JPH08303466A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JPH08303466A
JPH08303466A JP12898795A JP12898795A JPH08303466A JP H08303466 A JPH08303466 A JP H08303466A JP 12898795 A JP12898795 A JP 12898795A JP 12898795 A JP12898795 A JP 12898795A JP H08303466 A JPH08303466 A JP H08303466A
Authority
JP
Japan
Prior art keywords
spacer
lubricant
rolling
rolling element
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12898795A
Other languages
Japanese (ja)
Inventor
Masahiro Kato
正啓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP12898795A priority Critical patent/JPH08303466A/en
Publication of JPH08303466A publication Critical patent/JPH08303466A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE: To well perform holding of lubricant between a spacers and rollers, so as to enable the smooth rotation to be maintained for a long period. CONSTITUTION: Rolling elements 3 consisting of cylindrical rollers are interposed between an inner ring 1 and an outer ring 2. Spacers 4 for keeping the distance between all the rolling elements 3 are interposed between all the rolling elements 3 arranged in the circumferential direction. Lubricant holding recessed parts 5 are provided on recessed cylindrical surface-shaped roller contact surfaces 4a of respective spacers 4. Each recessed part 5 may be formed into a single groove, a plurality of grooves or an unperforated hole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種産業機械や建設
機械、その他、機器一般に用いられる転がり軸受に関
し、特に、転動体間に保持器に代えて間座を介在させた
形式の円筒ころ軸受等の転がり軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing generally used for various industrial machines, construction machines and other equipment, and more particularly to a cylindrical roller bearing of a type in which a spacer is interposed between rolling elements instead of a cage. Etc. related to rolling bearings.

【0002】[0002]

【従来の技術】円筒ころ軸受において、図6に示すよう
に、内外輪71,72間の各ころ73の間隔を保つ手段
として、保持器に代えて間座74を介在させたものがあ
る。間座74は、同図(B)のように略角柱状に形成さ
れ、ころ73と接する転動体接触面74aは凹円筒面と
なっている。転動体接触面74aの曲率半径は、ころ7
3の曲率半径よりも大きくするのが普通であり、曲率差
の空間にグリース等の潤滑剤が保持される。
2. Description of the Related Art In a cylindrical roller bearing, as shown in FIG. 6, as a means for maintaining the distance between the rollers 73 between the inner and outer races 71, 72, there is a spacer 74 instead of a cage. The spacer 74 is formed in a substantially prismatic shape as shown in FIG. 7B, and the rolling element contact surface 74a that contacts the roller 73 is a concave cylindrical surface. The radius of curvature of the rolling element contact surface 74a is
It is usually larger than the radius of curvature of 3, and a lubricant such as grease is retained in the space of the difference in curvature.

【0003】[0003]

【発明が解決しようとする課題】ころ73の摺動や円周
方向の力により、間座74の転動体接触面74aに摩耗
や変形が起きる。その状態で潤滑剤が不足すると接触面
74aの摩耗が大きくなる。これにより、円周方向の隙
間が増大してころ73の案内が不十分となり、軸受の円
滑な回転に支障を来すことが起こる。
Due to the sliding of the rollers 73 and the force in the circumferential direction, the rolling element contact surface 74a of the spacer 74 is worn or deformed. If the lubricant is insufficient in this state, the contact surface 74a is greatly worn. As a result, the gap in the circumferential direction increases, and the guide of the roller 73 becomes insufficient, which hinders smooth rotation of the bearing.

【0004】この発明の目的は、間座と転動体間の潤滑
剤保持が良好に行えて、円滑な回転が長期間維持できる
転がり軸受を提供することである。
An object of the present invention is to provide a rolling bearing capable of favorably retaining a lubricant between a spacer and a rolling element and maintaining smooth rotation for a long period of time.

【0005】[0005]

【課題を解決するための手段】この発明の軸受は、円周
方向に隣合う転動体間に間座を介在させる転がり軸受に
おいて、前記間座の転動体接触面に潤滑剤保持凹部を設
けたものである。前記転がり軸受は円筒ころ軸受であっ
ても良く、その場合、前記間座は両面に凹円筒面状の転
動体接触面を有するものとする。また、前記転動体が球
形であって、前記間座が両面に凹球面状の転動体接触面
を有するものであっても良い。
A bearing according to the present invention is a rolling bearing in which a spacer is interposed between rolling elements that are circumferentially adjacent to each other, and a lubricant retaining recess is provided on a rolling element contact surface of the spacer. It is a thing. The rolling bearing may be a cylindrical roller bearing, and in this case, the spacer has concave cylindrical surface contact surfaces on both sides. Further, the rolling element may be spherical, and the spacer may have concave spherical contact surfaces on both sides.

【0006】[0006]

【作用】間座の潤滑剤保持凹部に潤滑剤が保持され、周
囲の潤滑剤が少なくなっても、この凹部の潤滑剤が転動
体と間座との摺動により、その接触面に供給させれる。
そのため、間座と転動体間の摩擦抵抗は小さいままに維
持される。
[Function] Even if the lubricant is retained in the lubricant retaining concave portion of the spacer and the amount of the peripheral lubricant is reduced, the lubricant of the concave portion is supplied to the contact surface by sliding of the rolling element and the spacer. Be done.
Therefore, the frictional resistance between the spacer and the rolling elements is kept small.

【0007】[0007]

【実施例】この発明の一実施例を図1に基づいて説明す
る。この転がり軸受は、内輪1と外輪2の間に円筒ころ
からなる転動体3を介在させ、円周方向に並ぶ各転動体
3間に間座4を介在させて各転動体3間の間隔を保つ円
筒ころ軸受において、各間座4の転動体接触面4aに潤
滑剤保持凹部5を設けたものである。外輪2は両鍔を有
するものとし、内輪1は片鍔のものとして鍔輪1Aを取
付けてある。なお、内輪1を両鍔とし、外輪2を片鍔で
側輪の取付けられたものとしても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. In this rolling bearing, a rolling element 3 composed of a cylindrical roller is interposed between an inner ring 1 and an outer ring 2, and a spacer 4 is interposed between rolling elements 3 arranged in the circumferential direction so that the distance between the rolling elements 3 is increased. In the cylindrical roller bearing to be kept, a lubricant retaining recess 5 is provided on the rolling element contact surface 4a of each spacer 4. The outer ring 2 has both flanges, and the inner ring 1 is a single flange and has a flange ring 1A attached. In addition, the inner ring 1 may have both flanges, and the outer ring 2 may have one side flange to which side wheels are attached.

