JPH08303821A - Pressure regulating mechanism for engine heat pump - Google Patents

Pressure regulating mechanism for engine heat pump

Info

Publication number
JPH08303821A
JPH08303821A JP7111671A JP11167195A JPH08303821A JP H08303821 A JPH08303821 A JP H08303821A JP 7111671 A JP7111671 A JP 7111671A JP 11167195 A JP11167195 A JP 11167195A JP H08303821 A JPH08303821 A JP H08303821A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
circuit
valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7111671A
Other languages
Japanese (ja)
Other versions
JP3516519B2 (en
Inventor
Yasushi Yamaguchi
裕史 山口
Masaki Inoue
雅樹 井上
Takeo Imura
武生 井村
Hajime Nakamura
哉 中村
Takahiko Masuda
貴彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP11167195A priority Critical patent/JP3516519B2/en
Publication of JPH08303821A publication Critical patent/JPH08303821A/en
Application granted granted Critical
Publication of JP3516519B2 publication Critical patent/JP3516519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE: To increase cooling efficiency without increasing the capacities of a compressor and an outdoor fan, prevent the chattering and the like of a valve, which are caused in the solenoid valve control upon pressure equibrium, and control the retaining of a low pressure or a difference between high pressure and low pressure upon cooling nicely when an outdoor air temperature is low, in an outdoor machine for an engine heat pump. CONSTITUTION: The liquid level in a liquid receiver 9 is controlled so as to be a position coinciding with the half of the upper and lower widths of a heat dissipating tube of an outdoor heat exchanger 6 while the refrigerant tube is constituted so as to be introduced into the lower part of the liquid receiver 9. Upon finishing pressure equilibrium treatment, valves are closed in the sequence of a four-way valve, a solenoid valve for hot gas bypass passage, and the other solenoid valves while the control of retension of low pressure of a refrigerant or a pressure difference between a high and a low pressures are effected in relation to the control of number of revolution of an outdoor fan, the control of the opening degree of an electronic expansion valve and the control of opening and closing of a solenoid valve for a modulated bypass passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンヒートポンプ
の冷媒系圧力調節機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant system pressure adjusting mechanism for an engine heat pump.

【0002】[0002]

【従来の技術】エンジンヒートポンプの室外機におい
て、リキッドレシーバーと室外熱交換器との配設位置関
係は、従来、リキッドレシーバー全体を室外熱交換器よ
り下方に置くか(例えば、特開平5−306851)、
また、リキッドレシーバーを室外熱交換器より下方に配
設できない場合には、リキッドレシーバーの上側より室
外熱交換器からの冷媒ホース端を導入しており、このよ
うにして、冷房時において、凝縮器となる室外熱交換器
より液体冷媒が円滑に流入するようにしていた。
2. Description of the Related Art In an outdoor unit of an engine heat pump, the positional relationship between the liquid receiver and the outdoor heat exchanger has conventionally been such that the entire liquid receiver is placed below the outdoor heat exchanger (for example, JP-A-5-306851). ),
Also, when the liquid receiver cannot be arranged below the outdoor heat exchanger, the refrigerant hose end from the outdoor heat exchanger is introduced from the upper side of the liquid receiver. The liquid refrigerant smoothly flows into the outdoor heat exchanger.

【0003】また、同じく室外機において、コンプレッ
サーと冷暖房切換用の四方弁との間に、コンプレッサー
より高圧ガス冷媒を吐出する吐出回路と、冷媒系を循環
した後の低圧ガス冷媒をコンプレッサーに吸入する吸入
回路を介設しているが、様々な圧力調節制御のため、従
来、高圧の吐出回路を始点とするバイパス回路を配設し
たものが公知となっている。まず、運転停止時におい
て、吐出回路と吸入回路を速やかに均圧にすべく、均圧
用バイパス回路(ホットガスバイパス)を吐出回路と吸
入回路との間に介設している。また、コンプレッサーの
吸入回路は、室内機の熱交換器内にて冷媒が凍結するよ
うな低圧とならないよう、一定以上の低圧冷媒が流入さ
れるようにしているが、外気が低温であったり、室内機
容量が少なくて、コンプレッサー容量の制御だけではこ
の吸入回路における一定以上の低圧が得られない場合に
は、吸入側を一定圧以上にすべく、吐出回路から吸入回
路に高圧ガスを送るよう、調圧用バイパス回路が使用さ
れる。
Similarly, in an outdoor unit, a discharge circuit for discharging high-pressure gas refrigerant from the compressor and a low-pressure gas refrigerant after circulating through the refrigerant system are sucked into the compressor between the compressor and a four-way valve for switching between heating and cooling. Although a suction circuit is provided, it has been publicly known that a bypass circuit starting from a high-pressure discharge circuit is provided for various pressure adjustment control. First, when the operation is stopped, a pressure equalizing bypass circuit (hot gas bypass) is provided between the discharge circuit and the suction circuit so as to quickly equalize the pressure of the discharge circuit and the suction circuit. Also, the suction circuit of the compressor is designed to allow a low-pressure refrigerant of a certain level or more to flow in so that the refrigerant does not have a low pressure such that the refrigerant freezes in the heat exchanger of the indoor unit. If the capacity of the indoor unit is low and a low pressure above a certain level cannot be obtained by controlling the compressor capacity alone, send high-pressure gas from the discharge circuit to the suction circuit in order to make the suction side above a certain pressure. A bypass circuit for pressure regulation is used.

【0004】それ以外のバイパス回路としては、暖房時
に室内機容量が縮小されることにより吐出ガス冷媒が高
圧となりすぎるのを低圧化すべく、吐出回路より室外熱
交換器に放熱回路を配設している。更に、外気低温時に
おける冷房等で、室外熱交換器を経た冷媒の凝縮度が足
りない場合に、吐出回路から高圧ガス冷媒を送って室外
機の室外熱交換器に高圧液体冷媒を流入させるため、該
吐出回路からリキッドレシーバーに調圧用バイパス回路
(モジュレーティッドバイパス)を介設している。
As another bypass circuit, a heat radiation circuit is provided in the outdoor heat exchanger from the discharge circuit in order to reduce the pressure of the discharged gas refrigerant that becomes too high due to the reduction of the indoor unit capacity during heating. There is. Further, when the degree of condensation of the refrigerant that has passed through the outdoor heat exchanger is insufficient, such as when the outdoor air temperature is low, the high pressure liquid refrigerant is sent from the discharge circuit to allow the high pressure liquid refrigerant to flow into the outdoor heat exchanger of the outdoor unit. A pressure adjusting bypass circuit (modulated bypass) is provided from the discharge circuit to the liquid receiver.

【0005】この中で、均圧用バイパス回路に関して
は、該バイパス回路の電磁弁を開弁するとともに、室外
機内の冷媒系における他の電磁弁も、逆圧がかかるのを
防ぐべく一斉に開弁する構成としている。
Among these, as for the pressure equalizing bypass circuit, the solenoid valves of the bypass circuit are opened, and the other solenoid valves in the refrigerant system in the outdoor unit are simultaneously opened to prevent back pressure. It is configured to do.

【0006】また、室外機において、室外熱交換器冷却
用の室外ファンをインバータ式に細かく駆動制御する構
成は公知となっている。
Further, in the outdoor unit, a configuration is known in which the outdoor fan for cooling the outdoor heat exchanger is finely driven and controlled by an inverter type.

【0007】[0007]

【発明が解決しようとする課題】本来、室外熱交換器に
おける冷媒凝縮は、室外ファンの放熱によるものだが、
凝縮後の液体冷媒を室外熱交換器からの冷媒管の出口側
において滞留させれば、この滞留液体冷媒より生じる冷
却効果により、熱交換器内の冷媒は一層凝縮効果を向上
する。しかし、従来のように、リキッドレシーバーに液
体冷媒を円滑に流入させている構成では、この効果を望
むことはできず、もしこのように、液体冷媒を滞留させ
る箇所を設ければ、コンプレッサーの圧縮能力を高めな
ければならず、能力限界以上の圧縮容量となったり、コ
スト高になる可能性が高い。
Originally, the refrigerant condensation in the outdoor heat exchanger is due to the heat radiation of the outdoor fan.
When the condensed liquid refrigerant is retained at the outlet side of the refrigerant pipe from the outdoor heat exchanger, the refrigerant in the heat exchanger further improves the condensation effect due to the cooling effect generated by the accumulated liquid refrigerant. However, as in the conventional case, in a configuration in which the liquid refrigerant smoothly flows into the liquid receiver, this effect cannot be expected, and if a location for retaining the liquid refrigerant is provided in this manner, the compressor will be compressed. The capacity must be increased, and there is a high possibility that the compression capacity will exceed the capacity limit and the cost will increase.

【0008】また、室外機における各バイパス回路のう
ち、まず、吐出回路から吸入回路に配設した均圧用バイ
パス回路においては、運転停止とともに均圧バイパス回
路の電磁弁とともに、冷媒系における他の全電磁弁も一
斉に開弁する構成は公知となっているが、均圧となっ
て、均圧用バイパス回路の電磁弁を閉弁する時に、他の
電磁弁も一斉に閉弁する。この時に、他の電磁弁には逆
圧がかかってハンチングし、振動音が発生するととも
に、電磁弁の耐久性も低減する。また、四方弁の開閉
は、圧力の大きな変動をもたらすが、これを電磁弁閉弁
後に行っていたことにより、やはり電磁弁のハンチング
を起こしていた。
Among the bypass circuits in the outdoor unit, first, in the pressure equalizing bypass circuit arranged from the discharge circuit to the suction circuit, the solenoid valve of the pressure equalizing bypass circuit and all other components in the refrigerant system are stopped together with the operation stop. It is well known that the solenoid valves are simultaneously opened, but when the pressure is equalized and the solenoid valves of the pressure equalizing bypass circuit are closed, the other solenoid valves are also closed simultaneously. At this time, the back pressure is applied to the other solenoid valves to cause hunting, vibration noise is generated, and the durability of the solenoid valves is reduced. Further, opening and closing of the four-way valve causes large fluctuations in pressure, but since this was done after the solenoid valve was closed, hunting of the solenoid valve also occurred.

【0009】また、外気温度の低い時に冷房運転する場
合、コンプレッサー吸入側の低圧冷媒が低圧すぎて室内
機が凍結する問題があるが、吸入側低圧を一定以上とす
べく例えば前記の如く均圧用バイパス回路にて吐出回路
の高圧冷媒を吸入回路に送るとしても、高圧側、即ち、
室外機の室外熱交換器に流入される液体冷媒が一定以上
の高圧に保持されていないと、冷房に必要な冷媒の高低
圧差が得られない。高低圧差が少ないと、ベーン式コン
プレッサーにおいては、ベーンがチャタリングして、圧
縮不良に陥るという不具合を生じるのである。そこで、
高圧側を一定以上の高圧に保持すべく、室外熱交換器に
おける凝縮を阻害させるよう室外ファンの回転数を下げ
たり、また、調圧用バイパス回路にて、吐出回路より高
圧気体冷媒をリキッドレシーバーに送り、リキットレシ
ーバーにおける圧力を高めることによって、室外熱交換
器出口側の冷媒圧を高めて、凝縮圧を向上させたり、ま
た、室外熱交換器出口側において、液体冷媒を、通常は
全開状の電子膨張弁、及びバイパス回路を通過させるの
を、バイパス回路は閉鎖して、開度を絞った電子膨張弁
に送ったりしていたのだが、これらの制御は、互いに関
連性なく、独立して行われており、例えば室外ファン制
御から電子膨張弁の制御に切り換える場合に、急激に冷
媒圧が変動して、制御がやりずらくなるという不具合を
有していた。従って、これらの制御を相互に関連づける
自動制御システムが構築されることが望ましい。
Further, when the cooling operation is carried out when the outside air temperature is low, there is a problem that the low pressure refrigerant on the suction side of the compressor is too low and the indoor unit freezes. Even if the high-pressure refrigerant in the discharge circuit is sent to the suction circuit in the bypass circuit,
If the liquid refrigerant flowing into the outdoor heat exchanger of the outdoor unit is not maintained at a high pressure above a certain level, the high-low pressure difference of the refrigerant required for cooling cannot be obtained. When the difference between the high pressure and the low pressure is small, in the vane type compressor, the vanes chatter, which causes a problem of poor compression. Therefore,
In order to keep the high-pressure side at a certain level or higher, the rotation speed of the outdoor fan is reduced to prevent condensation in the outdoor heat exchanger, and a high-pressure gas refrigerant from the discharge circuit to the liquid receiver in the pressure-adjusting bypass circuit. By increasing the pressure in the sending and liquid kit receivers, the refrigerant pressure at the outlet side of the outdoor heat exchanger is increased to improve the condensation pressure, and at the outlet side of the outdoor heat exchanger, the liquid refrigerant is usually fully opened. The bypass circuit was closed to allow passage through the electronic expansion valve and the bypass circuit, but it was sent to the electronic expansion valve with a reduced opening, but these controls are independent of each other and are independent. However, when the outdoor fan control is switched to the electronic expansion valve control, for example, the refrigerant pressure fluctuates abruptly and the control becomes difficult to perform. Therefore, it is desirable to build an automatic control system that correlates these controls.

