが必要となり、したがっ
て、精度の良い測定は従来の装置では不可能であった。
Further, in the conventional dissolution rate measuring device, basically, the dissolution rate needs to include at least two maximum values or minimum values since it is calculated based on the interval between the maximum values or the minimum values of the interference waveform. is there. Therefore, when the dissolution rate is low, there is a drawback that it takes a long time until a maximum value or a minimum value appears in the interference waveform. For example,
When a monochromatic light of 650 nm is used as the light source, the interval between the maximum value or the minimum value of the interference waveform is about 0.1 μm (≡λ / 4n).
It is. Here, λ is the wavelength of the measurement light, and n is the refractive index of the resist. The actual photoresist dissolution rate is 1 (μm
/ S) to about 1E-5 (μm / s). When measuring a dissolution rate of about 1E-5 (μm / s), at least 1E4 is required to obtain a maximum or minimum value. A development time of at least seconds (2.8 hours) is required. In this case, the measurement efficiency is low, and it is necessary to measure the reflected signal stably over a long period of time. Therefore, accurate measurement was impossible with the conventional apparatus.

【0008】本発明の目的は外部のノイズに影響され
ず、しかも溶解均一性の悪いレジストについても精度良
く効率的に溶解速度を測定できる装置を提供することに
ある。
An object of the present invention is to provide an apparatus capable of accurately and efficiently measuring the dissolution rate of a resist which is not affected by external noise and has poor dissolution uniformity.

【0009】[0009]

【課題を解決するための手段】本発明の溶解速度測定装
置では、少なくともレジストを現像する現像部と、光源
部と、レジストからの反射光を検出する信号検出部と、
信号検出部より得られた検出信号を処理する信号処理部
とから構成され、前記信号検出部は反射光の分光スペク
トルを測定する手段を有し、前記信号処理部は分光スペ
クトルからレジスト膜厚を求める手段と算出されたレジ
スト膜厚の時間変化からレジストの溶解速度を測定する
手段とを有することを特徴としている。ここで、信号検
出部の分光スペクトルを測定する手段がマルチチャンネ
ル分光器よりなること、また信号処理部が、検出された
分光スペクトルのフーリエ変換を逐次行うための手段
と、得られたフーリエ変換スペクトルからレジスト膜厚
を算出する手段と、算出されたレジスト膜厚の時間変化
から溶解速度を計算する手段とを有すると特に望ましい
溶解速度測定装置が得られる。
In the dissolution rate measuring apparatus of the present invention, at least a developing section for developing a resist, a light source section, a signal detecting section for detecting light reflected from the resist,
A signal processing unit that processes a detection signal obtained from a signal detection unit, wherein the signal detection unit has means for measuring a spectral spectrum of reflected light, and the signal processing unit calculates a resist film thickness from the spectral spectrum. It is characterized by having a means for obtaining and a means for measuring the dissolution rate of the resist from the temporal change of the calculated resist film thickness. Here, the means for measuring the spectral spectrum of the signal detecting section comprises a multi-channel spectroscope, and the signal processing section includes means for sequentially performing a Fourier transform of the detected spectral spectrum, and a means for obtaining the obtained Fourier transform spectrum. A particularly desirable dissolution rate measuring apparatus can be obtained by having a means for calculating the resist film thickness from the above, and a means for calculating the dissolution rate from the temporal change of the calculated resist film thickness.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0011】(実施例1)図1(a)は本発明の実施例
を示す図である。本発明の溶解速度測定装置が図3の従
来の装置と異なる点は、光源部10の内部がランプ光源
8、凸レンズ9のみより構成されていること、及び信号
検出部15が回折格子13、マルチチャンネル検出器1
4からなっている点である。
(Embodiment 1) FIG. 1A shows an embodiment of the present invention. The dissolution rate measuring apparatus of the present invention is different from the conventional apparatus of FIG. 3 in that the inside of the light source section 10 is constituted only by the lamp light source 8 and the convex lens 9 and that the signal detecting section 15 includes the diffraction grating 13 Channel detector 1
It consists of four.