【0008】間座4は、図1(C)に示すように略角柱
状とし、両側面を凹円筒面状の転動体接触面4aに形成
してある。間座4の材質は、金属であっても、樹脂であ
っても良く、好適な材質例を後に詳述する。潤滑剤保持
凹部5は、この例では円筒軸方向に延びる複数本の溝と
してあるが、未貫通の孔としても良い。また、この溝や
孔の個数は2個に限らず、1個であっても、また3個以
上であっても良い。
As shown in FIG. 1 (C), the spacer 4 has a substantially prismatic shape, and both side surfaces thereof are formed as rolling element contact surfaces 4a having a concave cylindrical surface shape. The material of the spacer 4 may be metal or resin, and a suitable material example will be described in detail later. In this example, the lubricant retaining recess 5 is a plurality of grooves extending in the cylindrical axis direction, but it may be a non-through hole. Further, the number of grooves and holes is not limited to two, and may be one or three or more.

【0009】図2(A)〜(F)は、潤滑剤保持凹部5
の各変形例を示す間座4の斜視図である。図2(A)の
例では、転動体接触面4aに円筒軸に対して互いにハ字
状に傾斜する一対の溝を設けて潤滑剤保持凹部5として
ある。図2(B)の例は、円筒軸に対して互いに同じ方
向に傾斜する複数本の溝を潤滑剤保持凹部5としてあ
る。図2(C)の例は、互いに交差した一対の溝を潤滑
剤保持凹部5としてある。図2(D)の例は、円筒面の
円周方向に延びる複数本の溝を潤滑剤保持凹部5として
ある。図2(E)の例は、両側の転動体接触面4a,4
aに設けた丸孔状の窪み部分を潤滑剤保持凹部5として
ある。図2(F)の例では、円筒軸方向に平行な細溝を
転動体接触面4aの全面に密に並べて潤滑剤保持凹部5
としてある。図2(C)のような互いに交差した一対の
溝形状では、少ない溝本数で間座4と転動体との摺動面
に均一にまんべんなく潤滑剤を供給することが可能であ
ると推定され、また溝本数も少ないので摺動面の接触面
圧を低減できることも考えられる。
2A to 2F show a lubricant holding recess 5
It is a perspective view of the spacer 4 which shows each modification of. In the example of FIG. 2 (A), the rolling element contact surface 4a is provided with a pair of grooves that are inclined with respect to the cylindrical axis in a V-shape to form the lubricant retaining recess 5. In the example of FIG. 2B, a plurality of grooves inclined in the same direction with respect to the cylinder axis are used as the lubricant retaining recess 5. In the example of FIG. 2C, a pair of grooves intersecting with each other is used as the lubricant retaining recess 5. In the example of FIG. 2D, a plurality of grooves extending in the circumferential direction of the cylindrical surface are used as the lubricant retaining recess 5. In the example of FIG. 2E, the rolling element contact surfaces 4a, 4 on both sides are
The round hole-shaped recessed portion provided in a is used as the lubricant retaining recess 5. In the example of FIG. 2 (F), the fine grooves parallel to the cylindrical axis direction are densely arranged on the entire surface of the rolling element contact surface 4a, and the lubricant retaining recess 5 is formed.
There is. It is presumed that the pair of groove shapes intersecting with each other as shown in FIG. 2C can uniformly supply the lubricant evenly to the sliding surface between the spacer 4 and the rolling elements with a small number of grooves. Further, since the number of grooves is small, it may be possible to reduce the contact surface pressure of the sliding surface.

【0010】潤滑剤保持凹部5とする溝の断面形状は、
例えば図3(A)〜(I)に示すように、種々の断面形
状とできる。すなわち、V形断面(A)、矩形断面
(B)、台形断面(C)、円弧状断面(D)、立て方向
の楕円弧状断面(E)、横方向の楕円弧状断面(F)等
とでき、またこれらの断面形状の溝開口縁に面取部を有
する断面形状(G)〜(I)等とできる。潤滑剤保持凹
部5となる溝は、金型の成形面の突条によって成形され
るため、金型の突条を加工し易い断面形状としても良
い。溝幅Bおよび深さHは、射出成形により成形できる
寸法とすることが好ましく、また潤滑剤の保持性や転動
体3との接触性の要求から、溝幅Bは転動体直径の約
0.001〜0.1倍程度の範囲が好ましく、約0.0
1〜0.05倍程度の範囲が最も好ましいと推定され
る。また、深さHは、溝幅Bと同程度の範囲が最も好ま
しいと推定される。図2(F)のように潤滑剤保持凹部
5となる溝を密に並べる場合、隣合う溝との間隔は、溝
幅Bと同程度とすることが好ましい。溝幅や溝深さの寸
法が大き過ぎると、間座と転動体との摺動部分の接触面
圧が高くなり、摩耗の原因となることや、強度低下等に
つながると考えられ、小さ過ぎるとグリース,潤滑剤等
の潤滑効果に期待できないと考えられる。
The cross-sectional shape of the groove to be the lubricant holding recess 5 is
For example, as shown in FIGS. 3A to 3I, various cross-sectional shapes can be used. That is, it can be a V-shaped section (A), a rectangular section (B), a trapezoidal section (C), an arcuate section (D), a vertical elliptical arc section (E), a lateral elliptical arc section (F), and the like. The cross-sectional shapes (G) to (I) having chamfered portions at the groove opening edges of these cross-sectional shapes can be used. Since the groove to be the lubricant holding concave portion 5 is formed by the ridge on the molding surface of the mold, it may have a cross-sectional shape that makes it easy to process the ridge of the mold. The groove width B and the depth H are preferably dimensioned so that they can be molded by injection molding, and the groove width B is about 0. A range of about 001 to 0.1 times is preferable, and about 0.0
It is estimated that the range of about 1 to 0.05 times is most preferable. Further, it is estimated that the depth H is most preferably in the same range as the groove width B. When the grooves to be the lubricant holding recesses 5 are densely arranged as shown in FIG. 2 (F), it is preferable that the distance between the adjacent grooves is about the same as the groove width B. If the groove width and groove depth are too large, the contact surface pressure at the sliding part between the spacer and the rolling element will be high, which may cause wear and lead to a decrease in strength. It is considered that the lubricating effect of grease, lubricant, etc. cannot be expected.