【0010】[0010]

【課題を解決するための手段】本発明は、以上のような
問題を解決するため、次のような手段を用いるものであ
る。即ち、エンジンヒートポンプの室外機において、リ
キッドレシーバー内の液面を熱交換器の放熱管の上下幅
の途中部に重合する位置とし、かつ熱交換器の一端より
延設される冷媒管をリキッドレシーバーの下部に導入し
た。
The present invention uses the following means in order to solve the above problems. That is, in the outdoor unit of the engine heat pump, the liquid level in the liquid receiver is set at a position where the liquid level in the liquid receiver overlaps with the middle part of the vertical width of the heat dissipation pipe of the heat exchanger, and the refrigerant pipe extending from one end of the heat exchanger is used as the liquid receiver. Introduced at the bottom of.

【0011】また、エンジンヒートポンプの室外機にお
いて、コンプレッサー吐出回路より吸入回路に介設した
均圧用バイパス回路における電磁弁開弁時に、冷媒系に
おける他の全電磁弁を開弁し、閉弁は、四方弁、該均圧
用バイパス回路の電磁弁、他の全電磁弁の順に時差を設
けた。
Further, in the outdoor unit of the engine heat pump, when the solenoid valves are opened in the pressure equalizing bypass circuit provided in the suction circuit from the compressor discharge circuit, all other solenoid valves in the refrigerant system are opened and closed. The four-way valve, the solenoid valve of the pressure equalizing bypass circuit, and all the other solenoid valves were provided with a time difference in this order.

【0012】また、エンジンヒートポンプの室外機にお
いて、コンプレッサーの吐出回路とリキッドレシーバー
との間に調圧用バイパス回路を介設し、熱交換器冷却用
ファンの回転数制御、電子膨張弁の開度制御、及び該調
圧用バイパス回路における電磁弁の開閉制御によって、
冷房に要するコンプレッサー吸入回路の低圧冷媒圧力
と、コンプレッサー吐出回路と吸入回路との間における
冷媒の高低圧差を得るよう構成した。
Further, in the outdoor unit of the engine heat pump, a pressure regulating bypass circuit is provided between the discharge circuit of the compressor and the liquid receiver to control the rotation speed of the heat exchanger cooling fan and the opening degree of the electronic expansion valve. By controlling the opening and closing of the solenoid valve in the pressure regulating bypass circuit,
The low pressure refrigerant pressure of the compressor suction circuit required for cooling and the high and low pressure difference of the refrigerant between the compressor discharge circuit and the suction circuit are obtained.

【0013】[0013]

【作用】コンプレッサー圧送能力に余裕がある場合に、
リキッドレシーバーを、内部の液面高さが室外熱交換器
の上下幅の範囲内になるように配置することで、室外熱
交換器の出口側に冷媒滞留が生じ、リキッドレシーバー
にて滞留する液体冷媒の過冷却度を大きくすることがで
き、その結果、冷凍効果が増大し、冷房能力が向上す
る。
[Operation] When there is a margin in the compressor pumping capacity,
By arranging the liquid receiver so that the liquid level inside is within the range of the vertical width of the outdoor heat exchanger, refrigerant retention occurs at the outlet side of the outdoor heat exchanger, and liquid that accumulates in the liquid receiver The degree of supercooling of the refrigerant can be increased, and as a result, the refrigerating effect is increased and the cooling capacity is improved.

【0014】また、均圧用バイパスにおける電磁弁の開
弁に伴い、他のバイパスにおける電磁弁も全て開弁した
後、閉弁を、まず圧力変動の激しい四方弁よりするが、
この時には、全電磁弁が開弁状態なので、逆圧がかから
ない。次に、四方弁に次いで圧力の変動が激しい均圧用
電磁弁を閉弁するが、この時には、他の全電磁弁が開弁
状態で、逆圧がかからない。こうして、均圧化された
後、他の電磁弁を閉弁するので、どの電磁弁にも逆圧が
かからない状態で、全電磁弁及び四方弁を閉弁できる。
Further, with the opening of the solenoid valve in the pressure equalizing bypass, all the solenoid valves in the other bypasses are also opened, and then the valve is first closed by the four-way valve in which the pressure fluctuation is severe.
At this time, all solenoid valves are open, so no back pressure is applied. Next, the pressure-equalizing solenoid valve, which has the most pressure fluctuations next to the four-way valve, is closed, but at this time, all the other solenoid valves are open and no back pressure is applied. In this way, since the other solenoid valves are closed after the pressure is equalized, all the solenoid valves and the four-way valve can be closed in a state where no back pressure is applied to any solenoid valve.

【0015】また、外気温度が低い状態での冷房時等に
おける吸入側低圧を一定以上とすべく、また、冷媒の高
低圧差を一定以上とすべく、室外ファンのインバータ制
御と、電子膨張弁及び調圧用バイパス回路の開閉弁制御
とを関連づけて、一つの自動制御システムとしたので、
きめ細かい操作が可能であり、異なる制御を別個に行っ
て、調圧制御するという手間が省ける。
Further, in order to keep the low pressure on the suction side at a certain level or more and to keep the high-low pressure difference of the refrigerant at a certain level or more during cooling in a state where the outside air temperature is low, the inverter control of the outdoor fan, the electronic expansion valve, and the By associating it with the on-off valve control of the bypass circuit for pressure regulation, and making it one automatic control system,
Fine-tuned operation is possible, and it is possible to save the trouble of performing pressure adjustment control by performing different controls separately.

【0016】[0016]

【実施例】次に、本発明の実施例を添付の図面をもとに
説明する。図1は本発明における室外熱交換器とリキッ
ドレシーバーの配設位置関係を示す正面図、図2はリキ
ッドレシーバーにおける液面高さと室外熱交換器との位
置関係を示す正面略図、図3は図2図示の液面高さ毎の
冷媒能力比CP、過冷却度ΔT、及び冷媒高圧PHを示
すグラフ、図4は従来のリキッドレシーバーの配設構造
で、室外熱交換器より下方に配設したものを示す図、図
5は同じく室外熱交換器より冷媒管を上方より導入した
ものを示す図、図6は均圧処理時のエンジンヒートポン
プの冷媒系統図、図7は電磁弁SVの正面断面図、図8
はシステム停止に伴う均圧処理時における各電磁弁のO
N・OFFタイミングを示すタイムチャート図、図9は
同じく従来の各電磁弁のON・OFFタイミングを示す
タイムチャート図、図10は冷房時におけるエンジンシ
ートポンプの冷媒系統図、図11は冷房時における冷媒
高圧の上昇のための電子膨張弁及びモジュレーティッド
バイパス制御時のエンジンヒートポンプの冷媒系統図、
図12は冷房時における冷媒低圧保持制御及び冷媒高圧
保持制御のフローチャート図、図13は室外ファン5の
回転数ステップを示す図、図14は電子膨張弁8の開度
ステップを示す図、図15はコンプレッサーの吐出側と
吸入側の高低圧差を示すグラフ、図16は暖房時におけ
るエンジンヒートポンプの冷媒系統図、図17は暖房時
における室外熱交換器における除霜処理時のエンジンヒ
ートポンプの冷媒系統図、図18は暖房時における放熱
回路開放時のエンジンヒートポンプの冷媒系統図、図1
9は調圧弁PVの側面図、図20は同じく平面図、図2
1は室温30℃を保持する場合における外気温度に対す
る冷媒高圧の変位を示すグラフ、図22は冷媒高圧に対
する室内機における吹き出し温度の変位を示すグラフで
ある。
Embodiments of the present invention will now be described with reference to the accompanying drawings. FIG. 1 is a front view showing an arrangement positional relationship between an outdoor heat exchanger and a liquid receiver according to the present invention, FIG. 2 is a schematic front view showing a positional relationship between a liquid level in the liquid receiver and the outdoor heat exchanger, and FIG. 2 A graph showing the refrigerant capacity ratio CP, the degree of supercooling ΔT, and the refrigerant high pressure PH for each liquid level height shown in FIG. 4, and FIG. 4 shows the arrangement structure of the conventional liquid receiver, which is arranged below the outdoor heat exchanger. Fig. 5 is a diagram showing a refrigerant pipe introduced from the outdoor heat exchanger from above, Fig. 6 is a refrigerant system diagram of an engine heat pump at the time of pressure equalizing treatment, and Fig. 7 is a front sectional view of a solenoid valve SV. Figure, Figure 8
Is O of each solenoid valve at the time of pressure equalization processing due to system stop
9 is a time chart showing N / OFF timing, FIG. 9 is a time chart showing ON / OFF timing of each conventional solenoid valve, FIG. 10 is a refrigerant system diagram of an engine seat pump during cooling, and FIG. 11 is during cooling. Electronic expansion valve for increasing refrigerant high pressure and refrigerant system diagram of engine heat pump during modulated bypass control,
FIG. 12 is a flow chart of the refrigerant low pressure holding control and the refrigerant high pressure holding control during cooling, FIG. 13 is a diagram showing a rotation speed step of the outdoor fan 5, and FIG. 14 is a diagram showing an opening step of the electronic expansion valve 8. 16 is a graph showing the difference between high pressure and low pressure on the discharge side and the suction side of the compressor, FIG. 16 is a refrigerant system diagram of the engine heat pump during heating, and FIG. 17 is a refrigerant system diagram of the engine heat pump during defrosting in the outdoor heat exchanger during heating 18 is a refrigerant system diagram of the engine heat pump when the heat radiation circuit is opened during heating, FIG.
9 is a side view of the pressure regulating valve PV, FIG. 20 is a plan view of the same, and FIG.
1 is a graph showing the displacement of the refrigerant high pressure with respect to the outside air temperature when the room temperature is kept at 30 ° C., and FIG. 22 is a graph showing the displacement of the blowout temperature in the indoor unit with respect to the refrigerant high pressure.

【0017】本発明の実施例に係るエンジンヒートポン
プの冷媒系について、図6、図10、及び図16より説
明する。本実施例のエンジンヒートポンプは、一台の室
外機Aに複数の室内機B・B・・・を接続しものであ
り、室外機Aにおいて、エンジンにより駆動されるコン
プレッサー1と四方弁3との間において、アキュムレー
ター10を介する吸入回路C2と、オイルセパレーター
2を介する吐出回路C1とを接続している。なお、コン
プレッサー1は、圧送容量の幅を広く取れるように、複
数のコンプレッサーを複合させたマルチコンプレッサー
としている。四方弁3からは、該吐出回路C1及び吸入
回路C2の他に、室外機A内を循環して、室内機B・B
・・・における液体冷媒回路C5に接続される循環回路
C3、そして、室外機A内を循環することなく、室内機
B・B・・・における気体冷媒回路C6に接続される入
出回路C4が接続されている。
The refrigerant system of the engine heat pump according to the embodiment of the present invention will be described with reference to FIGS. 6, 10 and 16. The engine heat pump of the present embodiment is one in which a plurality of indoor units B, B ... Is connected to one outdoor unit A. In the outdoor unit A, a compressor 1 and a four-way valve 3 driven by an engine are provided. In between, the suction circuit C2 via the accumulator 10 and the discharge circuit C1 via the oil separator 2 are connected. The compressor 1 is a multi-compressor in which a plurality of compressors are combined so that the width of the pumping capacity can be widened. In addition to the discharge circuit C1 and the suction circuit C2, the four-way valve 3 circulates in the outdoor unit A to generate the indoor units B and B.
The circulation circuit C3 connected to the liquid refrigerant circuit C5 in ... And the input / output circuit C4 connected to the gas refrigerant circuit C6 in the indoor units B and B are connected without circulating in the outdoor unit A. Has been done.