【0012】本発明の溶解速度測定装置の動作について
説明する。現像容器1にアルカリ現像液(テトラメチル
アンモニウムハイドロオキサイド2.38重量%)2を
満たし、基板支持用治具3に被測定レジスト(住友化学
社製PFI−26)5を塗布したシリコン基板4を固定
する。水銀ランプ光源8を出射した光は光ファイバーを
通って試料に照射され、その反射光は光ファイバーを通
って分光測定部に導かれ分光スペクトルが測定される。
測定された分光スペクトルは信号処理部16で、あらか
じめ計測しておいた水銀ランプの分光スペクトルと比較
され、反射率の分光スペクトルが計算される。測定され
た分光スペクトル波形の一例を図1(b)に示す。一般
に、薄膜の分光スペクトル測定において、反射率の最大
値および最小値を与える波長は次式で与えられる。
The operation of the dissolution rate measuring device according to the present invention will be described. A developing container 1 is filled with an alkali developing solution (tetramethylammonium hydroxide 2.38% by weight) 2, and a silicon substrate 4 on which a resist to be measured (PFI-26 manufactured by Sumitomo Chemical Co., Ltd.) 5 is applied to a substrate supporting jig 3 Fix it. The light emitted from the mercury lamp light source 8 is applied to the sample through the optical fiber, and the reflected light is guided to the spectrometer through the optical fiber, and the spectrum is measured.
The measured spectrum is compared with the spectrum of the mercury lamp measured in advance by the signal processing unit 16, and the spectrum of reflectance is calculated. FIG. 1B shows an example of the measured spectral spectrum waveform. Generally, in the measurement of the spectrum of a thin film, the wavelength giving the maximum value and the minimum value of the reflectance is given by the following equation.

【0013】λmax =4nd/(2k−1) λmin =4nd/2k ここでnはレジストの屈折率、dは測定時のレジストの
膜厚、kは正の整数である。図1(b)の測定例はn=
1.65,d=733nmであるので可視光量域のλmax
とλmin はそれぞれ λmax =691nm,539nm,440nm,3272nm λmin =806nm,605nm,484nm,403nm となる。従って、逆に膜厚dは得られた分光スペクトル
のλmax ,λmin から、次式を用いて求めることができ
る。
Λ max = 4nd / (2k−1) λ min = 4nd / 2k where n is the refractive index of the resist, d is the thickness of the resist at the time of measurement, and k is a positive integer. The measurement example of FIG.
Since 1.65 and d = 733 nm, λ max in the visible light amount region
And λ min are respectively λ max = 691 nm, 539 nm, 440 nm, 3272 nm and λ min = 806 nm, 605 nm, 484 nm, 403 nm. Accordingly, conversely, the film thickness d can be obtained from λ max and λ min of the obtained spectral spectrum using the following equation.

【0014】d=λmax (2k−1)/4n d=λmin (2k)/4n この方法によるレジスト膜厚の測定を例えば50mse
c間隔で行い、さらに溶解速度は次式から計算する。 溶解速度R={レジスト膜厚d(t1)−レジスト膜厚
d(t2)}/(t2−t1) ここでt2,t1はそれぞれレジストの測定時間であ
る。
D = λ max (2k−1) / 4n d = λ min (2k) / 4n The measurement of the resist film thickness by this method is performed, for example, for 50 msec.
The measurement is performed at c intervals, and the dissolution rate is calculated from the following equation. Dissolution rate R = {resist film thickness d (t1) -resist film thickness d (t2)} / (t2-t1) where t2 and t1 are the measurement times of the resist, respectively.

【0015】以上説明した中で、特に分光スペクトルか
らレジスト膜厚を求める際に、分光スペクトルをフーリ
エ変換することで、レジスト膜厚をより正確に算出する
ことができる。
In the above description, the resist film thickness can be more accurately calculated by Fourier-transforming the spectral spectrum especially when obtaining the resist film thickness from the spectral spectrum.

【0016】一般に、単層薄膜の垂直入射における反射
率Rは以下の式で表される。
Generally, the reflectance R of a single-layer thin film at normal incidence is represented by the following equation.

【0017】R2=f(sin2(δ/2)) ここで fは任意の関数 δ=4πnd/λ である。R2 = f (sin2 (δ / 2)) where f is an arbitrary function δ = 4πnd / λ.