【0011】この構成によると、間座4の潤滑剤保持凹
部5にグリース等の潤滑剤が保持され、周囲の潤滑剤が
少なくなっても、この凹部5の潤滑剤が転動体3と間座
4との摺動により、その接触面に供給させれる。そのた
め、間座4と転動体3間の摩擦抵抗は小さいままに維持
される。また、摩擦抵抗が小さいため、摩耗も生じ難
く、隙間の増加も低く抑えられる。したがって、間座4
の転動体接触面4aによる適正な転動体3の案内が長期
にわたって維持される。
According to this structure, the lubricant such as grease is held in the lubricant holding concave portion 5 of the spacer 4, and even if the amount of the surrounding lubricant decreases, the lubricant in the concave portion 5 and the rolling element 3 and the spacer By sliding with 4, it is supplied to the contact surface. Therefore, the frictional resistance between the spacer 4 and the rolling elements 3 is maintained small. Further, since the frictional resistance is small, abrasion is unlikely to occur and the increase in the gap can be suppressed to a low level. Therefore, the spacer 4
The proper guide of the rolling element 3 by the rolling element contact surface 4a is maintained for a long period of time.

【0012】図4はこの発明の他の実施例を示す。この
実施例は、スラスト自動調心ころ軸受に適用した例であ
る。内輪21と外輪22の間に、たる形のころからなる
転動体23を介在させ、円周方向に並ぶ各転動体23間
に間座24を介在させてある。間座24は、図1の円筒
ころ軸受の場合と略同様な形状であるが、間座24の両
面の転動体接触面24aは、たる形の転動体23の外径
面に応じて球面状に形成してある。この転動体接触面2
4aに潤滑剤保持凹部5が形成してある。潤滑剤保持凹
部5は、図2,図3等と共に前述した各種の構成のもの
とできる。なお、θは調心角を示す。この構成の場合
も、間座24の潤滑剤保持凹部5に保持される潤滑剤に
より、長期にわたって良好な潤滑機能が得られる。
FIG. 4 shows another embodiment of the present invention. This embodiment is an example applied to a thrust spherical roller bearing. A rolling element 23 composed of barrel-shaped rollers is interposed between the inner ring 21 and the outer ring 22, and a spacer 24 is interposed between the rolling elements 23 arranged in the circumferential direction. The spacer 24 has substantially the same shape as that of the cylindrical roller bearing of FIG. 1, but the rolling element contact surfaces 24a on both sides of the spacer 24 are spherical according to the outer diameter surface of the barrel-shaped rolling element 23. It is formed on. This rolling element contact surface 2
A lubricant holding recess 5 is formed in 4a. The lubricant retaining recess 5 may have the various configurations described above with reference to FIGS. Note that θ indicates the centering angle. Also in this configuration, the lubricant retained in the lubricant retaining recess 5 of the spacer 24 can provide a good lubricating function for a long period of time.

【0013】図5はこの発明のさらに他の実施例を示
す。この例は旋回座軸受に適用した例である。内輪41
と外輪42の間に鋼球からなる多数の転動体43が全周
にわたって配置され、隣合う各転動体43,43間に間
座44が介在される。外輪42は架台への取付用のボル
ト孔50が形成してあり、内輪41の内径面には旋回駆
動用のピニオン46に噛み合う内歯歯車47が一体に形
成されている。内輪41および外輪42には、転動体4
3を転走させる環状の軌道溝48,49が対面して形成
してあり、この軌道溝48,49内に転動体43および
間座44が配置される。間座44は円柱状に形成され
て、両面に凹球面状の転動体接触面44aが形成され、
これら転動体接触面44aに潤滑剤保持凹部5が形成し
てある。潤滑剤保持凹部5は、図2,図3等と共に前述
した各種の形状のものとできる。この構成の場合も、間
座44の潤滑剤保持凹部5に保持される潤滑剤により、
長期にわたって良好な潤滑機能が得られる。
FIG. 5 shows still another embodiment of the present invention. This example is an example applied to a swivel bearing. Inner ring 41
A large number of rolling elements 43 made of steel balls are arranged between the outer ring 42 and the outer ring 42, and a spacer 44 is interposed between the adjacent rolling elements 43, 43. The outer ring 42 is formed with a bolt hole 50 for attachment to a pedestal, and the inner ring 41 is integrally formed with an internal gear 47 which meshes with a pinion 46 for turning drive. The inner race 41 and the outer race 42 have rolling elements 4
The annular raceway grooves 48 and 49 for rolling the 3 are formed so as to face each other, and the rolling elements 43 and the spacers 44 are arranged in the raceway grooves 48 and 49. The spacer 44 is formed in a cylindrical shape, and the rolling element contact surfaces 44a having a concave spherical surface are formed on both surfaces.
The lubricant retaining recess 5 is formed on these rolling element contact surfaces 44a. The lubricant holding concave portion 5 can have various shapes described above with reference to FIGS. Also in this configuration, the lubricant held in the lubricant holding recess 5 of the spacer 44
A good lubricating function can be obtained over a long period of time.