【0018】室外機A内における循環回路C3の構成
を、図10より、冷房時の冷媒の流れに沿って見ていく
と、まず、廃熱回収器4が介設されており、廃熱回収器
4を経た後、室外ファン5・5にて放熱される室外熱交
換器6・6が並列状に配設されており、両室外熱交換器
6・6を経た後再び合流して、サイトグラス7(冷媒の
過充填で室外熱交換器6にて凝縮された冷媒に発砲現象
や液圧縮が起こっていないかどうかを視認するためのも
の)を経た後、今度は三つに分岐する。このうち二つに
は電子膨張弁8・8が介設されており、もう一つは、電
磁弁SV4を介設する電動弁バイパスBP4となってい
る。これら三つの回路は再び合流し、リキッドレシーバ
ー9を介して、室外機A外に出て、液体冷媒回路C5に
接続されている。
Looking at the configuration of the circulation circuit C3 in the outdoor unit A from FIG. 10 along the flow of the refrigerant during cooling, first, the waste heat recovery unit 4 is provided, and the waste heat recovery is performed. After passing through the heat exchanger 4, the outdoor heat exchangers 6 and 6 which radiate heat by the outdoor fans 5 and 5 are arranged in parallel. After passing through both the outdoor heat exchangers 6 and 6, they join again to form the site. After passing through the glass 7 (for visually recognizing whether the refrigerant condensed in the outdoor heat exchanger 6 due to the overfilling of the refrigerant does not have a foaming phenomenon or a liquid compression), this time it is branched into three. Two of these are provided with electronic expansion valves 8 and 8, and the other is an electrically operated valve bypass BP4 with an electromagnetic valve SV4. These three circuits join again, go out of the outdoor unit A via the liquid receiver 9, and are connected to the liquid refrigerant circuit C5.

【0019】室内機側Bにおいては、液体冷媒回路C
5、気体冷媒回路C6が、各室内機B毎に分岐し、各室
内機B内に導入されて、室内熱交換器13に接続されて
おり、各室内機B内において、該液体冷媒回路C5には
室内電子膨張弁12が介設されている。
On the indoor unit side B, the liquid refrigerant circuit C
5. The gas refrigerant circuit C6 is branched for each indoor unit B, introduced into each indoor unit B, and connected to the indoor heat exchanger 13, and in each indoor unit B, the liquid refrigerant circuit C5 An indoor electronic expansion valve 12 is provided in the room.

【0020】このような冷媒系の概略構成において、冷
房時には、図10の如く、四方弁3において、吐出回路
C1と循環回路C3とが接続され、吸入回路C2と入出
回路C4とが接続されて、図中の矢印付太線に沿って冷
媒が循環する。詳説するとコンプレッサー1より吐出さ
れた高圧気体冷媒が、吐出回路C1・四方弁3等を経
て、循環回路C3内に流入し、まず廃熱回収器4を通過
後、室外熱交換器6・6(この場合、凝縮器)において
充分に放熱されて凝縮して、液体冷媒となり、サイトグ
ラス7を経た後、電子膨張弁8・8は全開、電磁弁SV
4は開弁されていて、冷媒は電子膨張弁8・8及び電動
弁バイパスBP2を通過した後、リキッドレシーバー9
に入って貯蔵され、室外機Aを出た後、液体冷媒回路C
5を経、各室内機B内において、室内電子膨張弁12に
て減圧されて気化しやすい状態となり、室内熱交換器1
3(この場合、蒸発器)にて室内より気化熱を奪って蒸
発する。この冷媒気化に伴って室内が冷房される。こう
して室内熱交換器13を経た低圧気体冷媒は、気体冷媒
回路C6、室外機A内の入出回路C4、四方弁3を経
て、吸入回路C2よりコンプレッサー1内に吸入され
る。
In the schematic configuration of such a refrigerant system, at the time of cooling, as shown in FIG. 10, in the four-way valve 3, the discharge circuit C1 and the circulation circuit C3 are connected, and the suction circuit C2 and the inlet / outlet circuit C4 are connected. The refrigerant circulates along the thick line with an arrow in the figure. More specifically, the high-pressure gaseous refrigerant discharged from the compressor 1 flows into the circulation circuit C3 through the discharge circuit C1, the four-way valve 3 and the like, first passes through the waste heat recovery unit 4, and then the outdoor heat exchangers 6 and 6 ( In this case, heat is sufficiently dissipated in the condenser) to be condensed into a liquid refrigerant, and after passing through the sight glass 7, the electronic expansion valves 8 and 8 are fully opened and the solenoid valve SV is opened.
4 is opened, the refrigerant passes through the electronic expansion valve 8.8 and the motor-operated valve bypass BP2, and then the liquid receiver 9
Liquid refrigerant circuit C after entering and storing and exiting outdoor unit A
5, the indoor electronic expansion valve 12 reduces the pressure in each indoor unit B, and the indoor heat exchanger 1 is easily vaporized.
3 (in this case, the evaporator) takes heat of vaporization from the room to evaporate. The interior of the room is cooled as the refrigerant vaporizes. The low-pressure gas refrigerant thus passing through the indoor heat exchanger 13 is sucked into the compressor 1 from the suction circuit C2 via the gas refrigerant circuit C6, the inlet / outlet circuit C4 in the outdoor unit A, and the four-way valve 3.

【0021】次に、図16より、暖房時の冷媒の流れに
ついて説明する。暖房時には、四方弁3において、吐出
回路C1と入出回路C4とが接続され、また、吸入回路
C2と循環回路C3とが接続されていて、コンプレッサ
ー1より吐出された高圧気体冷媒は、吐出回路C1、四
方弁3、入出回路C4を経た後、まず、気体冷媒回路C
6内を経て、各室内機Bに導入され、各室内熱交換器1
3(この場合、凝縮器)において放熱され、凝縮されて
液化する。この冷媒凝縮に際して室内に放熱することに
より、室内を暖房するのである。室内熱交換器13にて
液化された液体冷媒は、液体冷媒回路C5より室外機A
内の循環回路C3に導入され、まず、リキッドレシーバ
ー9を経て、今度は、電磁弁SV4が閉弁されている電
動弁バイパスBP4は通らず、電子膨張弁8・8を通っ
て減圧され、気化しやすい状態となり、室外熱交換器6
・6(この場合、蒸発器)において、外部より気化熱を
受けて気化し、更に廃熱回収器4にて熱を受けて完全に
気化して、低圧気体冷媒となって、四方弁3を介し、吸
入回路C2よりコンプレッサー1に吸入されるのであ
る。
Next, the flow of the refrigerant during heating will be described with reference to FIG. At the time of heating, in the four-way valve 3, the discharge circuit C1 and the inlet / outlet circuit C4 are connected, and the suction circuit C2 and the circulation circuit C3 are connected, and the high-pressure gas refrigerant discharged from the compressor 1 is discharged into the discharge circuit C1. After passing through the four-way valve 3 and the inlet / outlet circuit C4, first, the gas refrigerant circuit C
6 is introduced into each indoor unit B, and each indoor heat exchanger 1
3 (in this case, the condenser) is radiated, condensed, and liquefied. When the refrigerant is condensed, heat is radiated into the room to heat the room. The liquid refrigerant liquefied in the indoor heat exchanger 13 is transferred from the liquid refrigerant circuit C5 to the outdoor unit A
It is introduced into the circulation circuit C3 in the inside, first through the liquid receiver 9, this time, the electric valve bypass BP4 in which the solenoid valve SV4 is closed does not pass, and the pressure is reduced through the electronic expansion valve 8. The outdoor heat exchanger 6
At 6 (in this case, the evaporator), the heat of vaporization from the outside is vaporized, and further at the waste heat recovery unit 4, the heat is completely vaporized to become a low-pressure gas refrigerant, and the four-way valve 3 is turned on. Through the suction circuit C2, the air is sucked into the compressor 1.

【0022】以上の冷媒系において、特に、図1乃至図
3より、室外機A内におけるリキッドレシーバー9と室
外熱交換器6との配置関係について説明する。リキッド
レシーバー9は、図10等に示すように、蒸発器と凝縮
器(室外熱交換器6と室内熱交換器13)との間におい
て、蒸発器における冷媒の需給調整のために配設される
ものである。即ち、蒸発器(冷房時には室内熱交換器1
3、暖房時には室外熱交換器6)の上手側には電子膨張
弁12又は8が配設されていて、蒸発器の負荷の変化に
応じて、コンプレッサー1に戻る冷媒の温度を一定に保
持すべく、冷媒流量を調節しているが、リキットレシー
バー9は、この際の凝縮量と蒸発量の変化の食い違いに
よる能力低下を解消すべく、ある程度の液体冷媒を蓄え
ておいて蒸発器上手側の電子膨張弁12又は8に冷媒を
供給するのである。
In the above refrigerant system, the positional relationship between the liquid receiver 9 and the outdoor heat exchanger 6 in the outdoor unit A will be described with reference to FIGS. 1 to 3. As shown in FIG. 10 and the like, the liquid receiver 9 is arranged between the evaporator and the condenser (the outdoor heat exchanger 6 and the indoor heat exchanger 13) for adjusting the supply and demand of the refrigerant in the evaporator. It is a thing. That is, the evaporator (in the case of cooling, the indoor heat exchanger 1
3. At the time of heating, an electronic expansion valve 12 or 8 is provided on the upstream side of the outdoor heat exchanger 6) to keep the temperature of the refrigerant returning to the compressor 1 constant according to the change in the load of the evaporator. Therefore, although the flow rate of the refrigerant is adjusted, the liquid kit receiver 9 stores a certain amount of liquid refrigerant and eliminates the deterioration of the capacity due to the discrepancy between the changes in the condensation amount and the evaporation amount at this time. The refrigerant is supplied to the electronic expansion valve 12 or 8.

【0023】このリキッドレシーバー9は、室外熱交換
器6との位置関係において、従来、前記の図4及び図5
の如く配設し、冷房時において凝縮器となる室外熱交換
器6より液体冷媒が円滑に流入されるようにし、これに
よって、コンプレッサー1の圧送容量の上昇を回避して
いた。本実施例では、コンプレッサー1の圧送能力に余
裕があることから、リキッドレシーバー9の入口部分に
て液体冷媒を滞留させることによって、室外熱交換器6
の放熱回路6aにおいて、その出口部のリキッドレシー
バー9側より滞留液体冷媒の低温効果を室外熱交換器6
側に及ぼし、放熱回路6a内における冷媒の冷却効果を
高め、即ち、凝縮を促進させるものであって、この滞留
を生じさせるべく、図1のように、リキッドレシーバー
9の液面高さが室外熱交換器6の上下幅の間に位置する
ようにし、即ち、上下幅Hに及ぶ液面と室が熱交換器6
との重合部分を形成するようにし、更に、室外熱交換器
6からの冷媒管がリキッドレシーバー9の下側に導入さ
れるようにしている。
This liquid receiver 9 has a conventional positional relationship with the outdoor heat exchanger 6 as shown in FIG. 4 and FIG.
As described above, the liquid refrigerant is allowed to smoothly flow in from the outdoor heat exchanger 6 that serves as a condenser during cooling, thereby avoiding an increase in the pumping capacity of the compressor 1. In the present embodiment, since the compressor 1 has a sufficient pumping capacity, the outdoor heat exchanger 6 is set by allowing the liquid refrigerant to stay at the inlet portion of the liquid receiver 9.
In the heat radiation circuit 6a of the outdoor heat exchanger 6
To increase the cooling effect of the refrigerant in the heat dissipation circuit 6a, that is, to accelerate the condensation. In order to cause this retention, as shown in FIG. The heat exchanger 6 is positioned between the upper and lower widths, that is, the liquid surface and the chamber extending in the upper and lower width H are in the heat exchanger 6.
And the refrigerant pipe from the outdoor heat exchanger 6 is introduced to the lower side of the liquid receiver 9.