【0018】すなわち、反射率R2はδ、すなわち1/
λの周期関数であるので分光スペクトルを1/λでフー
リエ展開することによって膜厚dの分布が求められる。
このフーリエ変換を用いた場合、レジスト膜厚分布が情
報として出力されるため、レジストの溶解反応が不均一
に生じている場合においても正確に溶解速度を測定する
ことができる。
That is, the reflectance R2 is δ, that is, 1 /
Since it is a periodic function of λ, the distribution of the film thickness d can be obtained by Fourier-expanding the spectral spectrum by 1 / λ.
When this Fourier transform is used, the resist film thickness distribution is output as information, so that the dissolution rate can be measured accurately even when the dissolution reaction of the resist occurs unevenly.

【0019】本実施例によれば、検出信号の強度には直
接依存せずにレジスト膜厚を測定できるため、外乱に影
響されず精度の良い測定が行え、かつレジストが均一に
溶解していない場合でも精度良く測定が可能である。ま
た、レジスト膜厚の時間的変化が非常に小さい場合でも
レジスト膜厚が瞬時にして測定できるため、特に溶解速
度が小さい場合に、短時間で正確な溶解速度が計測でき
る。
According to this embodiment, since the resist film thickness can be measured without directly depending on the intensity of the detection signal, accurate measurement can be performed without being affected by disturbance, and the resist is not uniformly dissolved. Even in this case, accurate measurement is possible. Further, even when the temporal change of the resist film thickness is very small, the resist film thickness can be measured instantaneously. Therefore, particularly when the dissolution speed is low, the accurate dissolution rate can be measured in a short time.

【0020】(実施例2)本発明の第2の実施例につい
て図2を用いて説明する。図2の実施例ではシリコン基
板4上のフォトレジスト5に現像液2を滴下し、その現
像液2中に光ファイバー11を挿入し、光源部10から
の光を照射し、その反射光を光ファイバー11を通じて
分光測定部に導入し分光スペクトルが測定される。測定
された分光スペクトルは信号処理部16で、あらかじめ
計測しておいた水銀ランプの分光スペクトルと比較さ
れ、反射率の分光スペクトルが計算され、分光スペクト
ルを基にレジスト膜厚が計算される。
(Embodiment 2) A second embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 2, the developer 2 is dropped on the photoresist 5 on the silicon substrate 4, the optical fiber 11 is inserted into the developer 2, the light from the light source unit 10 is irradiated, and the reflected light is converted into the optical fiber 11. The light is then introduced into the spectrometer and the spectrum is measured. The measured spectrum is compared with the spectrum of the mercury lamp measured in advance by the signal processing unit 16, the spectrum of reflectance is calculated, and the resist film thickness is calculated based on the spectrum.

【0021】この第2の実施例においては、通常の半導
体素子製造工程におけるウェハ処理工程に容易に導入で
きるため、溶解速度の測定だけでなく、現像プロセスの
in−situモニターとしても使用することができ
る。
In the second embodiment, since it can be easily introduced into a wafer processing step in a normal semiconductor device manufacturing process, it can be used not only for measuring the dissolution rate but also as an in-situ monitor for a developing process. it can.

【0022】以上レジストの溶解速度の測定装置につい
て説明したが、本発明はレジストの現像時の溶解速度だ
けでなく、化学増幅レジストの露光後の熱処理時のレジ
スト膜厚変化、シリル化工程のシリル化量の制御、ある
いはエッチング工程における被エッチング物の膜厚変化
の測定などにも適用できることは明らかである。
Although the apparatus for measuring the dissolution rate of a resist has been described above, the present invention is not limited to the dissolution rate at the time of development of the resist, but also changes in the resist film thickness at the time of heat treatment after exposure of the chemically amplified resist, It is apparent that the present invention can be applied to control of the amount of oxidation, measurement of a change in the thickness of an object to be etched in an etching step, and the like.