【0014】次に、前記各実施例の間座4を金属製とす
る場合の好ましい材質例を説明する。間座4を金属製と
する場合は、銅系合金が好ましく、この他にS30C等
の機械構造用炭素鋼も用いることができる。黄銅等の銅
系金属は、一般の鋼よりも比較的摺動特性が良く、また
軟らかくて鍛造やプレス加工が行い易い点で好ましい。
銅系合金への溝からなる潤滑剤保持凹部5の形成方法
は、切削、冷間鍛造、熱間鍛造等、特に限定されない。
比較的、精度を必要としない凹部、例えば溝幅B、ある
いは溝深さHが、転動体直径の約0.01〜0.1倍程
度、また転動体直径の約0.01〜0.05倍以上であ
れば、間座の鋳型に前記の溝に対応する部位を形成し、
鋳型として、間座を成形する時に効率よく間座の成形と
同時に前記溝を形成することができる。特に精度を必要
としなければ、前記溝の精度を上げるための後加工等を
省略してもよい。しかし、転動体直径が、比較的小型の
ものや、また、前記の溝にある程度の精度を要求される
場合には、鍛造で形成すると比較的容易に効率良く溝加
工を行うことができると推定される。この場合、間座4
は、例えば潤滑剤保持凹部5を有しない形状に鋳造等で
形成し、あるいは、後加工が可能な程度の、例えば前記
の数値の倍数よりも小さく浅い凹部を形成する程度の形
状に鋳造等で形成する等して、この形状の素材に、焼き
なましを施した後、鍛造やプレス加工で潤滑剤保持凹部
5となる溝を形成するようにしてもよい。特に、次の高
力黄銅鋳物の場合にこの溝成形方法が効果的である。前
記の焼きなまし過程は精度を要求される場合に歪み取り
のために行われるが、この過程は省略しても良い。間座
4に用いる銅系金属としては、黄銅が好ましく、この中
で六四黄銅や高力黄銅が好ましい。高力黄銅は、六四黄
銅にマンガン(Mn)を0.1〜5.0%添加し、場合
によりこの他にAl,Fe,Sn,Ni等の成分を若干
添加したものであり、それらのα相やβ相への固溶によ
って強くなり、耐食性および耐摩耗性も増したものとな
る。
Next, an example of a preferable material when the spacer 4 in each of the embodiments is made of metal will be described. When the spacer 4 is made of metal, a copper alloy is preferable, and in addition to this, carbon steel for mechanical structure such as S30C can also be used. Copper-based metals such as brass are preferable because they have relatively better sliding characteristics than general steel, are soft, and can be easily forged or pressed.
The method of forming the lubricant retaining recess 5 formed of a groove in the copper alloy is not particularly limited, such as cutting, cold forging, and hot forging.
Recesses that do not require relatively high precision, such as the groove width B or the groove depth H, are about 0.01 to 0.1 times the diameter of the rolling element, or about 0.01 to 0.05 of the diameter of the rolling element. If it is more than twice, form a part corresponding to the groove in the mold of the spacer,
As a mold, when molding a spacer, the groove can be efficiently formed at the same time when the spacer is molded. If precision is not particularly required, post-processing or the like for increasing the precision of the groove may be omitted. However, if the rolling element has a relatively small diameter, and if the above-mentioned groove requires a certain degree of accuracy, it is estimated that the groove can be relatively easily and efficiently formed by forging. To be done. In this case, spacer 4
Can be formed, for example, by casting in a shape having no lubricant retaining recess 5, or by casting or the like in such a shape that a post-processing is possible, for example, a shallow recess smaller than a multiple of the above numerical value is formed. For example, the material having this shape may be annealed, and then a groove serving as the lubricant retaining recess 5 may be formed by forging or pressing. This groove forming method is particularly effective for the following high strength brass castings. The above-mentioned annealing process is carried out to eliminate distortion when accuracy is required, but this process may be omitted. As the copper-based metal used for the spacer 4, brass is preferable, and among these, 64 brass and high strength brass are preferable. The high-strength brass is made by adding 0.1 to 5.0% of manganese (Mn) to hex brass and, if necessary, slightly adding components such as Al, Fe, Sn, and Ni. It becomes stronger due to solid solution in the α phase and β phase, and the corrosion resistance and wear resistance are also increased.

【0015】高力黄銅鋳物は、JIS規格では1種(H
S C1)、1種C(HBS C1C)、2種(HBS
2)、2種C(HBS C2C)、3種(HBS C3)、
3種C(HBS C3C)、4種(HBS C4)、4種C
(HBS C4C)の8種類に区別されている。その化学
成分は表1の通りである。この他にSn,Ni,Pb,
Si等の成分を微量に含む場合がある。なお、1種Cは
1種と、2種Cは2種と、3種Cは3種と、4種Cは4
種とそれぞれ同じ成分である。
High-strength brass castings are classified as JIS Class 1 (H
B S C1), 1 type C (HB S C1C), 2 types (HB S C
2) 2 types C (HB S C2C), 3 types (HB S C3),
3 types C (HB S C3C), 4 types (HB S C4), 4 types C
(HB S C4C) are classified into eight types. Its chemical composition is shown in Table 1. Besides this, Sn, Ni, Pb,
In some cases, a small amount of components such as Si may be included. In addition, 1 kind C is 1 kind, 2 kinds C is 2 kinds, 3 kinds C is 3 kinds, and 4 kinds C is 4 kinds.
It has the same ingredients as the seeds.

【0016】[0016]

【表1】 [Table 1]

【0017】このうち、1種および1種Cは、強さ、硬
さが高く、耐食性が良く、軸受保持器にも使用されてい
る。2種および2種Cは、強さが高く、耐摩耗性が良く
て、軸受保持器にも使用されている。3種および3種C
は、特に硬さが高く、耐摩耗性が良くて、低速高荷重の
摺動部品等に使用されている。4種および4種Cは3種
よりも強さ,硬さが高く、耐摩耗性が良くて、低速高荷
重の摺動部品等に使用されている。ブリネル硬さ(H
B)で硬度を示すと、1種および1種Cは90以上、2
種および2種Cは100以上、3種および3種Cは16
5以上、4種および4種Cは200以上である。圧縮耐
力をKgf/mm2 で示すと、1種は19.0、1種Cは1
9.5、2種は25.0、3種は39.0、4種は4
7.0である。
Of these, Type 1 and Type C have high strength and hardness, good corrosion resistance, and are also used in bearing cages. Class 2 and Class C have high strength and good wear resistance, and are also used in bearing cages. 3 types and 3 types C
Has particularly high hardness and good wear resistance, and is used for low-speed, high-load sliding parts and the like. Type 4 and Type 4 C have higher strength and hardness than Type 3, have good wear resistance, and are used for low-speed, high-load sliding parts and the like. Brinell hardness (H
In terms of hardness in B), Type 1 and Type C are 90 or more, 2
100 or more for species and 2 species C, 16 for 3 and 3 species C
5 or more, 4 types and 4 types C are 200 or more. When the compression strength is expressed in Kgf / mm 2 , 1 type is 19.0 and 1 type is 1
9.5, 2 types 25.0, 3 types 39.0, 4 types 4
It is 7.0.

【0018】この発明および実施例における間座4に使
用する高力黄銅鋳物としては、上記のいずれのものでも
良く、軸受の大きさや使用条件に応じて前記のうちの適
宜の成分のものを選択する。すなわち、成分として、銅
(Cu)が55〜65%、亜鉛(Zn)が22〜42
%、マンガン(Mn)が0.1〜5.0%含むものであ
れば良い。このうち、ブリネル硬さ(HB)で約90〜
130程度の黄銅,高力黄銅鋳物は、焼き入れ前の機械
構造用炭素鋼のS45Cの約HB200や、S30Cの
約130程度と比べてみて、非常に軟らかい。そのた
め、冷間や熱間鍛造、特に熱間鍛造やプレス加工等で潤
滑剤保持凹部5となる溝を形成することが容易と考えら
れる。高力黄銅鋳物の機械的性質と温度との関係は、前
記の1種のものでは、ブリネル硬さ(HB)で、0℃な
いし常温で97程度のものが、100℃では94程度
に、200℃では85程度、210℃で80程度と軟ら
かくなる。熱間鍛造は、材料を加熱し、再結晶温度以上
固相線温度未満の温度範囲で行う鍛造であるが、前記の
ような温度と高度との関係から、熱間鍛造でなくても、
ある程度加熱した状態で鍛造またはプレス加工すること
で、容易に潤滑剤保持凹部5となる溝を形成できると考
えられる。なお、高力黄銅鋳物は凝固温度範囲が狭いの
で、本質的に青銅鋳物のような微細に分散した収縮巣を
発生し難いので、静かに注湯して酸化物の巻き込み防止
を図り、鋳込温度等への十分な配慮がなされれば、健全
な鋳物が得られる。高力黄銅鋳物は、青銅鋳物に比べて
はるかに肉厚感受性が小さい。
The high-strength brass casting used for the spacer 4 in the present invention and the examples may be any of the above-mentioned ones, and any one of the above-mentioned appropriate components may be selected depending on the size of the bearing and the operating conditions. To do. That is, as components, 55 to 65% of copper (Cu) and 22 to 42 of zinc (Zn) are included.
%, Manganese (Mn) may be contained in an amount of 0.1 to 5.0%. Of these, the Brinell hardness (HB) is approximately 90-
Brass and high strength brass castings of about 130 are very soft compared to about HB200 of S45C and about 130 of S30C which are carbon steel for machine structural use before quenching. Therefore, it is considered that it is easy to form the groove to be the lubricant retaining recess 5 by cold or hot forging, particularly hot forging or press working. The relationship between the mechanical properties and the temperature of the high strength brass casting is such that one of the above-mentioned ones has a Brinell hardness (HB) of about 97 at 0 ° C. to room temperature and about 94 at 100 ° C. It becomes soft at about 85 ° C and about 80 at 210 ° C. Hot forging is a forging performed by heating a material in a temperature range of a recrystallization temperature or more and a solidus temperature or less, but because of the relationship between the temperature and the altitude as described above, it is not a hot forging,
It is considered that the groove serving as the lubricant retaining recess 5 can be easily formed by forging or pressing while heating to some extent. Since high-strength brass castings have a narrow solidification temperature range, it is essentially difficult to generate finely dispersed shrinkage cavities like bronze castings. A sound casting can be obtained if sufficient consideration is given to temperature and the like. High strength brass castings are much less sensitive to wall thickness than bronze castings.

【0019】前記各実施例の間座4を樹脂製とする場合
の材質例を説明する。間座4に使用する樹脂は、射出成
形可能な樹脂であることが好ましく、また繊維や他の充
填材が混合していても、射出形成可能な配合となってい
れば良い。一般に樹脂材料は、樹脂自体に多かれ少なか
れ潤滑特性を備えており、好ましいと考えられる。間座
に適した樹脂の材質を例示すると、次の材質が使用でき
る。すなわち、フッ素系樹脂としては、ポリテトラフル
オロエチレン(PTFE)、テトラフルオロエチレン−
パーフルオロアルキルビニルエーテル共重合体(PF
A)や、テトラフルオロエチレン−エチレン共重合体
(ETFE)等が用いられ、またポリアミド(ナンロン
66、ナイロン6)や、布入りフェノール樹脂等も使用
できる。この他に、ポリフェニレンサルファイド樹脂に
オルガノポリシロキサンエラストマーと繊維状強化材と
を添加した組成物や、あるいはポリエーテルニトリル等
のポリシアノアリールエーテル樹脂を主要成分とし、四
フッ化エチレン樹脂、黒鉛、ガラスファイバー等の適量
の充填材を添加した材料が使用できる。
An example of the material when the spacer 4 of each of the above-mentioned embodiments is made of resin will be described. The resin used for the spacer 4 is preferably a resin that can be injection-molded, and even if fibers and other fillers are mixed, a composition that allows injection-molding is sufficient. Generally, the resin material is considered to be preferable because the resin material has more or less lubricating properties in itself. Examples of the resin material suitable for the spacer include the following materials. That is, as the fluororesin, polytetrafluoroethylene (PTFE), tetrafluoroethylene-
Perfluoroalkyl vinyl ether copolymer (PF
A), tetrafluoroethylene-ethylene copolymer (ETFE) or the like is used, and polyamide (Nanron 66, nylon 6), cloth-containing phenol resin or the like can also be used. In addition, a composition obtained by adding an organopolysiloxane elastomer and a fibrous reinforcing material to a polyphenylene sulfide resin, or a polycyanoaryl ether resin such as polyether nitrile as a main component, a tetrafluoroethylene resin, graphite, glass A material to which an appropriate amount of filler such as fiber is added can be used.

【0020】また、耐熱性繊維を含有するパーフルオロ
アルコキシ樹脂も好ましく、耐熱性繊維5〜40重量%
と、パーフルオロアルコキシ樹脂30〜90重量%と、
モリブデン粉末、モリブデン化合物粉末およびカルシウ
ム化合物粉末から選ばれる一種以上の粉末添加材5〜3
0重量%とを配合した組成物も好ましい。この場合の耐
熱性繊維の具体例としては、ガラス繊維、炭素繊維、グ
ラファイト繊維、ウオラストナイト、チタン酸カリウム
ホイスカー、シリコンカーバイトホイスカー、サファイ
アホイスカーなどの無機繊維およびホイスカー類、鋼
線、銅線、ステンレス線などの金属繊維、タングステン
心線または炭素繊維などにポロン、炭化ケイ素などを蒸
着したいわゆるボロン繊維、炭化ケイ素繊維などの複合
繊維および芳香族ポリイミド繊維などの耐熱性有機繊維
を挙げることが出来る。繊維の形態としては、射出成形
の容易さの面から、長さが10mm以下好ましくは6mm以
下、その径は2〜15μm位の繊維状の粉末であること
が望ましい。また繊維と樹脂との親和性を増加させる目
的でシランカップリング剤などの処理剤で繊維を処理し
ておくことも望ましい。
Further, a perfluoroalkoxy resin containing a heat resistant fiber is also preferable, and the heat resistant fiber is 5 to 40% by weight.
And 30 to 90% by weight of perfluoroalkoxy resin,
One or more powder additive materials 5 to 3 selected from molybdenum powder, molybdenum compound powder and calcium compound powder
A composition containing 0% by weight is also preferable. Specific examples of the heat-resistant fiber in this case, glass fiber, carbon fiber, graphite fiber, wollastonite, potassium titanate whiskers, silicon carbide whiskers, inorganic fibers and whiskers such as sapphire whiskers, steel wire, copper wire Examples include metal fibers such as stainless wires, tungsten fibers or carbon fibers, so-called boron fibers obtained by vapor deposition of polon, silicon carbide, etc., composite fibers such as silicon carbide fibers, and heat-resistant organic fibers such as aromatic polyimide fibers. I can. From the viewpoint of ease of injection molding, the form of the fiber is preferably a fibrous powder having a length of 10 mm or less, preferably 6 mm or less and a diameter of 2 to 15 μm. It is also desirable to treat the fibers with a treating agent such as a silane coupling agent for the purpose of increasing the affinity between the fibers and the resin.

【0021】この組成物におけるモリブデン化合物粉末
は、モリブデンの2〜6価の種々の化合物であって、た
とえば二硫化モリブデン、三酸化モリブデンなどが挙げ
られる。カルシウム化合物粉末としては、フッ化カルシ
ウム、炭酸カルシウム、酸化カルシウムなどが挙げられ
る。上記粉末およびモリブデン粉末の粒径は50μm以
下であることが間座の機械的耐久性、潤滑性を高める上
で好ましい。ここで、パーフルオロアルコキシ樹脂に対
する上記耐熱性繊維の添加量は、成分全体の重量を10
0として、パーフルオロアルコキシ樹脂50〜95重量
%、耐熱性繊維5〜50重量%であることが好ましく、
特にパーフルオロアルコキシ樹脂60〜90重量%、耐
熱性繊維10〜40重量%であることがより望ましい。
なぜならば、耐熱性繊維の添加量が5重量%未満のとき
は組成物の機械的性質、耐摩耗性の向上は殆んど期待出
来ず、また50重量%を越える多量では成形性の悪化と
ともにそれに伴う機械的性質の劣化を招き好ましくない
からである。さらに、前記2成分にモリブデン粉末、モ
リブデン化合物粉末およびカルシウム化合物粉末から選
ばれる一種以上の粉末充填材を添加する場合の配合割合
は、耐熱性繊維5〜40重量%、パーフルオロアルコキ
シ樹脂30〜90重量%に対して粉末充填剤5〜30重
量%である。なぜなら、粉末充填剤の添加量が5重量%
未満の少量では潤滑性向上がみられず、30重量%を越
える多量では間座の機械的耐久性に好ましくない結果を
与えるからである。
The molybdenum compound powder in this composition is various molybdenum divalent to hexavalent compounds such as molybdenum disulfide and molybdenum trioxide. Examples of the calcium compound powder include calcium fluoride, calcium carbonate, calcium oxide and the like. The particle size of the above powder and molybdenum powder is preferably 50 μm or less in order to improve the mechanical durability and lubricity of the spacer. Here, the amount of the heat-resistant fiber added to the perfluoroalkoxy resin is 10 parts by weight of the entire component.
0 is preferably 50 to 95% by weight of perfluoroalkoxy resin and 5 to 50% by weight of heat resistant fiber,
Particularly, it is more preferable that the perfluoroalkoxy resin is 60 to 90% by weight and the heat resistant fiber is 10 to 40% by weight.
This is because when the amount of the heat-resistant fiber added is less than 5% by weight, improvement in mechanical properties and abrasion resistance of the composition can hardly be expected, and when it is more than 50% by weight, moldability deteriorates. This is because it is not preferable because it causes deterioration of mechanical properties. Furthermore, when one or more powder fillers selected from molybdenum powder, molybdenum compound powder and calcium compound powder are added to the above two components, the compounding ratio is 5 to 40% by weight of heat resistant fiber, 30 to 90% of perfluoroalkoxy resin. Powder filler is 5 to 30% by weight with respect to% by weight. Because the amount of powder filler added is 5% by weight
If it is less than 30% by weight, the lubricity is not improved, and if it exceeds 30% by weight, the mechanical durability of the spacer is not preferable.