【0024】このように配設したリキッドレシーバー9
により生じる冷却効果について、図2及び図3より説明
する。図2において、リキッドレシーバー9における液
面高さを〜の5段階に分けており、各段階における
コンプレッサー1吐出圧PHと、放熱回路5a出口にお
ける過冷却度ΔTと、冷房能力比CP(%)とを図3に
て示している。冷房能力比CPは、液面高さにおいて
の冷房能力を100%とし、これに対して何%の冷房能
力を有するかを表すものである。
Liquid receiver 9 arranged in this way
The cooling effect caused by the above will be described with reference to FIGS. 2 and 3. In FIG. 2, the liquid surface height in the liquid receiver 9 is divided into five stages of to, and the compressor 1 discharge pressure PH at each stage, the degree of supercooling ΔT at the outlet of the heat radiation circuit 5a, and the cooling capacity ratio CP (%). And are shown in FIG. The cooling capacity ratio CP represents the cooling capacity at 100% of the cooling capacity at the liquid level and the cooling capacity of the cooling capacity.

【0025】図3より、液面高さが〜へと上昇する
につれて、過冷却度ΔTが増大し、また、これに伴って
冷房能力比CPも増大しているのが判る。例えば、液面
高さにおいては、液面高さの時に比べて、過冷却度
ΔTが大きくなっており、即ち、放熱回路5a内の冷媒
が、液面高さの時よりも冷却されて凝縮されたことを
表しており、冷房能力比CPも110%以上となってい
る。液面高さの時には、過冷却度ΔTは更に増大し、
冷房能力比約114%となっている。なお、液面高さの
上昇に伴い、コンプレッサー1の吐出圧、即ち冷媒高圧
PHも高められているのが判る。しかし、この場合にお
ける最大吐出圧PHmax ’も、充分に本実施例のマルチ
コンプレッサーであるコンプレッサー1の吐出能力域内
(最大許容冷媒高圧PHmax 以下)にて現出可能なので
ある。
From FIG. 3, it can be seen that the supercooling degree ΔT increases as the liquid level rises to, and the cooling capacity ratio CP also increases accordingly. For example, at the liquid level, the degree of supercooling ΔT is larger than that at the liquid level, that is, the refrigerant in the heat dissipation circuit 5a is cooled and condensed as compared with the liquid level. The cooling capacity ratio CP is 110% or more. At the liquid level, the supercooling degree ΔT further increases,
The cooling capacity ratio is about 114%. It can be seen that the discharge pressure of the compressor 1, that is, the refrigerant high pressure PH is also increased as the liquid level rises. However, the maximum discharge pressure PH max ′ in this case can also be sufficiently expressed within the discharge capacity range of the compressor 1 which is the multi-compressor of this embodiment (below the maximum allowable refrigerant high pressure PH max ).

【0026】以上のように構成された冷媒系の室外機A
内においては、様々な圧力調節のため、コンプレッサー
1の高圧側(吐出回路C1側)より低圧側(吸入回路C
2側)に、複数のバイパス回路を配設しており、それぞ
れのバイパス回路には、開閉可能に電磁弁が介設されて
いる。これらのバイパス回路について説明する。
Refrigerant-based outdoor unit A constructed as described above
In order to adjust various pressures, the low pressure side (suction circuit C side) of the compressor 1 is higher than the high pressure side (discharge circuit C1 side).
2 side), a plurality of bypass circuits are disposed, and each bypass circuit is provided with a solenoid valve that can be opened and closed. These bypass circuits will be described.

【0027】まず、図6の如く、吐出回路C1における
オイルセパレーター2下手側より吸入回路C2のアキュ
ムレーター10上手側に、即ち、吐出回路C1より吸入
回路C2に、電磁弁SV1を介設するホットガスバイパ
ス(均圧用バイパス回路)BP1が介設されている。こ
のバイパスは、吐出回路C1内の高圧気体冷媒を、吸入
回路C2に送り込んで、吐出回路C1の高圧冷媒を低圧
化し、吸入回路C2内の低圧冷媒を高圧化するものであ
って、エンジンヒートポンプの運転停止時における冷媒
系の均圧処理時の他、室内機容量が少ない等の理由によ
って、吸入回路C2内における低圧冷媒の低圧が低すぎ
たり、或いは吐出回路C1内の高圧冷媒が高圧すぎたり
する場合の調圧時にも開弁される。図6は、電磁弁SV
1を開弁した時のホットガスバイパスBP1における吐
出回路C1より吸入回路C2への冷媒の流れを図示して
いる。なお、該ホットガスバイパスBP1には、キャピ
ラリーチューブCTが介設されているが、これは、バイ
パスの入口側圧力が出口側圧力よりも低くならないため
に設けた絞り機構であり、後記のモジュレーティッドバ
イパスBP5にも介設されている。
First, as shown in FIG. 6, a hot solenoid valve SV1 is provided between the lower side of the oil separator 2 in the discharge circuit C1 and the upper side of the accumulator 10 of the suction circuit C2, that is, from the discharge circuit C1 to the suction circuit C2. A gas bypass (pressure equalizing bypass circuit) BP1 is provided. This bypass sends the high-pressure gas refrigerant in the discharge circuit C1 to the suction circuit C2 to lower the pressure of the high-pressure refrigerant in the discharge circuit C1 and increase the pressure of the low-pressure refrigerant in the suction circuit C2. The low pressure of the low pressure refrigerant in the suction circuit C2 is too low or the high pressure refrigerant in the discharge circuit C1 is too high due to the reason that the capacity of the indoor unit is small in addition to the pressure equalization processing of the refrigerant system at the time of operation stop. The valve is also opened when pressure is adjusted. FIG. 6 shows a solenoid valve SV
1 shows the flow of refrigerant from the discharge circuit C1 to the suction circuit C2 in the hot gas bypass BP1 when the valve 1 is opened. The hot gas bypass BP1 is provided with a capillary tube CT, which is a throttling mechanism provided to prevent the pressure on the inlet side of the bypass from becoming lower than the pressure on the outlet side. It is also installed in the bypass BP5.

【0028】ここで、電磁弁SV1開弁時、即ち、均圧
処理時における電磁弁及び四方弁の切換タイミングにつ
いて、図8より説明する。まず、システム停止(エンジ
ン、コンプレッサー運転停止)時には、次期運転時に各
熱交換器に冷媒が送り込まれていることのないように、
コンプレッサー1の高圧側と低圧側を均圧すべく、自動
的に電磁弁SV1が開弁(ON)して、ホットガスバイ
パスBP1を高圧側から低圧側に冷媒が流れるようにす
るが、この時に、他のバイパスBP2〜BP6における
電磁弁SV2〜SV6が閉弁(OFF)していると、こ
れらの電磁弁に逆圧がかかってハンチングし、弁の破損
に繋がるので、電磁弁SV1開弁と同時に、他の電磁弁
SV2〜SV6も開弁(ON)している。なお、運転中
より、調圧のために電磁弁SV1や他の電磁弁SV2〜
SV6のいずれかをONしている場合があるのを、運転
停止時点以前の矢印にて示している。また、電磁弁S
V(電磁弁SV1〜SV6)は、図7にて図示される如
き構造である。
Here, the switching timing of the solenoid valve and the four-way valve when the solenoid valve SV1 is opened, that is, during the pressure equalizing process will be described with reference to FIG. First, when the system is stopped (engine, compressor operation stopped), in order to prevent the refrigerant from being sent to each heat exchanger during the next operation,
In order to equalize the high pressure side and the low pressure side of the compressor 1, the solenoid valve SV1 is automatically opened (ON) so that the refrigerant flows through the hot gas bypass BP1 from the high pressure side to the low pressure side. If the solenoid valves SV2 to SV6 in the other bypasses BP2 to BP6 are closed (OFF), reverse pressure is applied to these solenoid valves, causing hunting, which leads to damage of the valves. Therefore, the solenoid valve SV1 is opened at the same time. The other solenoid valves SV2 to SV6 are also open (ON). The solenoid valve SV1 and other solenoid valves SV2 to
There is a case where any one of the SV6 is turned on is shown by an arrow before the operation stop time. In addition, the solenoid valve S
V (electromagnetic valves SV1 to SV6) has a structure as shown in FIG.

【0029】略均圧化された時点で、まず、四方弁3を
閉弁する。四方弁3は、通過冷媒量が多く、従って、そ
の切換により、冷媒の流れに大きな変化が生じるので、
均圧化が略進んだ状態といえども、この時点で電磁弁S
V1〜SV6が閉弁していると、逆圧がかかる。そこ
で、まず、四方弁3を閉弁する。次に、電磁弁SV1を
閉弁(OFF)するが、従来、図9の如く、他の電磁弁
SV2〜SV6を、これと同時に閉弁(OFF)したの
で、他の電磁弁SV2〜SV6が、電磁弁SV1の閉弁
の影響で逆圧を受け、ハンチングを起こしていたが、本
実施例の図8においては、電磁弁SV1閉弁(OFF)
後、暫時して他の電磁弁SV2〜SV6を閉弁(OF
F)している。即ち、電磁弁SV1を閉弁して、ホット
ガスバイパスBP1を閉じた時点では、他のバイパスに
冷媒が逆流しても電磁弁SV2〜SV6に逆圧がかかっ
てハンチングしないよう、開弁(ON)しているのであ
り、やがて他のバイパスについても均圧されて、閉弁し
ても逆圧がかからなくなった時点で、他の電磁弁SV2
〜SV6を閉弁(OFF)するのである。
When the pressure is almost equalized, the four-way valve 3 is first closed. Since the four-way valve 3 has a large amount of refrigerant passing therethrough, and therefore the switching thereof causes a large change in the refrigerant flow,
Even though the pressure equalization has advanced, the solenoid valve S
When V1 to SV6 are closed, back pressure is applied. Therefore, first, the four-way valve 3 is closed. Next, the solenoid valve SV1 is closed (OFF), but conventionally, as shown in FIG. 9, since the other solenoid valves SV2 to SV6 are simultaneously closed (OFF), the other solenoid valves SV2 to SV6 are In the embodiment of FIG. 8, the solenoid valve SV1 is closed (OFF).
After that, the other solenoid valves SV2 to SV6 are closed (OF
F) Yes. That is, at the time when the solenoid valve SV1 is closed and the hot gas bypass BP1 is closed, even if the refrigerant backflows to the other bypasses, the solenoid valves SV2 to SV6 are opened (ON to prevent hunting due to backpressure). ), The pressures of the other bypasses are eventually equalized, and when the reverse pressure is not applied even if the valve is closed, the other solenoid valve SV2
The SV6 is closed (OFF).

【0030】ホットガスバイパスBP1については、以
上の如くであり、次に、同じく均圧処理時に使用される
インジェクションバイパスBP2について、図6より説
明する。インジェクションバイパスBP2は、循環回路
C3におけるリキッドレシーバー9と電子膨張弁8・8
(電動弁バイパスBP4)との間よりホットガスバイパ
スBP1の出口部位に液体冷媒を流入させる回路で、電
磁弁SV2の他、液体冷媒を減圧すべく、膨張弁11を
介設している。システム運転停止時において、ホットガ
スバイパスBP1を開いてコンプレッサー1の吐出側と
吸入側を均圧化するが、循環回路C3においては、液体
冷媒の回収が必要である。ホットガスバイパスBP1の
出口部は、吸入回路C2におけるアキュームレーター1
0の上手側なので、インジェクションバイパスBP2を
通ってホットガスバイパスBP1に流入させた液体冷媒
は、アキュームレーター10にて回収される。なお、膨
張弁11の作用にて、液体冷媒がある程度気化され、更
に、ホットガスバイパスBP1内の高圧気体冷媒中に流
入させることで、より気化を促進させて、アキュームレ
ーター10における液体冷媒の回収量を低減させてい
る。
The hot gas bypass BP1 is as described above. Next, the injection bypass BP2 used in the pressure equalizing process will be described with reference to FIG. The injection bypass BP2 includes a liquid receiver 9 and an electronic expansion valve 8.8 in the circulation circuit C3.
In the circuit that allows the liquid refrigerant to flow into the outlet portion of the hot gas bypass BP1 from between the (motor valve bypass BP4), the expansion valve 11 is interposed in addition to the solenoid valve SV2 to reduce the pressure of the liquid refrigerant. When the system operation is stopped, the hot gas bypass BP1 is opened to equalize the pressures on the discharge side and the suction side of the compressor 1, but it is necessary to recover the liquid refrigerant in the circulation circuit C3. The outlet of the hot gas bypass BP1 has an accumulator 1 in the suction circuit C2.
Since it is on the good side of 0, the liquid refrigerant that has flowed into the hot gas bypass BP1 through the injection bypass BP2 is recovered by the accumulator 10. By the action of the expansion valve 11, the liquid refrigerant is vaporized to some extent, and is further introduced into the high-pressure gas refrigerant in the hot gas bypass BP1 to further promote the vaporization and collect the liquid refrigerant in the accumulator 10. The amount is being reduced.

【0031】次に、冷房時に使用するバイパス回路につ
いて説明する。まず、電動弁バイパスBP4は、前記の
如く、冷房時に液体冷媒を円滑に通過させるバイパスで
あって、冷房時に電磁弁SV4を開弁(ON)し(図1
0)、暖房時には閉弁(OFF)して、電子膨張弁8・
8に室内機Bから流入された液体冷媒を通し、減圧して
室外熱交換器5・5へと送り込むようにする(図1
6)。なお、冷房時にも、コンプレッサー1の吐出側の
高圧が得られない時には、吐出回路C1における高圧を
得るべく、電磁弁SV7を閉弁して電動弁バイパスBP
4への冷媒流入を抑える(図11。後に詳説する。)。
Next, the bypass circuit used during cooling will be described. First, as described above, the motor-operated valve bypass BP4 is a bypass that allows the liquid refrigerant to pass smoothly during cooling, and opens (ON) the solenoid valve SV4 during cooling (see FIG. 1).
0), the valve is closed (OFF) during heating, and the electronic expansion valve 8
The liquid refrigerant that has flowed in from the indoor unit B is passed through 8 to reduce the pressure and send it to the outdoor heat exchanger 5 (FIG. 1).
6). Even when cooling, when high pressure on the discharge side of the compressor 1 cannot be obtained, the solenoid valve SV7 is closed to obtain the high pressure in the discharge circuit C1, and the electric valve bypass BP is closed.
The flow of the refrigerant into No. 4 is suppressed (Fig. 11, detailed later).

【0032】図11図示の電磁弁SV5を介設するモジ
ュレーティッドバイパス(調圧用バイパス回路)BP5
は、吐出回路C1(オイルセパレーター2下手側)より
リキッドレシーバー9に高圧気体冷媒を流入させる回路
であり、吐出回路C1における急激な高圧上昇を回避す
べく設けており、特に、電子膨張弁8・8の開度調節に
よるコンプレッサー1吐出圧(冷媒高圧PH)の上昇制
御に相まって開弁制御されるものであるが、これについ
ては後の図11乃至図15図示の冷房時における調圧自
動制御の中で詳説する。
Modulated bypass (pressure-adjusting bypass circuit) BP5 provided with the solenoid valve SV5 shown in FIG.
Is a circuit for injecting a high-pressure gas refrigerant into the liquid receiver 9 from the discharge circuit C1 (on the lower side of the oil separator 2), and is provided to avoid a sudden high pressure rise in the discharge circuit C1. The valve opening control is performed in conjunction with the rise control of the compressor 1 discharge pressure (refrigerant high pressure PH) by adjusting the opening degree of No. 8, but this will be described later in the automatic pressure adjustment control during cooling shown in FIGS. 11 to 15. I will explain in detail.

【0033】次に、暖房時に使用するバイパスについて
説明する。図17にて図示する電磁弁SV3を介設する
デフロストバイパスBP3は、吐出回路C1(オイルセ
パレーター2下手側)より、循環回路C3における室外
熱交換器6と電子膨張弁8・8(電動弁バイパスBP
4)との間の部位に、高圧気体冷媒を通す回路であり、
外気温度が低くて、室外熱交換器6・6のフィンに霜が
降りた時に、電子膨張弁8・8より流入される減圧され
た液体冷媒に、該デフロストバイパスBP3からの高圧
気体冷媒を加えることで昇温・昇圧し、室外熱交換器6
における霜を溶かすのである。
Next, the bypass used during heating will be described. The defrost bypass BP3 provided with the solenoid valve SV3 shown in FIG. 17 includes an outdoor heat exchanger 6 and an electronic expansion valve 8.8 (motor-operated valve bypass) in the circulation circuit C3 from the discharge circuit C1 (oil separator 2 lower side). BP
4) is a circuit that allows high-pressure gas refrigerant to pass between
When the outside air temperature is low and frost is formed on the fins of the outdoor heat exchangers 6 and 6, the high pressure gas refrigerant from the defrost bypass BP3 is added to the depressurized liquid refrigerant that is flowed in from the electronic expansion valve 8 and 8. The outdoor heat exchanger 6
To melt the frost in.

【0034】図18図示の電磁弁SV6を介設する放熱
回路BP6は、吐出回路C1(オイルセパレーター2下
手側)より室外熱交換器6の一部を通って、循環回路C
3における液体冷媒回路C5への接続部に近い部位に連
通させており、室外熱交換器6より下手側において、電
磁弁SV6と調圧弁PVを介設している。冷媒高圧PH
(吐出回路C1内の冷媒吐出圧)が過剰に高圧になって
(室内機の容量が非常に少ない状態で暖房運転すると、
この事態が起こりやすい。)、コンプレッサー1の容量
抑制だけでは該冷媒高圧PHを低下できない時、電磁弁
SV6を開弁(ON)し、吐出回路C1内の高圧気体冷
媒を放熱回路BP6に流入させるものであって、その途
中にて室外熱交換器6を通過させることで放熱して凝縮
させる。従って、放熱回路BP6の出口部ではバイパス
した冷媒が液化しており、一方、液体冷媒回路C5への
接続部に近い部位における循環回路C3内には、室内機
Bからの液体冷媒が流入していて、この液体冷媒に放熱
回路BP6からの液体冷媒を加えて、循環回路C3内に
流入させるものである。
The heat radiation circuit BP6 provided with the solenoid valve SV6 shown in FIG. 18 passes through a part of the outdoor heat exchanger 6 from the discharge circuit C1 (on the lower side of the oil separator 2) and the circulation circuit C.
3 is communicated with a portion near the connection to the liquid refrigerant circuit C5, and a solenoid valve SV6 and a pressure regulating valve PV are provided on the lower side of the outdoor heat exchanger 6. Refrigerant high pressure PH
When the refrigerant discharge pressure in the discharge circuit C1 becomes excessively high (when the heating operation is performed in a state where the capacity of the indoor unit is very small,
This situation is likely to occur. ), When the refrigerant high pressure PH cannot be reduced only by suppressing the capacity of the compressor 1, the solenoid valve SV6 is opened (ON) to allow the high pressure gas refrigerant in the discharge circuit C1 to flow into the heat dissipation circuit BP6. The heat is condensed by passing through the outdoor heat exchanger 6 on the way. Therefore, the bypassed refrigerant is liquefied at the outlet of the heat dissipation circuit BP6, while the liquid refrigerant from the indoor unit B is flowing into the circulation circuit C3 at the portion near the connection to the liquid refrigerant circuit C5. Then, the liquid refrigerant from the heat dissipation circuit BP6 is added to this liquid refrigerant and allowed to flow into the circulation circuit C3.

【0035】ここで、放熱回路BP6について詳説す
る。吐出回路C1からの高圧気体冷媒のバイパスは、ホ
ットガスバイパスBP1を用いても可能であるが、これ
は、高圧側から低圧側に多量の気体冷媒を一気にバイパ
スするので、激しいバイパス音が発生するとか、急激に
吐出側と吸入側との間の高低圧差が縮まって、コンプレ
ッサーのベーンがチャタリングしてしまうという弊害が
ある。ホットガスバイパスBP1は、運転停止時等にコ
ンプレッサー1の吐出側と吸入側とを急速に均圧するに
は有効であるが、暖房運転中における冷媒高圧PHを抑
制するには、気体冷媒が一気にバイパスされすぎるの
で、この場合に、高圧側から高圧側へと緩慢に冷媒をバ
イパスできる放熱回路BP6を用いて適当な高圧抑制を
図ることで、上記のような弊害が発生することがないの
である。
Here, the heat dissipation circuit BP6 will be described in detail. The high-pressure gas refrigerant can be bypassed from the discharge circuit C1 by using the hot gas bypass BP1, but this bypasses a large amount of the gas refrigerant from the high-pressure side to the low-pressure side at once, and thus a violent bypass noise is generated. In other words, there is an adverse effect that the high / low pressure difference between the discharge side and the suction side is sharply reduced and the vane of the compressor chatters. The hot gas bypass BP1 is effective in rapidly equalizing the discharge side and the suction side of the compressor 1 when the operation is stopped, but in order to suppress the refrigerant high pressure PH during the heating operation, the gas refrigerant bypasses at once. Therefore, in this case, the above-mentioned harmful effects do not occur by appropriately suppressing the high pressure by using the heat radiation circuit BP6 that can slowly bypass the refrigerant from the high pressure side to the high pressure side.

【0036】そして、更にこの放熱回路BP6におい
て、従来は電磁弁SV6のみが介設されていて、開閉制
御のみ可能であったが、これに調圧弁PVを設けること
によって、冷媒流量を調節し、冷媒高圧PHを一定に保
持できる。調圧弁PVは図19及び図20に図示する如
きもので、調節ネジ17によるパワーエレメント14調
節によって、入口管15より入った冷媒を適当な流量に
絞って、出口管16より流出させることができる。
Further, in the heat radiation circuit BP6, only the solenoid valve SV6 is conventionally interposed and only the opening / closing control is possible. However, by providing the pressure regulating valve PV to this, the refrigerant flow rate is adjusted, The refrigerant high pressure PH can be kept constant. The pressure regulating valve PV is as shown in FIGS. 19 and 20, and by adjusting the power element 14 with the adjusting screw 17, the refrigerant entering from the inlet pipe 15 can be throttled to an appropriate flow rate and flow out from the outlet pipe 16. .

【0037】この放熱回路BP6による冷媒バイパス、
及び調圧弁PVによるバイパス量の調節による効果を、
図21及び図22のグラフより検証する。図21は、室
内機容量が最小で、コンプレッサー1の圧送容量が最小
の場合に、室温30℃を保持すべく運転する場合の冷媒
高圧PHを、外気温度の変位とともにグラフ化したもの
であって、PH1は、放熱回路閉鎖時、即ちコンプレッ
サー1を最小容量としただけの時の冷媒高圧、PH2
は、電磁弁SV6を開弁して、放熱回路BP6を開いた
時の冷媒高圧(コンプレッサー1は最小容量のまま)、
PH3は、更に調圧弁PVにて圧力調節した場合の冷媒
高圧である。
Refrigerant bypass by this heat radiation circuit BP6,
And the effect of adjusting the bypass amount by the pressure regulating valve PV,
Verification will be made from the graphs of FIGS. 21 and 22. FIG. 21 is a graph showing the refrigerant high pressure PH when operating to maintain the room temperature of 30 ° C. with the displacement of the outside air temperature when the indoor unit capacity is the minimum and the pumping capacity of the compressor 1 is the minimum. , PH1 is the refrigerant high pressure when the heat radiation circuit is closed, that is, when the compressor 1 is only set to the minimum capacity, PH2
Is the high pressure of the refrigerant when the electromagnetic valve SV6 is opened and the heat radiation circuit BP6 is opened (the compressor 1 has the minimum capacity),
PH3 is the high pressure of the refrigerant when the pressure is further adjusted by the pressure adjusting valve PV.