【0023】[0023]

【発明の効果】以上説明したように本発明の溶解速度測
定装置によれば、検出部に分光器を含み、反射信号の分
光スペクトルを測定することによって安定して精度良く
溶解速度が測定できる。また、検出部の分光器にマルチ
チャンネルスペクトロメータをもちいることによって容
易に高速度で分光スペクトルを得ることができる。さら
に、検出された分光スペクトルのフーリエ変換を逐次行
い、得られたフーリエ変換スペクトルからレジスト膜厚
を算出することによって、溶解反応が不均一に生じてい
る場合においても、正確にレジスト膜厚が測定されるた
め溶解速度が正確に測定できるという効果を有する。
As described above, according to the dissolution rate measuring apparatus of the present invention, the spectroscope is included in the detection unit, and the dissolution rate can be measured stably and accurately by measuring the spectrum of the reflected signal. Further, by using a multi-channel spectrometer for the spectroscope of the detection unit, a spectrum can be easily obtained at a high speed. Furthermore, by sequentially performing the Fourier transform of the detected spectral spectrum and calculating the resist film thickness from the obtained Fourier transform spectrum, the resist film thickness can be accurately measured even when the dissolution reaction is uneven. Therefore, the dissolution rate can be measured accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の第1の実施例を示す図である。 (b)本発明によって測定された分光スペクトル例であ
る。
FIG. 1A is a diagram showing a first embodiment of the present invention. (B) An example of a spectrum measured according to the present invention.

【図2】本発明の第2の実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】(a)従来の溶解速度測定方法を示す図であ
る。 (b)従来の測定法で測定された干渉波形例である。
FIG. 3 (a) is a view showing a conventional dissolution rate measuring method. (B) is an example of an interference waveform measured by a conventional measurement method.

【符号の説明】[Explanation of symbols]

1 現像容器 2 現像液 3 基板支持用治具 4 シリコン基板 5 フォトレジスト 6 石英ガラス窓 7 現像部 8 ランプ光源 9 凸レンズ 10 光源部 11 光ファイバー 12 凸レンズ 13 回折格子 13′ 単色フィルター 14 マルチチャンネル検出器 14′ 検出器 15 信号検出部 16 信号処理部 DESCRIPTION OF SYMBOLS 1 Developing container 2 Developing liquid 3 Substrate support jig 4 Silicon substrate 5 Photoresist 6 Quartz glass window 7 Developing part 8 Lamp light source 9 Convex lens 10 Light source part 11 Optical fiber 12 Convex lens 13 Diffraction grating 13 'Monochromatic filter 14 Multi-channel detector 14 ′ Detector 15 Signal detector 16 Signal processor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/30 569Z (56)参考文献 特開 平5−34114(JP,A) 特開 昭61−217705(JP,A) 特開 昭63−302307(JP,A) 特開 平6−89855(JP,A) 特開 平5−209724(JP,A)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification symbol FI H01L 21/30 569Z (56) References JP-A-5-34114 (JP, A) JP-A-61-217705 (JP, A) JP-A-63-302307 (JP, A) JP-A-6-89855 (JP, A) JP-A-5-209724 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともレジストを現像する現像部
と、光源部と、光源からの光を照射する照射部と、レジ
ストからの反射光を検出する信号検出部と、信号検出部
より得られた検出信号を処理する信号処理部とを備えた
レジストの溶解速度測定装置において、 前記信号検出部は反射光の分光スペクトルを測定する手
段を備え、 前記信号処理部は分光スペクトルからレジスト膜厚を
求める手段と算出されたレジスト膜厚の時間変化から
レジストの溶解速度を算出する手段とを備え、 前記信号検出部の分光スペクトルを測定する手段はマル
チチャンネル分光器を含み、 前記信号処理部の分光スペクトルからレジスト膜厚を求
める手段は、検出された分光スペクトルのフーリエ変換
を逐次行う手段と、得られたフリーエ変換スペクトルか
らレジスト膜厚を算出する手段とを含む ことを特徴とす
る溶解速度測定装置。
1. A developing unit for developing at least a resist, a light source unit, an irradiating unit for irradiating light from a light source, a signal detecting unit for detecting reflected light from the resist, and a detection obtained by the signal detecting unit. in dissolution rate measuring apparatus <br/> resist and a signal processing unit for processing a signal, the signal detection unit comprises means for measuring the spectrum of the reflected light, the signal processing unit, the resist from the spectrum and means for determining the thickness, and means for calculating the dissolution rate of the resist from the time variation of the calculated thickness of the resist film, means for measuring the spectrum of the signal detection unit circle
A channel thickness spectrometer , and obtains a resist film thickness from a spectrum of the signal processing unit.
Means for performing a Fourier transform of the detected spectrum.
And the obtained Fourier transform spectrum
A means for calculating a resist film thickness from the solution.
【請求項2】 光源からの光をレジストに照射する照射
部は、光源からの光を光ファイバを介してレジスト上に
滴下された現像液中に導く手段を含む請求項1記載の溶
解速度測定装置。
2. Irradiation for irradiating a resist with light from a light source.
The unit radiates light from the light source onto the resist through an optical fiber.
2. The dissolution rate measuring device according to claim 1 , further comprising means for guiding the developer into the dropped developer .
JP7105028A 1995-04-28 1995-04-28 Dissolution rate measuring device Expired - Fee Related JP2737693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105028A JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105028A JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Publications (2)