【0022】また、上記以外の各種の充填材を添加する
こともできる。一般にその添加量は全量の10%以下が
望ましい。このような充填材として、芳香族ポリエーテ
ルケトン系樹脂、ポリエーテルイミド樹脂、ポリエーテ
ルサルフォン樹脂、ポリアミドイミド樹脂、ポリフェニ
レンサルファイド樹脂、耐熱性ポリアミド樹脂、フェノ
ール系樹脂、芳香族系ポリエステル樹脂、熱可塑性ポリ
イミド樹脂、シリコーン樹脂、フッ素系樹脂等の有機質
耐熱性高分子材料を始めとし、グラファイトまたは亜
鉛、アルミニウム、マグネシウムなどの金属もしくは酸
化物などの熱伝導改良用無機粉末、ガラスビーズ、シリ
カバルーン、挂藻土、石綿、炭酸マグネシウム等の無機
質粉末、グラファイト、カーボン、マイカ、タルク等の
潤滑性向上用無機質粉末、および酸化鉄、硫化カドミウ
ム、セレン化カドミウム、カーボンブラック等の無機質
顔料、シリコーンオイル、エステルオイル、フッ素オイ
ル、ポリフェニレンエーテルオイル、ワックス、ステア
リン酸亜鉛などの内部滑剤的添加剤など数多くのものを
例示することができる。以上述べたパーフルオロアルコ
キシ樹脂、繊維状強化材およびその他添加剤等の混合方
法は、特に限定されるものではなく、ヘンシェルミキサ
ー、ボールミル、タンブラーミキサー等の混合機を用い
て乾式混合した後に、熱ロール、ニーダ、バンバリーミ
キサー、溶融押出機などで溶融混合して成形材料として
たとえばペレット状にし、これを射出成形機などによっ
て間座として所定の形状に溶融成形すればよい。成形条
件は特に限定されることなく、パーフルオロアルコキシ
樹脂の通常の成形条件で実施すればよい。
Further, various fillers other than the above may be added. Generally, the amount added is preferably 10% or less of the total amount. As such fillers, aromatic polyetherketone resins, polyetherimide resins, polyethersulfone resins, polyamideimide resins, polyphenylene sulfide resins, heat resistant polyamide resins, phenolic resins, aromatic polyester resins, heat Starting with organic heat-resistant polymer materials such as plastic polyimide resin, silicone resin, fluorine-based resin, graphite or zinc, aluminum, inorganic powder for improving heat conduction such as metal or oxide such as magnesium, glass beads, silica balloon, Omiaceous earth, asbestos, inorganic powder such as magnesium carbonate, graphite, carbon, mica, inorganic powder for improving lubricity such as talc, and iron oxide, cadmium sulfide, cadmium selenide, inorganic pigments such as carbon black, silicone oil, S Ruoiru, fluorine oil, polyphenylene ether oils, waxes, can be exemplified a number of things such as internal lubricant additives, such as zinc stearate. The mixing method of the above-mentioned perfluoroalkoxy resin, fibrous reinforcing material and other additives is not particularly limited, and after heat-mixing with a mixer such as a Henschel mixer, a ball mill or a tumbler mixer, heat For example, pellets may be formed as a molding material by melt-mixing with a roll, a kneader, a Banbury mixer, a melt extruder, etc., and this may be melt-molded into a predetermined shape as a spacer by an injection molding machine or the like. Molding conditions are not particularly limited, and may be carried out under normal molding conditions of perfluoroalkoxy resin.

【0023】この組成物の場合の成形方法としては、所
定の割合で各素材をドライブレンドした後、二軸溶融押
出機に供給して360℃、スクリュー回転数150rp
mで溶融混練しながら径3mmの穴5個のストランドダイ
から押出し、押出されたストランドを連続的に切断して
ペレットを作製し、得られたペレットを射出成形機(バ
レル温度320〜380℃、金型温度210℃、射出圧
力800kg/cm2 )にかけて定められた間座形状に成形
する方法等が採用できる。このように射出成形方法を採
用することにより、間座に前記潤滑剤保持凹部形状を比
較的容易に形成できる。
As a molding method in the case of this composition, each material is dry blended at a predetermined ratio and then fed to a twin-screw melt extruder at 360 ° C. and a screw rotation speed of 150 rp.
While extruding from a strand die having 5 holes with a diameter of 3 mm while melt-kneading at m, pellets are produced by continuously cutting the extruded strands, and the obtained pellets are injection-molded (barrel temperature 320 to 380 ° C., A method of molding into a predetermined spacer shape by applying a mold temperature of 210 ° C. and an injection pressure of 800 kg / cm 2 can be adopted. By adopting the injection molding method as described above, it is possible to relatively easily form the lubricant retaining recess shape in the spacer.

【0024】[0024]

【発明の効果】この発明は、円周方向に隣合う転動体間
に間座を介在させる転がり軸受において、間座の転動体
接触面に潤滑剤保持凹部を設けたため、周囲の潤滑剤が
少なくなると、前記凹部に保持された潤滑剤が接触面に
供給され、円滑な回転が長期にわたって維持される。特
に、円筒ころ軸受の場合に、このような潤滑剤保持凹部
の形成による円滑な回転の維持が効果的に得られる。ま
た、転動体が球形の場合にも、前記の潤滑剤保持凹部の
形成による円滑な回転の維持が効果的に得られる。
According to the present invention, in a rolling bearing in which a spacer is interposed between rolling elements adjacent to each other in the circumferential direction, a lubricant retaining recess is provided on the rolling element contact surface of the spacer, so that the surrounding lubricant is reduced. Then, the lubricant retained in the recess is supplied to the contact surface, and smooth rotation is maintained for a long period of time. Particularly in the case of a cylindrical roller bearing, smooth rotation can be effectively maintained by forming such a lubricant retaining recess. Further, even when the rolling element is spherical, the smooth rotation can be effectively maintained by forming the lubricant retaining recess.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施例にかかる転がり軸
受を示す部分破断正面図、(B)はその部分破断側面
図、(C)はその間座の拡大斜視図である。
1A is a partially cutaway front view showing a rolling bearing according to an embodiment of the present invention, FIG. 1B is a partially cutaway side view thereof, and FIG. 1C is an enlarged perspective view of a spacer thereof.

【図2】(A)〜(F)は各々間座の潤滑剤保持凹部の
各種の変形例を示す斜視図である。
2A to 2F are perspective views showing various modified examples of a lubricant holding recessed portion of a spacer.

【図3】(A)〜(I)は各々間座の潤滑剤保持凹部の
断面形状の各種変形例を示す断面図である。
3A to 3I are cross-sectional views showing various modified examples of the cross-sectional shape of the lubricant retaining recess of the spacer.

【図4】この発明のさらに他の実施例にかかる軸受の断
面図およびその間座の拡大斜視図である。
FIG. 4 is a sectional view of a bearing according to still another embodiment of the present invention and an enlarged perspective view of a spacer thereof.

【図5】この発明のさらに他の実施例にかかる軸受の平
面図、拡大断面図、その間座の断面図、および同間座の
斜視図である。
5A and 5B are a plan view, an enlarged sectional view, a sectional view of a spacer thereof, and a perspective view of the spacer according to still another embodiment of the present invention.

【図6】従来例の部分破断正面図およびその間座の拡大
斜視図である。
FIG. 6 is a partially cutaway front view of a conventional example and an enlarged perspective view of a spacer thereof.

【符号の説明】[Explanation of symbols]

1…内輪、2…外輪、3…転動体、4…間座、4a…転
動体接触面、5…潤滑剤保持凹部、24,34,44…
間座、24a,34a、34b,44a…転動体接触面
DESCRIPTION OF SYMBOLS 1 ... Inner ring, 2 ... Outer ring, 3 ... Rolling element, 4 ... Spacer, 4a ... Rolling element contact surface, 5 ... Lubricant holding recess, 24, 34, 44 ...
Spacers, 24a, 34a, 34b, 44a ... Roller contact surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円周方向に隣合う転動体間に間座を介在
させる転がり軸受において、前記間座の転動体接触面に
潤滑剤保持凹部を設けたことを特徴とする転がり軸受。
1. A rolling bearing in which a spacer is interposed between rolling elements adjacent to each other in the circumferential direction, wherein a rolling bearing contact surface of the spacer is provided with a lubricant retaining recess.
【請求項2】 前記転がり軸受が円筒ころ軸受であり、
前記間座が両面に凹円筒面状の転動体接触面を有するも
のである請求項1記載の転がり軸受。
2. The rolling bearing is a cylindrical roller bearing,
2. The rolling bearing according to claim 1, wherein the spacer has a concave cylindrical surface-shaped rolling element contact surface on both sides.
【請求項3】 前記転動体が球形であって、前記間座が
両面に凹球面状の転動体接触面を有するものである請求
項1記載の転がり軸受。
3. The rolling bearing according to claim 1, wherein the rolling element has a spherical shape, and the spacer has a concave spherical contact surface on both sides.
JP12898795A 1995-04-28 1995-04-28 Rolling bearing Pending JPH08303466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12898795A JPH08303466A (en) 1995-04-28 1995-04-28 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12898795A JPH08303466A (en) 1995-04-28 1995-04-28 Rolling bearing

Publications (1)

Publication Number Publication Date
JPH08303466A true JPH08303466A (en) 1996-11-19

Family

ID=14998327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12898795A Pending JPH08303466A (en) 1995-04-28 1995-04-28 Rolling bearing

Country Status (1)

Country Link
JP (1) JPH08303466A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305340A (en) * 1997-05-07 1998-11-17 Toyo Seikan Kaisha Ltd Cover transfer device
JP2001317605A (en) * 2000-02-29 2001-11-16 Ntn Corp Ball screw
JP2007162917A (en) * 2005-12-16 2007-06-28 Ntn Corp Roller bearing
JP2007170572A (en) * 2005-12-22 2007-07-05 Ntn Corp Radial roller bearing
JP2007198589A (en) * 2005-09-01 2007-08-09 Ntn Corp Roller bearing
JP2007232187A (en) * 2006-03-03 2007-09-13 Ntn Corp Cylindrical roller bearing for transmission
JP2007232186A (en) * 2006-03-03 2007-09-13 Ntn Corp Cylindrical roller bearing for wind power generator speed increasing gear
WO2009062466A2 (en) * 2007-11-15 2009-05-22 Schaeffler Kg Profiled spacer for a crossed roller bearing
JP2011027188A (en) * 2009-07-27 2011-02-10 Ntn Corp Rotating bearing and rotating section support device for wind turbine
US8523451B2 (en) 2005-09-01 2013-09-03 Ntn Corporation Roller bearing
DE102004046789B4 (en) * 2003-09-30 2014-10-09 Ntn Corp. Cylindrical roller bearings

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305340A (en) * 1997-05-07 1998-11-17 Toyo Seikan Kaisha Ltd Cover transfer device
JP2001317605A (en) * 2000-02-29 2001-11-16 Ntn Corp Ball screw
DE102004046789B4 (en) * 2003-09-30 2014-10-09 Ntn Corp. Cylindrical roller bearings
JP2007198589A (en) * 2005-09-01 2007-08-09 Ntn Corp Roller bearing
US8523451B2 (en) 2005-09-01 2013-09-03 Ntn Corporation Roller bearing
JP2007162917A (en) * 2005-12-16 2007-06-28 Ntn Corp Roller bearing
JP2007170572A (en) * 2005-12-22 2007-07-05 Ntn Corp Radial roller bearing
JP4611191B2 (en) * 2005-12-22 2011-01-12 Ntn株式会社 Radial roller bearings
JP4708221B2 (en) * 2006-03-03 2011-06-22 Ntn株式会社 Cylindrical roller bearing for wind power generator
JP2007232187A (en) * 2006-03-03 2007-09-13 Ntn Corp Cylindrical roller bearing for transmission
JP2007232186A (en) * 2006-03-03 2007-09-13 Ntn Corp Cylindrical roller bearing for wind power generator speed increasing gear
WO2009062466A3 (en) * 2007-11-15 2009-11-12 Schaeffler Kg Profiled spacer for a crossed roller bearing
WO2009062466A2 (en) * 2007-11-15 2009-05-22 Schaeffler Kg Profiled spacer for a crossed roller bearing
CN102472322A (en) * 2009-07-27 2012-05-23 Ntn株式会社 Rotating shaft bearing and rotating section support device for wind turbine
JP2011027188A (en) * 2009-07-27 2011-02-10 Ntn Corp Rotating bearing and rotating section support device for wind turbine
US8944692B2 (en) 2009-07-27 2015-02-03 Ntn Corporation Slewing bearing and rotating section support device for wind turbine

Similar Documents

Publication Publication Date Title
EP1830082B1 (en) Retainer for ball bearing and ball bearing using the same
JP5635352B2 (en) Compound plain bearing
EP2833009A1 (en) Composite plain bearing, cradle guide, and sliding nut
JP6564445B2 (en) Slide screw device
JP5715504B2 (en) Multilayer bearing manufacturing method and multilayer bearing
JPH08303466A (en) Rolling bearing
WO2015119231A1 (en) Plain bearing
JPH0996363A (en) Seal ring
JPH11325077A (en) Multiple-layered slide material
JPH1061777A (en) Synthetic resin-made seal ring
JPH08184318A (en) Cage for rolling bearing
EP3315806A1 (en) Bearing material, bearing and method
JPH09151954A (en) Constant velocity universal joint
WO2019225554A1 (en) Slide nut and sliding screw device
JP5841186B2 (en) Compound plain bearing
JP2006266102A (en) Swash plate compressor and swash plate for same
JP2014134290A (en) Method of manufacturing composite slide bearing
EP3173622B1 (en) Semispherical shoe for swash plate compressor, and swash plate compressor
JP4818304B2 (en) Slide screw device
JP2015148285A (en) slide bearing
JP2014234901A (en) Rolling bearing
JPH08145078A (en) End bearing for one way clutch
JP2010043698A (en) Resin nut and sliding screw device
JPH07286670A (en) Oil seal ring
JPH0645757B2 (en) Sliding member composition