【0038】図21中のPH1にて判るように、室内機
容量が最小の時に暖房運転すると、冷媒高圧PHは非常
に高くなり、コンプレッサー1の圧送容量を最小にして
も対応できなくなる。例えば、本実施例のエンジンヒー
トポンプでは、暖房運転可能な最大外気温度26℃にお
ける冷媒高圧PH1は、図中(a)であり、正常運転の
最大許容冷媒高圧PHmax を超過している。これを正常
運転可能な冷媒高圧域に低減すべく、放熱回路BP6に
てバイパスするものであり、放熱回路BP6を開いた時
の冷媒高圧PH2が、最大外気温度において、最大許容
冷媒高圧PHma x 未満にまで低下しており(図中
(b))、最大外気温度以下の外気温度では、PH2<
PHmax なので正常運転が可能である。本実施例のエン
ジンヒートポンプでは、コンプレッサー1を最小容量に
して、なお、冷媒高圧PHが最大許容冷媒高圧PHmax
以下とならない場合に、電磁弁SV6が自動的にONす
るように、自動制御機構が設けられているのである。
As can be seen from PH1 in FIG. 21, when the heating operation is performed when the capacity of the indoor unit is minimum, the high pressure PH of the refrigerant becomes extremely high, and even if the compressor 1 has a minimum pumping capacity, it cannot be dealt with. For example, in the engine heat pump of the present embodiment, the refrigerant high pressure PH1 at the maximum outside air temperature 26 ° C capable of heating operation is (a) in the figure, and exceeds the maximum allowable refrigerant high pressure PH max in normal operation. In order to reduce it to normal operation can refrigerant pressure range, which bypasses at radiator circuit BP6, refrigerant pressure PH2 when opening the heat dissipation circuit BP6, at maximum ambient temperature, the maximum allowable refrigerant pressure PH ma x The temperature has dropped to less than (below (b) in the figure), and when the outside air temperature is below the maximum outside temperature, PH2 <
Since it is PH max, normal operation is possible. In the engine heat pump of this embodiment, the compressor 1 has the minimum capacity, and the refrigerant high pressure PH is the maximum allowable refrigerant high pressure PH max.
An automatic control mechanism is provided so that the solenoid valve SV6 is automatically turned on when the following conditions are not met.

【0039】しかし、放熱回路BP6を開いた場合に
は、外気温度が低い場合に放熱量が多くなり過ぎて、冷
媒高圧PHが低くなりすぎてしまう。これは、室内機に
おける吹き出し温度BTの低下に繋がる。前記の如く、
コンプレッサー1を最小容量とした時の冷媒高圧PH1
が最大許容冷媒高圧PHmax を下回らない場合には、自
動的に放熱回路BP6が開かれるから、外気温度が約3
℃の場合にも、PH1=PHmax なので、放熱回路BP
6は開かれて、この時の冷媒高圧PH2は、最小許容冷
媒高圧PHmin を大幅に下回ることになり(図21中
(c))、その結果、吹き出し温度BTは低下し(図2
2中(d))、室内にいる者にかなり冷風感を与える結
果となる。そこで、適度な吹き出し温度を得られるよう
に、外気温度が低い場合には、調圧弁PVを絞ることに
よって冷媒高圧の低下を抑制し、冷媒高圧が最小許容冷
媒高圧PHmin を下回らないように調節している。例え
ば、外気温度が同じく3℃である場合に、調圧弁PVを
一定開度にすることで、最小許容冷媒高圧PHmin を確
保することができ(図21中(b))、高い吹き出し温
度BTが得られるのである(図22中(e))。
However, when the heat radiation circuit BP6 is opened, the amount of heat radiation becomes too large when the outside air temperature is low, and the refrigerant high pressure PH becomes too low. This leads to a decrease in the blowing temperature BT in the indoor unit. As mentioned above
Refrigerant high pressure PH1 when the compressor 1 has the minimum capacity
Is less than the maximum allowable refrigerant high pressure PH max , the heat dissipation circuit BP6 is automatically opened, so that the outside air temperature is about 3
Even in the case of ° C, PH1 = PH max, so the heat dissipation circuit BP
6 is opened, and the refrigerant high pressure PH2 at this time is significantly lower than the minimum allowable refrigerant high pressure PH min ((c) in FIG. 21), and as a result, the blowout temperature BT decreases (FIG. 2).
In the middle of 2 (d), the result is that a person in the room feels a lot of cold wind. Therefore, when the outside air temperature is low, a decrease in the refrigerant high pressure is suppressed by throttling the pressure regulating valve PV so that an appropriate outlet temperature can be obtained, and the refrigerant high pressure is adjusted so as not to fall below the minimum allowable refrigerant high pressure PH min. are doing. For example, when the outside air temperature is also 3 ° C., the minimum allowable refrigerant high pressure PH min can be secured by setting the pressure regulating valve PV to a constant opening ((b) in FIG. 21), and the high blowout temperature BT. Is obtained ((e) in FIG. 22).

【0040】以上のようなバイパス回路が配設された室
外機Aにおいて、最後に、冷媒低圧(PL)保持、及び
高低圧差(PH〜PL)保持用の自動制御機構につい
て、図11乃至図15より説明する。本実施例のコンプ
レッサー1は、インバータ制御で、細かく回転数を調節
可能にしており、更に、室外ファン5も、インバータ制
御にて、図13の如く、細かくn段階(2.5Hz〜K
Hz)に回転数調節ができ、これらのインバータ制御
にて室温の一定保持を図っている。ところで、コンプレ
ッサー1は、ベーンタイプであり、吐出側の冷媒高圧P
Hと吸入側の冷媒低圧PLとの差(高低圧差)が充分に
取れていないと、ベーンがチャタリングを起こし、圧縮
不良に陥るため、該高低圧差を一定以上に保持できるよ
うに、冷媒高圧PHを高める制御が必要である。
In the outdoor unit A having the bypass circuit as described above, finally, the automatic control mechanism for holding the refrigerant low pressure (PL) and the high / low pressure difference (PH to PL) will be described with reference to FIGS. More will be described. The compressor 1 of the present embodiment is capable of finely adjusting the number of rotations by inverter control, and the outdoor fan 5 is also finely controlled by inverter control as shown in FIG. 13 in n stages (2.5 Hz to K).
The rotation speed can be adjusted to (Hz) and the inverter is controlled to keep the room temperature constant. By the way, the compressor 1 is a vane type, and the refrigerant high pressure P on the discharge side is provided.
If the difference between H and the suction-side refrigerant low pressure PL (high / low pressure difference) is not sufficiently taken, the vane causes chattering and compression failure occurs. Therefore, the refrigerant high pressure PH is maintained so that the high / low pressure difference can be maintained above a certain level. Control is required to increase the

【0041】また、低温外気の下で冷房運転を行うと、
特に室内機容量が少ない場合に、室内機が凍結して、コ
ンプレッサー1の吸入側の冷媒低圧PLが、必要な低圧
以下となってしまう。この時には、コンプレッサー1吸
入回路C2における冷媒低圧PLを上げるべく、吐出側
の高圧冷媒を吸入側に送る(例えば前記のホットガスバ
イパスBP1を使用する。)方法があるが、低温外気の
下では、吐出側の冷媒高圧PHが不足し、この方策を用
いても、必要な冷媒低圧PLは得られず、更に高低圧差
が一層少なくなって、コンプレッサー1における前記弊
害も生じてしまう。必要な冷媒低圧PLを得るために
は、高低圧差が一定以上に保持されていなければなら
ず、従って、前記の如く冷媒高圧PHを高める制御が必
要となる。
When the cooling operation is performed under low temperature outside air,
In particular, when the capacity of the indoor unit is small, the indoor unit freezes and the refrigerant low pressure PL on the suction side of the compressor 1 becomes lower than the required low pressure. At this time, there is a method of sending high-pressure refrigerant on the discharge side to the suction side (for example, using the hot gas bypass BP1 described above) in order to raise the refrigerant low pressure PL in the compressor 1 suction circuit C2. The high pressure PH of the refrigerant on the discharge side is insufficient, and even if this measure is used, the required low pressure PL of the refrigerant cannot be obtained, and the high-low pressure difference is further reduced, and the above-mentioned harmful effect in the compressor 1 also occurs. In order to obtain the required low-pressure refrigerant PL, the high-low pressure difference must be maintained above a certain level, and therefore, the control for increasing the high-pressure refrigerant PH is required as described above.

【0042】ここで、高低圧差保持のために必要な冷媒
高圧PHの値について、図15より検証する。冷媒低圧
PLの推移に応じて必要な高低圧差を得るためには、f
1 (PL)<PH<f2 (PL)でなければならない
(f1 (PL)、f2 (PL)は、各々冷媒低圧PLを
変数とする方程式より求められる数値である。)。この
中(安定ゾーンSZ)に冷媒高圧PHが保持されている
場合、安定した冷房運転が得られるものであり、安定ゾ
ーンSZより冷媒高圧PHが低くなると、所定の高低圧
差が得られていないこととなり、後記の高圧確保運転を
行わなければならない。また、安定ゾーンSZよりも冷
媒高圧PHが高い場合には、高圧気体冷媒の凝縮圧が強
すぎて逆に冷凍能力を低下するので、冷媒高圧PHの低
下を図らなければならない。
Here, the value of the refrigerant high pressure PH required for maintaining the high / low pressure difference will be verified with reference to FIG. In order to obtain the required high / low pressure difference according to the transition of the refrigerant low pressure PL, f
It must be 1 (PL) <PH <f 2 (PL) (f 1 (PL) and f 2 (PL) are numerical values obtained from an equation with the refrigerant low pressure PL as a variable). When the refrigerant high pressure PH is held in this (stable zone SZ), stable cooling operation can be obtained, and when the refrigerant high pressure PH becomes lower than the stable zone SZ, a predetermined high-low pressure difference cannot be obtained. Therefore, the high pressure securing operation described below must be performed. Further, when the refrigerant high pressure PH is higher than that in the stable zone SZ, the condensation pressure of the high pressure gas refrigerant is too strong and conversely the refrigerating capacity decreases, so the refrigerant high pressure PH must be reduced.

【0043】本実施例のエンジンヒートポンプは、冷媒
低圧PLの保持と、高低圧差の保持を図るべく、図12
の如き自動制御機構を設けた。これについて説明する。
まず、可能な限りは、マルチコンプレッサーであるコン
プレッサー1の容量制御にて対処する(1)。即ち、エ
ンジン回転数を、最低回転数より最高回転数までの間に
て調節し、更に、二台のコンプレッサーを組み合わせた
マルチコンプレッサーにおけるコンプレッサーの運転台
数を一台又は二台に調節して、冷媒高圧PH、冷媒低圧
PLを適正に保持する。低圧冷媒PLが低い場合には、
室外熱交換器6における冷媒凝縮量を低減すべく圧送容
量を低減する。
The engine heat pump of this embodiment has a structure shown in FIG. 12 in order to maintain the refrigerant low pressure PL and the high and low pressure difference.
An automatic control mechanism such as This will be described.
First, if possible, the capacity control of the compressor 1, which is a multi-compressor, is used (1). That is, the engine speed is adjusted from the minimum speed to the maximum speed, and further, the operating number of compressors in a multi-compressor in which two compressors are combined is adjusted to one or two, and the refrigerant is The high pressure PH and the refrigerant low pressure PL are properly maintained. When the low-pressure refrigerant PL is low,
The pumping capacity is reduced in order to reduce the amount of refrigerant condensation in the outdoor heat exchanger 6.

【0044】冷媒低圧PLの保持制御について説明す
る。コンプレッサー1の容量制御と相まって、冷媒低圧
PLが低下した場合には、電磁弁SV1がONして、ホ
ットガスバイパスBP1が開く(2)。これにて吐出側
の高圧気体冷媒を吸入側に流入させて、冷媒低圧PLを
上昇させるが、電磁弁SV1をOFFするや否やすぐに
冷媒低圧PLが再び低下しないよう、冷媒低圧PLを余
裕のある所まで上昇させた後に、電磁弁SV1をOFF
する。なお、これと同時に、室外ファン制御(3)’を
行って、吸入側に送る吐出側の冷媒高圧を高めるが、こ
の場合には、前記のn段階に区切られるファン回転数の
ステップを、一ステップずつ変更して調節するものとす
る。また、室外ファン制御(3)’で不十分な場合は電
子膨張弁及びモジュレーティッドバイパス制御(4)’
が行われるが、これは、後記の電子膨張弁及びモジュレ
ーティッドバイパス制御(4)の応用であるので、次の
高低圧差の確保のための高圧確保制御にて説明する。
The holding control of the refrigerant low pressure PL will be described. When the refrigerant low pressure PL is reduced in combination with the capacity control of the compressor 1, the solenoid valve SV1 is turned on and the hot gas bypass BP1 is opened (2). As a result, the high-pressure gaseous refrigerant on the discharge side is caused to flow into the suction side to raise the refrigerant low-pressure PL, but the refrigerant low-pressure PL does not fall again as soon as the solenoid valve SV1 is turned off. After raising to a certain position, turn off the solenoid valve SV1
To do. At the same time, the outdoor fan control (3) ′ is performed to increase the high pressure of the refrigerant on the discharge side to the suction side. In this case, the step of the fan speed divided into the n stages is It shall be adjusted by changing it step by step. When the outdoor fan control (3) 'is insufficient, the electronic expansion valve and the modular bypass control (4)'
However, since this is an application of the electronic expansion valve and the modulated bypass control (4) described later, a high pressure securing control for securing the next high / low pressure difference will be described.

【0045】高圧確保制御について説明する。コンプレ
ッサー1が最小容量運転となっている上に、ホットガス
バイパスBP1の電磁弁SV1をONしていても、冷媒
低圧PLが低い場合には、冷媒高圧PHが低下している
ことが考えられる。冷媒高圧PHを一定以上に確保する
ためには、室外熱交換器6において、放熱による凝縮を
抑制し、高圧気体のままの冷媒を通過させるようにし、
更に、その出口側における冷媒の通路を絞るのである
が、まず、放熱抑制のために、室外ファン5の回転数ス
テップを低下する制御が行われる(3)。なお、この室
外ファン制御においては、前記と異なり、冷媒高圧PH
を急速に安定ゾーンSZ内までに高める必要があるの
で、図16中に示す如く、実際冷媒高圧と冷媒高圧の最
低限f1 (PL)との差ΔP1 がいくらであるかを基
に、ファンステップは、一気に冷媒高圧の最低限f
1 (PL)に高めるべく、ファン回転数のステップを、
表の如く、同時に複数個分変動させて行う。
The high pressure ensuring control will be described. Even if the compressor 1 is in the minimum capacity operation and the solenoid valve SV1 of the hot gas bypass BP1 is turned on, if the refrigerant low pressure PL is low, the refrigerant high pressure PH may be lowered. In order to secure the refrigerant high pressure PH at a certain level or higher, in the outdoor heat exchanger 6, condensation due to heat dissipation is suppressed, and the refrigerant in the high pressure gas state is passed through.
Further, the passage of the refrigerant on the outlet side is narrowed down. First, in order to suppress heat radiation, control is performed to reduce the rotational speed step of the outdoor fan 5 (3). In this outdoor fan control, unlike the above, the refrigerant high pressure PH
Since it is necessary to rapidly increase the temperature to within the stable zone SZ, as shown in FIG. 16, based on how much the difference ΔP 1 between the actual refrigerant high pressure and the minimum refrigerant high pressure f 1 (PL) is, The fan step is the minimum f of the refrigerant high pressure at a stretch.
To increase to 1 (PL), increase the fan rotation speed step
As shown in the table, it is performed by changing a plurality of values at the same time.

【0046】なお、逆に、もしも冷媒高圧PHが高すぎ
て、冷媒高圧の最高限f2 (PL)を越えた場合には、
一気に冷媒高圧PHを低下させるべく、同様に、実際冷
媒高圧と冷媒高圧の最高限f2 (PL)との差ΔP2
基づいて、複数ステップ分同時に変動させる操作が行わ
れる(図15)。
On the contrary, if the refrigerant high pressure PH is too high and exceeds the refrigerant high pressure maximum f 2 (PL),
In order to decrease the refrigerant high pressure PH at once, similarly, an operation of simultaneously changing a plurality of steps is performed based on the difference ΔP 2 between the actual refrigerant high pressure and the maximum refrigerant pressure high limit f 2 (PL) (FIG. 15).

【0047】室外ファン5の回転数を低下し、図13に
示す最低ステップ(2.5HZ)となっても冷媒高圧P
Hが安定ゾーンSZより低い場合、或いは、回転数低下
の途中において、冷却水温度が所定温度を越えた場合に
は、室外ファン制御が限界であり、次の、室外熱交換器
6出口側の冷媒通路を絞る制御、即ち、電子膨張弁及び
モジュレーティッドバイパス制御(4)に移行する。ま
ず、電磁弁SV4は閉弁して電動バイパスBP4は閉鎖
し、室外熱交換器6からの冷媒を電子膨張弁8・8のみ
に通す。電子膨張弁8は、図14にて示す如く、m段階
の開度ステップが設定されているが、当初、冷房仕様と
して、該電子膨張弁8・8は全開状態となっている。高
圧保持制御が電子膨張弁制御に移行すると、電子膨張弁
8・8の開度ステップを低減、即ち、開度を絞り、冷媒
が円滑に流れないようにして、コンプレッサー1吐出側
の冷媒高圧PHを高めるのである。この時、出口側が電
子膨張弁8・8にて絞られているので、室外熱交換器6
において、冷媒の滞留により、凝縮が促進され、液体冷
媒が増大して、吐出回路C1からの高圧気体冷媒の通路
が、室外熱交換器6にて狭められるので、一層、冷媒高
圧PHの高圧化促進の相乗効果をもたらす。
Even if the rotation speed of the outdoor fan 5 is reduced and the minimum step (2.5 HZ) shown in FIG. 13 is reached, the refrigerant high pressure P
When H is lower than the stable zone SZ, or when the cooling water temperature exceeds a predetermined temperature while the rotation speed is decreasing, the outdoor fan control is at the limit, and the next outdoor heat exchanger 6 outlet side The control shifts to the control for restricting the refrigerant passage, that is, the electronic expansion valve and the modulated bypass control (4). First, the solenoid valve SV4 is closed, the electric bypass BP4 is closed, and the refrigerant from the outdoor heat exchanger 6 is passed only to the electronic expansion valve 8/8. As shown in FIG. 14, the electronic expansion valve 8 has m steps of opening steps, but initially, as the cooling specification, the electronic expansion valves 8 and 8 are fully opened. When the high pressure holding control shifts to the electronic expansion valve control, the opening step of the electronic expansion valves 8 and 8 is reduced, that is, the opening is reduced so that the refrigerant does not flow smoothly, and the refrigerant high pressure PH on the discharge side of the compressor 1 is reduced. Increase. At this time, since the outlet side is throttled by the electronic expansion valve 8.8, the outdoor heat exchanger 6
In the above, due to the retention of the refrigerant, the condensation is promoted, the amount of the liquid refrigerant increases, and the passage of the high-pressure gas refrigerant from the discharge circuit C1 is narrowed by the outdoor heat exchanger 6, so that the refrigerant high pressure PH is further increased. Bring about a synergistic effect of promotion.

【0048】この電子膨張弁制御に加え、電子膨張弁8
・8の出口側におけるリキッドレシーバー9に高圧をか
ければ、室外熱交換器6の出口側より一層圧力がかか
り、冷媒の滞留傾向はますます高まって、冷媒高圧PH
の高圧化を更に促進する。そこで、吐出回路C1内の高
圧気体冷媒をリキッドレシーバー9の上方より吸入すべ
く、モジュレーティッドバイパス(調圧用バイパス回
路)BP5の電磁弁SV5を開弁する。しかし、電子膨
張弁8・8の開度があまり絞られていないうちにモジュ
レーティッドバイパスBP5に冷媒を通すと、冷媒高圧
PHが急激に上昇してしまい、図15における安定ゾー
ンSZよりも上になってしまう。逆に、一定開度以下の
状態でモジュレーティッドバイパスBP5を開けば、冷
媒圧力の急激な上昇は回避できることがわかっている。
このため、電子膨張弁制御にモジュレーティッドバイパ
ス制御を加えるのは、電子膨張弁8・8の開度が中間開
度m1(図14中※)の時からである。
In addition to this electronic expansion valve control, the electronic expansion valve 8
・ If a high pressure is applied to the liquid receiver 9 on the outlet side of 8, the pressure will be applied more than on the outlet side of the outdoor heat exchanger 6, and the tendency of the refrigerant to accumulate will further increase.
Further promotes high pressure. Therefore, in order to suck the high-pressure gas refrigerant in the discharge circuit C1 from above the liquid receiver 9, the solenoid valve SV5 of the modulated bypass (pressure adjusting bypass circuit) BP5 is opened. However, if the refrigerant is passed through the modulated bypass BP5 while the opening degree of the electronic expansion valve 8 is not narrowed too much, the refrigerant high pressure PH rises sharply, and the temperature rises above the stability zone SZ in FIG. turn into. On the contrary, it is known that the rapid increase in the refrigerant pressure can be avoided by opening the modulated bypass BP5 in a state where the opening is equal to or less than a certain degree.
Therefore, the modular bypass control is added to the electronic expansion valve control when the opening of the electronic expansion valve 8 is the intermediate opening m 1 (* in FIG. 14).

【0049】これらの制御により冷媒高圧PHが高まっ
て、高低圧差を保持したまま冷媒低圧PLも一定圧以上
の値となって、冷媒高圧PHが図15の安定ゾーンSZ
内にて移行するようになると、再び電動弁バイパスBP
4を開き、電子膨張弁8・8を全開にして、冷房運転仕
様に切り換えるのである。
Due to these controls, the refrigerant high pressure PH increases, the refrigerant low pressure PL also becomes a value above a certain pressure while maintaining the high / low pressure difference, and the refrigerant high pressure PH becomes stable zone SZ in FIG.
When it comes to shift in the inside, the motorized valve bypass BP again
4 is opened and the electronic expansion valves 8 and 8 are fully opened to switch to the cooling operation specification.

【0050】[0050]

【発明の効果】本発明は以上のように構成したので、次
のような効果を奏する。即ち、請求項1の如く構成した
ので、リキットレシーバー側より室外熱交換器に向け
て、リキッドレシーバーに溜まる液体冷媒による圧力が
生じ、室外熱交換器に液体冷媒の冷却効果が及び、冷媒
凝縮が一層促進されるので、コンプレッサー容量を上げ
たり、室外ファン回転数を上げたりせずに、冷房効果を
向上できるので、低コスト化に貢献する。但し、コンプ
レッサー吐出側の冷媒高圧上昇を許容できることを条件
とする。
Since the present invention is configured as described above, it has the following effects. That is, since it is configured as in claim 1, a pressure due to the liquid refrigerant accumulated in the liquid receiver is generated from the liquid kit receiver side toward the outdoor heat exchanger, a cooling effect of the liquid refrigerant is exerted on the outdoor heat exchanger, and the refrigerant is condensed. Since it is further promoted, the cooling effect can be improved without increasing the compressor capacity or the outdoor fan rotation speed, which contributes to cost reduction. However, the condition is that the high pressure of the refrigerant on the discharge side of the compressor can be allowed to rise.

【0051】また、請求項2の如く構成したので、四方
弁の閉弁時には、その切換時に最も圧力変動を生じる
が、均圧用バイパスの電磁弁及び他の全電磁弁が開弁し
ているので、逆圧がかからず、次に均圧化停止のために
均圧用バイパスの電磁弁を閉弁する時にも、他の全電磁
弁が開弁していて、該均圧用バイパスの電磁弁の閉弁に
よる圧力変動、即ち、逆圧がかかることがなく、その後
に他の全電磁弁を閉弁するものであって、四方弁及び全
電磁弁の閉弁にあたって、どの弁にも逆圧がかからず、
弁のチャタリングを回避し、弁の長時間の仕様を可能と
し、メンテナンス作業を低減する。
Since the four-way valve is closed, the most pressure fluctuation occurs when switching the four-way valve, but the solenoid valve of the pressure equalizing bypass and all the other solenoid valves are open. , When no back pressure is applied and the solenoid valve of the pressure equalizing bypass is closed next to stop the pressure equalization, all the other solenoid valves are open and the solenoid valve of the pressure equalizing bypass is closed. Pressure fluctuation due to valve closing, that is, back pressure is not applied, then all other solenoid valves are closed.When closing the four-way valve and all solenoid valves, back pressure is applied to all valves. Without taking
Avoids chattering of the valve, enables long-time valve specifications, and reduces maintenance work.