Publication Number Publication Date
JPH08304033A JPH08304033A (en) 1996-11-22
JP2737693B2 true JP2737693B2 (en) 1998-04-08

Family

ID=14396585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105028A Expired - Fee Related JP2737693B2 (en) 1995-04-28 1995-04-28 Dissolution rate measuring device

Country Status (1)

Country Link
JP (1) JP2737693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362116B1 (en) * 2000-02-09 2002-03-26 Advanced Micro Devices, Inc. Method for controlling photoresist baking processes
CN112229987A (en) * 2020-08-14 2021-01-15 陕西彩虹新材料有限公司 Method for testing alkali dissolution rate of linear phenolic resin for photoresist

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217705A (en) * 1985-03-22 1986-09-27 Dainippon Screen Mfg Co Ltd Film thickness measuring device
JPS63302307A (en) * 1987-06-02 1988-12-09 Hitachi Ltd Optical film thickness measurement
JPH0534114A (en) * 1991-07-29 1993-02-09 Hitachi Ltd Detecting apparatus for change in film thickness

Also Published As

Publication number Publication date
JPH08304033A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US7006209B2 (en) Method and apparatus for monitoring and controlling imaging in immersion lithography systems
Konnerth et al. In-situ measurement of dielectric thickness during etching or developing processes
JP2902971B2 (en) Method for controlling line dimensions occurring in a photolithographic process
US7327475B1 (en) Measuring a process parameter of a semiconductor fabrication process using optical metrology
NL2010211A (en) Inspection apparatus and method.
JPH02137852A (en) Development end point detecting method for photoresist
JPH0786254A (en) Semiconductor device and manufacturing method
JP2737693B2 (en) Dissolution rate measuring device
JPH0945604A (en) Exposure method and aligner
EP0134453B1 (en) Method for exposure dose calculation of photolithography projection printers
US5216487A (en) Transmissive system for characterizing materials containing photoreactive constituents
JP2000106356A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
US20110027723A1 (en) Measuring apparatus, optical system manufacturing method, exposure apparatus, device manufacturing method, and processing apparatus
US20050144579A1 (en) Method of calibrating semiconductor line width
JP2831882B2 (en) How to create an etching pattern
US20060147839A1 (en) Photosensitive coating material for a substrate
RU2148853C1 (en) Process determining depth of position of modified surface layer in polymer film
JPH07142363A (en) Method and apparatus for manufacture of semiconductor integrated circuit device
JPH05259125A (en) Method and apparatus for monitoring of etching in dry etching apparatus
JP3869180B2 (en) Pattern formation method
JPH0443943A (en) Method and apparatus for analyzing photoresist
JPH05281699A (en) Etching device
RU2244363C1 (en) Method for determining silylation selectivity in photolithographic processes using chemical gas-phase modification of photoresist film near-surface layer
JPH0265225A (en) Coating process of photoresist
JP5058875B2 (en) Mask blank, mask blank manufacturing method, evaluation method, and sensitivity evaluation apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees