JPH08301799A - Control of dehydrogenation reaction with near infrared rays - Google Patents

Control of dehydrogenation reaction with near infrared rays

Info

Publication number
JPH08301799A
JPH08301799A JP11427595A JP11427595A JPH08301799A JP H08301799 A JPH08301799 A JP H08301799A JP 11427595 A JP11427595 A JP 11427595A JP 11427595 A JP11427595 A JP 11427595A JP H08301799 A JPH08301799 A JP H08301799A
Authority
JP
Japan
Prior art keywords
reactor
composition
reaction
analysis
ethylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11427595A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hamada
一幸 浜田
Toshimasa Aikawa
敏正 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11427595A priority Critical patent/JPH08301799A/en
Publication of JPH08301799A publication Critical patent/JPH08301799A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To enable the synthesis of styrene monomer of a constant composition and high purity, as the change in the composition of the reaction mixture can be promptly reflected on the operation of the reactor and the operation of the distillation column can be stabilized in the following purification process. CONSTITUTION: In the process where styrene monomer is synthesized by dehydrogenation of ethylbenzene, the reaction mixture at the outlet of the reactor is monitored through near-infrared absorption spectroscopy to effect the component analysis and one, two or more among the ratio of steam to ethylbenzene fed into the reactor and the heat fed to the reactor are varied based on the analytical results to keep the composition of the reaction mixture constant at the outlet of the reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学工業における代表的
な装置であるエチルベンゼンの脱水素反応によりスチレ
ンモノマーを得る反応の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a reaction for obtaining a styrene monomer by a dehydrogenation reaction of ethylbenzene, which is a typical apparatus in the chemical industry.

【0002】[0002]

【従来の技術】これまでの反応器の運転管理は、反応器
の出口での反応物を所望の液組成に維持するために、必
要に応じて、あるいは随時、反応器の出口の組成分析を
行っていた。しかしながら、これは装置からサンプルを
採取して分析を行うために、大きな時間遅れと、作業量
の増加を招いていた。
2. Description of the Related Art The conventional operation management of a reactor has been to analyze the composition at the outlet of the reactor as needed or at any time in order to maintain a desired liquid composition of the reactant at the outlet of the reactor. I was going. However, this results in a large time delay and an increase in the amount of work because a sample is taken from the device for analysis.

【0003】時間遅れが発生すると生産は続行している
から、測定結果が規格外であれば製品のロスになった
り、規格外の反応液が精製工程に回された場合には蒸留
塔の運転条件が一定せず、場合によってはプラントが不
安定になり運転の続行が不可能になる。このため、時間
遅れを解消する方法として、便宜的に、反応器内の温度
監視を行い、温度の変化を反応状態の変化とし、運転管
理の目安とする方法がとられているが、温度監視だけで
は近年要求されるような高いレベルの運転は達成できな
い。
Since production is continued when a time delay occurs, if the measurement result is out of specification, product loss occurs, and if the out-of-specification reaction solution is sent to the purification step, the distillation column is operated. The conditions are not constant, and in some cases the plant becomes unstable, making it impossible to continue operation. For this reason, as a method of eliminating the time delay, for convenience, the temperature inside the reactor is monitored, and the change in temperature is used as a change in the reaction state, which is used as a guide for operation management. Alone, it is not possible to achieve the high level of operation required in recent years.

【0004】なお、ここでいう、高いレベルの運転と
は、管理目標とする反応液の組成と実際の組成とのずれ
がほとんどなく、次工程の精製工程で蒸留塔の運転が安
定する運転をいう。近年、高いレベルの運転をする手段
として、オンライン分析機器を蒸留塔に導入し、分析の
時間遅れを最小限にし、分析値から人が判断したり、装
置が自動的に判断し制御ができるようにした技術が採用
されている。
The high level operation referred to here is an operation in which there is almost no difference between the composition of the reaction solution, which is a management target, and the actual composition, and the operation of the distillation column is stable in the purification step of the next step. Say. In recent years, as a means to operate at a high level, online analytical equipment has been introduced into the distillation column to minimize the time delay of analysis so that people can judge from the analysis value or the device can automatically judge and control. The technology used is adopted.