【0052】また、請求項3の如く構成したので、低温
外気下等での冷房時において、コンプレッサー吸入側の
冷媒低圧を速やかに向上させて、室内機の凍結等を回避
し、良好に冷房を行える状態にできるものであり、ま
た、コンプレッサー吐出側と吸入側における高低圧差も
保持できて、コンプレッサーや室外ファンおけるベーン
のチャタリングを防止できる。
Further, according to the third aspect of the present invention, during cooling under low temperature outside air, etc., the low pressure of the refrigerant on the compressor suction side can be promptly improved to avoid freezing of the indoor unit and to perform favorable cooling. In addition, it is possible to keep the high and low pressure difference between the compressor discharge side and the suction side, and it is possible to prevent chattering of vanes in the compressor and the outdoor fan.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における室外熱交換器とリキッドレシー
バーの配設位置関係を示す正面図である。
FIG. 1 is a front view showing an arrangement positional relationship between an outdoor heat exchanger and a liquid receiver according to the present invention.

【図2】リキッドレシーバーにおける液面高さと室外熱
交換器との位置関係を示す正面略図である。
FIG. 2 is a schematic front view showing the positional relationship between the liquid level height and the outdoor heat exchanger in the liquid receiver.

【図3】図2図示の液面高さ毎の冷媒能力比CP、過冷
却度ΔT、及び冷媒高圧PHを示すグラフ図である。
FIG. 3 is a graph showing the refrigerant capacity ratio CP, the degree of supercooling ΔT, and the refrigerant high pressure PH for each liquid level height shown in FIG.

【図4】従来のリキッドレシーバーの配設構造で、室外
熱交換器より下方に配設したものを示す図である。
FIG. 4 is a view showing an arrangement structure of a conventional liquid receiver, which is arranged below an outdoor heat exchanger.

【図5】同じく室外熱交換器より冷媒管を上方より導入
したものを示す図である。
FIG. 5 is a view showing a refrigerant pipe introduced from the outside of the outdoor heat exchanger in the same manner.

【図6】均圧処理時のエンジンヒートポンプの冷媒系統
図である。
FIG. 6 is a refrigerant system diagram of an engine heat pump during pressure equalization processing.

【図7】電磁弁SVの正面断面図である。FIG. 7 is a front sectional view of a solenoid valve SV.

【図8】システム停止に伴う均圧処理時における各電磁
弁のON・OFFタイミングを示すタイムチャート図で
ある。
FIG. 8 is a time chart showing the ON / OFF timing of each solenoid valve during the pressure equalization process associated with the system stop.

【図9】同じく従来の各電磁弁のON・OFFタイミン
グを示すタイムチャート図である。
FIG. 9 is a time chart diagram showing ON / OFF timing of each conventional solenoid valve.

【図10】冷房時におけるエンジンシートポンプの冷媒
系統図である。
FIG. 10 is a refrigerant system diagram of the engine seat pump during cooling.

【図11】冷房時における冷媒高圧の上昇のための電子
膨張弁及びモジュレーティッドバイパス制御時のエンジ
ンヒートポンプの冷媒系統図である。
FIG. 11 is a refrigerant system diagram of an electronic expansion valve for increasing the refrigerant high pressure during cooling and an engine heat pump during modulated bypass control.

【図12】冷房時における冷媒低圧保持制御及び冷媒高
圧保持制御のフローチャート図である。
FIG. 12 is a flowchart of refrigerant low pressure holding control and refrigerant high pressure holding control during cooling.

【図13】室外ファン5の回転数ステップを示す図であ
る。
FIG. 13 is a diagram showing rotation speed steps of the outdoor fan 5.

【図14】電子膨張弁8の開度ステップを示す図であ
る。
FIG. 14 is a diagram showing an opening step of the electronic expansion valve 8.

【図15】コンプレッサーの吐出側と吸入側の高低圧差
を示すグラフ図である。
FIG. 15 is a graph showing a high / low pressure difference between a discharge side and a suction side of a compressor.

【図16】暖房時におけるエンジンヒートポンプの冷媒
系統図である。
FIG. 16 is a refrigerant system diagram of the engine heat pump during heating.

【図17】暖房時における室外熱交換器における除霜処
理時のエンジンヒートポンプの冷媒系統図である。
FIG. 17 is a refrigerant system diagram of the engine heat pump during defrosting processing in the outdoor heat exchanger during heating.

【図18】暖房時における放熱回路開放時のエンジンヒ
ートポンプの冷媒系統図である。
FIG. 18 is a refrigerant system diagram of the engine heat pump when the heat radiation circuit is opened during heating.

【図19】調圧弁PVの側面図である。FIG. 19 is a side view of the pressure regulating valve PV.

【図20】同じく平面図である。FIG. 20 is a plan view of the same.

【図21】室温30℃を保持する場合における外気温度
に対する冷媒高圧の変位を示すグラフ図である。
FIG. 21 is a graph showing the displacement of the refrigerant high pressure with respect to the outside air temperature when the room temperature is maintained at 30 ° C.

【図22】冷媒高圧に対する室内機における吹き出し温
度の変位を示すグラフ図である。
FIG. 22 is a graph showing the displacement of the blowing temperature in the indoor unit with respect to the high pressure of the refrigerant.

【符号の説明】[Explanation of symbols]

A 室外機 B 室内機 PH 冷媒高圧 PL 冷媒低圧 BP1 ホットガスバイパス(均圧用バイパス回路) BP4 電動弁バイパス BP5 モジュレーティッドバイパス(調圧用バイパス
回路) SV1〜SV6 電磁弁 1 コンプレッサー 3 四方弁 5 室外ファン 6 室外熱交換器 8 室外電子膨張弁 9 リキッドレシーバー
A Outdoor unit B Indoor unit PH Refrigerant high pressure PL Refrigerant low pressure BP1 Hot gas bypass (equal pressure equalizing bypass circuit) BP4 Electric valve bypass BP5 Modulated bypass (pressure regulating bypass circuit) SV1 to SV6 Solenoid valve 1 Compressor 3 Four-way valve 5 Outdoor fan 6 Outdoor heat exchanger 8 Outdoor electronic expansion valve 9 Liquid receiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 哉 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 (72)発明者 増田 貴彦 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor, Haya Nakamura 1-32, Chayamachi, Kita-ku, Osaka, Osaka Prefecture Yanmar Diesel Co., Ltd. (72) Inventor, Takahiko Masuda 1-32, Chaya-machi, Kita-ku, Osaka-shi, Osaka Yanmar Diesel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジンヒートポンプの室外機におい
て、リキッドレシーバー内の液面を熱交換器の放熱管の
上下幅の途中部に重合する位置とし、かつ熱交換器の一
端より延設される冷媒管をリキッドレシーバーの下部に
導入したことを特徴とするエンジンヒートポンプの調圧
機構。
1. In an outdoor unit of an engine heat pump, a refrigerant pipe extending from one end of the heat exchanger at a position where the liquid level in the liquid receiver is superposed on the middle part of the vertical width of the heat radiating pipe of the heat exchanger. A pressure regulating mechanism for an engine heat pump, which is installed under the liquid receiver.
【請求項2】 エンジンヒートポンプの室外機にて、コ
ンプレッサー吐出回路より吸入回路に連通する均圧用バ
イパス回路における電磁弁開弁時に、冷媒系における他
の全電磁弁を開弁する均圧処理機構において、閉弁は、
四方弁、該均圧用バイパス回路の電磁弁、他の全電磁弁
の順に時差を設けたことを特徴とするエンジンヒートポ
ンプの調圧機構。
2. A pressure equalizing mechanism for opening all other solenoid valves in a refrigerant system when an solenoid valve is opened in a pressure equalizing bypass circuit communicating from a compressor discharge circuit to an intake circuit in an outdoor unit of an engine heat pump. , Valve closing
A pressure regulating mechanism for an engine heat pump, wherein a time difference is provided in the order of a four-way valve, a solenoid valve of the pressure equalizing bypass circuit, and all other solenoid valves.
【請求項3】 エンジンヒートポンプの室外機におい
て、コンプレッサーの吐出回路とリキッドレシーバーと
の間に調圧用バイパス回路を介設し、熱交換器冷却用フ
ァンの回転数制御、電子膨張弁の開度制御、及び該調圧
用バイパス回路における電磁弁の開閉制御によって、冷
房に要するコンプレッサー吸入回路の低圧冷媒圧力と、
コンプレッサー吐出回路と吸入回路との間における冷媒
の高低圧差を得ることを特徴とするエンジンヒートポン
プの調圧機構。
3. In an outdoor unit of an engine heat pump, a bypass circuit for adjusting pressure is provided between a discharge circuit of a compressor and a liquid receiver, and a rotation speed control of a heat exchanger cooling fan and an opening degree control of an electronic expansion valve are performed. By controlling the opening and closing of the solenoid valve in the pressure regulating bypass circuit, the low pressure refrigerant pressure of the compressor suction circuit required for cooling, and
A pressure regulating mechanism for an engine heat pump, characterized in that a high-low pressure difference of refrigerant is obtained between a compressor discharge circuit and a suction circuit.
JP11167195A 1995-05-10 1995-05-10 Engine heat pump outdoor unit Expired - Fee Related JP3516519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11167195A JP3516519B2 (en) 1995-05-10 1995-05-10 Engine heat pump outdoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11167195A JP3516519B2 (en) 1995-05-10 1995-05-10 Engine heat pump outdoor unit

Publications (2)

Publication Number Publication Date
JPH08303821A true JPH08303821A (en) 1996-11-22
JP3516519B2 JP3516519B2 (en) 2004-04-05

Family

ID=14567238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11167195A Expired - Fee Related JP3516519B2 (en) 1995-05-10 1995-05-10 Engine heat pump outdoor unit

Country Status (1)

Country Link
JP (1) JP3516519B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340435A (en) * 2001-05-16 2002-11-27 Sanyo Electric Co Ltd Air conditioner
JP2008164227A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Refrigerating device
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
CN110170291A (en) * 2019-03-28 2019-08-27 万荣金坦能源科技有限公司 It is a kind of for warm oneself and the liquid fuel extruding of combustion gas fission device system
US11592216B2 (en) 2018-09-12 2023-02-28 Carrier Corporation Liquid receiver for heating, air conditioning and refrigeration system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340435A (en) * 2001-05-16 2002-11-27 Sanyo Electric Co Ltd Air conditioner
JP2008164227A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Refrigerating device
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
US11592216B2 (en) 2018-09-12 2023-02-28 Carrier Corporation Liquid receiver for heating, air conditioning and refrigeration system
CN110170291A (en) * 2019-03-28 2019-08-27 万荣金坦能源科技有限公司 It is a kind of for warm oneself and the liquid fuel extruding of combustion gas fission device system
CN110170291B (en) * 2019-03-28 2023-11-14 万荣金坦能源科技有限公司 Liquid fuel puffing fission device system for heating and fuel gas

Also Published As

Publication number Publication date
JP3516519B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
US8117859B2 (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
EP2944898B1 (en) Liquid line charge compensator
KR101155497B1 (en) Heat pump type speed heating apparatus
US20100050669A1 (en) Air conditioning systems and methods having free-cooling pump-protection sequences
JPH0232546B2 (en)
JP7082098B2 (en) Heat source unit and refrigeration equipment
WO2018185841A1 (en) Refrigeration cycle device
JP2012007800A (en) Heat pump type hot-water supply and air-conditioning system
US10060654B2 (en) Heat pump type heating apparatus
KR20190005445A (en) Method for controlling multi-type air conditioner
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
KR100563899B1 (en) Waste heat recoverable air conditioner
KR100822432B1 (en) Air conditioner having auxiliary exchanger
JP3516519B2 (en) Engine heat pump outdoor unit
WO2019167250A1 (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP4031560B2 (en) Air conditioner
CN110476024B (en) Refrigeration cycle device
JP2017150689A (en) Air conditioner
KR101708933B1 (en) Refrigerant circulation system for Refrigerating apparatus
JP7195449B2 (en) Outdoor unit and refrigeration cycle equipment
KR20190005052A (en) Method for controlling multi-type air conditioner
CN115366936A (en) Air conditioning system for railway vehicle, control method of air conditioning system and railway vehicle
JP2004020153A (en) Engine heat pump

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040120

LAPS Cancellation because of no payment of annual fees