【0005】しかしながら、この技術の特徴は、通常の
ガスクロマトグラフィー分析のサンプリングを自動で行
うだけのものあり、オンライン分析機器が分析をする時
間はなんら短縮はされてはおらないものであり、更に迅
速なオンラインでのリアルタイム分析手法が要望されて
いた。一方で、オンラインのリアルタイム分析を行う新
しい手法として、近年、近赤外線による分析が知られて
いる。この分析手法はもともと穀類などの蛋白質の測定
に用いられてきたが、昨今、石油化学プラントの運転を
最適化もしくは自動化する方法に用いられ注目され始め
ている。
However, the feature of this technique is that the sampling of the usual gas chromatographic analysis is only performed automatically, and the analysis time of the on-line analytical instrument is not shortened at all, and it is more rapid. There was a demand for a simple online real-time analysis method. On the other hand, near-infrared analysis has been known as a new method for online real-time analysis. This analytical method was originally used for the measurement of proteins such as cereals, but recently, it has been used for a method for optimizing or automating the operation of a petrochemical plant, and has begun to attract attention.

【0006】例えば、特開平2−28293号公報に見
られるように赤外線分析光度計を使用してクラッキング
ファーネスに供給する炭化水素を分析することにより、
エチレン、プロピレン等の(ジ)オレフィン等の収率を
該分析の関数として制御する方法が開示されている。こ
の技術は供給された炭化水素をオンラインで、しかもリ
アルタイムで分析して、供給液の組成の変動に応じ、反
応条件を制御している。
For example, by analyzing the hydrocarbons supplied to the cracking furnace by using an infrared analysis photometer as disclosed in Japanese Unexamined Patent Publication No. 2-28293,
A method of controlling the yield of (di) olefins such as ethylene, propylene, etc. as a function of the analysis is disclosed. This technique analyzes the supplied hydrocarbons online and in real time, and controls the reaction conditions according to changes in the composition of the feed liquid.

【0007】しかしながら、一般の合成反応の制御方法
において、上記と同様に原料、供給液の組成の分析値か
ら反応条件を変更しても、反応器の出口での組成を精度
よく目標値にコントロールするのは困難であり、かつま
た、コントロールすべき部位の濃度の変動が大きくの
で、新しい制御方法が要望されていた。
However, in a general method for controlling a synthetic reaction, even if the reaction conditions are changed from the analytical values of the composition of the raw material and the feed solution as described above, the composition at the outlet of the reactor is accurately controlled to the target value. It is difficult to do so, and since the concentration of the site to be controlled varies greatly, a new control method has been demanded.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、反応
器の反応液の組成分析を時間遅れなく行うことにより、
反応器の制御を行い、後工程の蒸留塔の運転を安定させ
ることができる、高いレベルの脱水素反応でスチレンモ
ノマーを合成する反応器の運転方法を提供しようとする
ことにある。
An object of the present invention is to analyze the composition of a reaction solution in a reactor without delay.
It is an object of the present invention to provide a method of operating a reactor for synthesizing styrene monomer by a high level of dehydrogenation reaction, which can control the reactor and stabilize the operation of a distillation column in a subsequent step.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、反応器の出口の反応液に直接、近赤外線
を透過させてそのスペクトルを測定し、組成分析が可能
であることを見い出し、更に反応器の運転管理を時間遅
れなく且つ高い精度でできることを見い出し、この知見
に基づいて本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention were able to analyze the composition by transmitting near-infrared rays directly to the reaction solution at the outlet of the reactor and measuring the spectrum. The inventors have found that the operation management of the reactor can be performed with high accuracy without time delay, and the present invention has been completed based on this finding.

【0010】すなわち、本発明は、エチルベンゼンの脱
水素反応でスチレンモノマーを合成する反応器の運転方
法において、上記反応器の出口の反応物を近赤外線スペ
クトルで組成分析を行い、得られた測定値を用いて反応
器へ供給するスチームとエチルベンゼンとの比率または
反応器への供給熱量を変更し、制御することを特徴とす
る近赤外線による脱水素反応制御方法、である。
That is, the present invention is a method for operating a reactor for synthesizing a styrene monomer by a dehydrogenation reaction of ethylbenzene, in which the reaction product at the outlet of the reactor is subjected to composition analysis by near-infrared spectrum, and the obtained measurement value is obtained. Is a method for controlling a dehydrogenation reaction by near-infrared radiation, characterized in that the ratio of steam and ethylbenzene supplied to the reactor or the amount of heat supplied to the reactor is changed and controlled by using.

【0011】本発明で近赤外線とは、可視光(400〜
700nm)と中間赤外線(2500〜10000n
m)の中間にある波長の光のことである。近赤外線の特
徴としては、この範囲にある波長のスペクトルは、中間
赤外線領域でおこる吸収の倍音及び結合振動によって吸
収が起こるので、中間赤外線領域でのスペクトルのピー
ク数より著しく少ない。また近赤外線の吸収スペクトル
の単位濃度変化に対する吸光度変化は中間赤外線のそれ
と比較して1/10〜1/1000である。
In the present invention, near infrared light means visible light (400 to
700 nm) and mid-infrared rays (2,500-10000n)
It is light with a wavelength in the middle of m). As a characteristic of near-infrared light, the spectrum of wavelengths in this range is remarkably smaller than the number of peaks of the spectrum in the mid-infrared region because absorption occurs due to overtones of absorption and coupling vibrations occurring in the mid-infrared region. In addition, the change in absorbance per unit concentration change in the absorption spectrum of near infrared is 1/10 to 1/1000 compared with that of mid infrared.

【0012】以下に、分析原理を近赤外線の吸収スペク
トルを例に述べるが、反射スペクトル、内部散乱スペク
トル、透過スペクトルも基本原理は同じである。被測定
物質に近赤外線の所定の波長域の光を当てその吸光度を
測定し、濃度と吸光度との関係から検量線を求めてる。
また多く場合、連続吸収スペクトルを波長で2次微分変
換することにより各々のスペクトルの特徴が強調されて
更に精度の高い分析が可能になる。
The analysis principle will be described below by taking the absorption spectrum of near infrared rays as an example, but the reflection spectrum, the internal scattering spectrum and the transmission spectrum have the same basic principle. Light in a predetermined wavelength range of near infrared rays is applied to the substance to be measured, the absorbance is measured, and a calibration curve is obtained from the relationship between the concentration and the absorbance.
Further, in many cases, the characteristics of each spectrum are emphasized by performing the second derivative conversion of the continuous absorption spectrum with respect to the wavelength, which enables analysis with higher accuracy.

【0013】分析は、被測定物質の注目成分である純物
質スペクトルの1次微分もしくは2次微分の中でその成
分に独自のピークを帰属波長と呼び、この波長で検量線
を作製する。帰属波長が存在しないときには数百波長を
用いた多変量回帰を用いる。被測定物質のサンプルから
近赤外線を集めてスペクトルを得る方法は、一般に3種
類ある。即ち、光を被測定物質に照射しその反射光を集
める反射法、サンプルの透過光を集める透過法、そして
透過と内部散乱との組合せ法である。
In the analysis, the peak unique to the component in the first derivative or the second derivative of the pure substance spectrum, which is the target component of the substance to be measured, is called the attribution wavelength, and a calibration curve is prepared at this wavelength. When there is no attribution wavelength, multivariate regression using several hundred wavelengths is used. There are generally three types of methods for collecting near infrared rays from a sample of a substance to be measured to obtain a spectrum. That is, there are a reflection method of irradiating light on a substance to be measured and collecting its reflected light, a transmission method of collecting transmitted light of a sample, and a combined method of transmission and internal scattering.

【0014】透過法は、透明度の高いフィルム及び散乱
度の高い溶液、またはペースト状のもの、スラリー状の
もの、懸濁液など幅広く適用できる。透過と内部散乱の
組合せ法は、クリヤーで散乱がわずかな液体、懸濁液も
しくはゲル状の物質に対して明確なスペクトルが得られ
る。反射法光を検出する方法では、不透明粉体、高濃度
物や可動する固体などに対して最適である。
The transmission method can be widely applied to a film having a high transparency and a solution having a high degree of scattering, or a paste, a slurry or a suspension. The combined method of transmission and internal scattering gives clear spectra for clear, slightly scattered liquids, suspensions or gels. The method for detecting light by reflection method is most suitable for opaque powder, high-concentration substances, and movable solids.

【0015】反射法の光を検出する方法の場合、光源か
らの光は分散させるために回折格子を最初に通し、それ
からそのエネルギーはサンプルに送られる。各スキャン
毎にサンプルから反射してくるエネルギーを集めてプロ
ーブで検出して、データは計器に送られる。透過法、透
過と内部散乱との組合せ法は、サンプルを透過させたサ
ンプルスペクトルから参照用のリファレンススペクトル
を引き算してその演算後のスペクトルを回折格子に導き
スペクトルの分散と検出を行う。
In the case of reflection-based light detection, the light from the light source is first passed through a diffraction grating to disperse it, and then its energy is delivered to the sample. For each scan, the energy reflected from the sample is collected and detected by the probe, and the data is sent to the instrument. In the transmission method and the combined method of transmission and internal scattering, the reference spectrum for reference is subtracted from the sample spectrum in which the sample is transmitted, and the spectrum after the calculation is introduced into the diffraction grating to perform spectrum dispersion and detection.

【0016】近赤外線による分析では多成分を同時にし
かも高速に約1分位で測定できる。分析した結果をオペ
レーターが監視してそれをマニュアルで運転に反映する
ことも可能であるがそれだけでなく、分析器を直接調節
器と連結し分析結果を反応器の制御に自動的に反映させ
ることも可能である。本発明でいうエチルベンゼンの脱
水素反応とは、予熱されたエチルベンゼンとスチームと
を混合して反応器に供給し、脱水素反応によりスチレン
モノマーを合成する反応をいう。このとき使用される触
媒は、酸化鉄にアルカリ金属系の触媒を添加したもで固
定床で使用するのが一般的である。
In the analysis using near infrared rays, multiple components can be measured simultaneously and at high speed in about one minute. It is also possible for the operator to monitor the analysis result and reflect it to the operation manually, but not only that, the analyzer is directly connected to the controller and the analysis result is automatically reflected in the control of the reactor. Is also possible. The dehydrogenation reaction of ethylbenzene as referred to in the present invention means a reaction in which preheated ethylbenzene and steam are mixed and supplied to a reactor and a styrene monomer is synthesized by the dehydrogenation reaction. The catalyst used at this time is generally a fixed bed obtained by adding an alkali metal catalyst to iron oxide.

【0017】脱水素反応で用いる反応器には大きく分け
て、等温型の反応器と断熱型の反応器がある。脱水素反
応は吸熱反応であるので熱を外部から供給する必要があ
るが、反応器に供給するエチルベンゼンとスチームにそ
の熱量を保持して反応器に供給している。それに対して
供給する熱を反応器に供給する原料とスチームだけによ
るのではなくて、間接的な熱交換、例えば、燃焼ガスで
反応器自体に熱を供給する等温型の反応器がある。本発
明は断熱型の反応器であっても等温型の反応器であって
も何等制約を受けるものではなく、どちらの反応器でも
構わない。
The reactor used in the dehydrogenation reaction is roughly classified into an isothermal type reactor and an adiabatic type reactor. Since the dehydrogenation reaction is an endothermic reaction, it is necessary to supply heat from the outside, but the amount of heat is held in ethylbenzene and steam supplied to the reactor and supplied to the reactor. There is an isothermal reactor in which heat supplied to the reactor is not only dependent on the raw materials and steam that are supplied to the reactor, but also indirectly through heat exchange, for example, combustion gas supplies heat to the reactor itself. The present invention is not subject to any restriction whether it is an adiabatic reactor or an isothermal reactor, and either reactor may be used.

【0018】ここで制御とは、反応器の出口のスチレン
モノマーの濃度が管理濃度より低い場合、もしくは反応
収率が低い場合に原料であるエチルベンゼンに対するス
チームの比率を上げるか、もしくは反応器に供給する熱
量を増すなどの反応条件の変更を指す。反応物の組成の
制御は、オペレーターが組成分析の結果を見て、外部か
らの間接的な熱供給である燃焼ガスの供給量もしくは燃
焼ガスの温度、もしくは原料であるエチルベンゼンの温
度、もしくは原料であるエチルベンゼンに対するスチー
ムの比率などの反応条件を変更する。
Here, the control means that when the concentration of styrene monomer at the outlet of the reactor is lower than the control concentration, or when the reaction yield is low, the ratio of steam to ethylbenzene, which is a raw material, is increased, or it is supplied to the reactor. It refers to changes in reaction conditions such as increasing the amount of heat used. The control of the composition of the reactant is performed by the operator looking at the result of the composition analysis, and the amount of the combustion gas that is an indirect heat supply from the outside or the temperature of the combustion gas, or the temperature of the raw material, ethylbenzene, or the raw material. Change the reaction conditions such as the ratio of steam to ethylbenzene.

【0019】すなわち、反応器の出口のスチレンモノマ
ーの濃度が管理濃度より低い場合もしくは反応収率が低
い場合、外部からの間接的な熱供給である燃焼ガスの供
給量を増す、もしくは燃焼ガスの温度を上げる、もしく
は原料であるエチルベンゼンの温度を上げる、もしくは
原料であるエチルベンゼンに対するスチームの比率を上
げることにより反応液中のスチレンモノマーの濃度を上
げる反応条件の変更をする。
That is, when the concentration of the styrene monomer at the outlet of the reactor is lower than the control concentration or when the reaction yield is low, the amount of combustion gas that is an indirect heat supply from the outside is increased, or the amount of combustion gas is increased. The reaction conditions are changed to increase the concentration of the styrene monomer in the reaction solution by raising the temperature, or raising the temperature of the raw material ethylbenzene or raising the ratio of steam to the raw material ethylbenzene.

【0020】逆に、反応器の出口のスチレンモノマーの
濃度が管理濃度より高い場合もしくは反応収率が高い場
合、外部からの間接的な熱供給である燃焼ガスの供給量
を減らす、もしくは燃焼ガスの温度を下げる、もしくは
原料であるエチルベンゼンの温度を下げる、もしくは原
料であるエチルベンゼンに対するスチームの比率を下げ
ることにより反応液中のスチレンモノマーの濃度を下げ
る。
On the contrary, when the concentration of the styrene monomer at the outlet of the reactor is higher than the control concentration or the reaction yield is high, the amount of combustion gas, which is indirect heat supply from the outside, is reduced, or Or the temperature of the raw material ethylbenzene is lowered, or the ratio of steam to the raw material ethylbenzene is lowered to lower the concentration of the styrene monomer in the reaction solution.

【0021】本発明で用いられる反応の種類は、特に限
定されるされるものではなく、これまで固定床の脱水素
反応の場合を記載してきたが、本発明は流動床であって
も本発明をなんら制限するものではない。また反応の反
応圧力も望ましい圧力範囲を以下に示すものの特に限定
されるものではなく、減圧反応であっても、加圧反応で
あっても、常圧反応であっても本発明をなんら制限する
ものではない。また被測定組成物の態様もまた本発明を
なんら制限するものではなく液体でも気体でもよい。
The type of reaction used in the present invention is not particularly limited, and the case of the dehydrogenation reaction of a fixed bed has been described so far, but the present invention can be applied to a fluidized bed. Does not limit the Also, the reaction pressure of the reaction is not particularly limited although the desirable pressure range is shown below, and the present invention is not limited to any of the reduced pressure reaction, the pressure reaction and the normal pressure reaction. Not a thing. The aspect of the composition to be measured is not limited to the present invention at all, and may be liquid or gas.

【0022】また被測定の炭化水素の温度と圧力は、本
発明の近赤外線による脱水素反応制御方法による組成分
析をなんら制限するものではなく、炭化水素の化学的特
性には何等影響を受けないが、−10℃〜300℃、0
〜70kg/cm2Gの範囲内に被測定物質が維持されるのが
望ましく、更に望ましくは0℃〜50℃、0〜20kg/c
m2Gである。この温度範囲外、圧力範囲外の温度域では
近赤外線測定装置のプローブ等に使用されているパッキ
ング用シール材の耐性上の問題により測定が一般に困難
になる。従って一般には脱水素反応の反応液は上記温度
範囲に冷却して本発明の組成分析を行う。
The temperature and pressure of the hydrocarbon to be measured do not limit the composition analysis by the near infrared ray dehydrogenation reaction control method of the present invention, and are not affected by the chemical characteristics of the hydrocarbon. Is -10 ° C to 300 ° C, 0
It is desirable that the substance to be measured be maintained within the range of ~ 70 kg / cm 2 G, more preferably 0 ° C to 50 ° C, 0 to 20 kg / c.
m 2 G. In the temperature range outside of this temperature range and pressure range, the measurement generally becomes difficult due to the problem of the durability of the sealing material for packing used in the probe of the near infrared ray measuring device. Therefore, generally, the reaction solution of the dehydrogenation reaction is cooled to the above temperature range and the composition analysis of the present invention is performed.

【0023】本発明でいう外部からの間接的な熱供給で
ある燃焼ガスの供給量、もしくは燃焼ガスの温度、もし
くは原料であるエチルベンゼンの温度、もしくは原料で
あるエチルベンゼンに対するスチームの比率はその変更
範囲を何等制限するものではない。近赤外線の波長の範
囲は、700nm〜2500nmであるが、スペクトル
をとったとき対象となる被測定物質によってその物質の
もつ特異的なピークが異なるため本発明では近赤外線の
波長の範囲には何等限定するものではない。
In the present invention, the supply amount of combustion gas, which is an indirect heat supply from the outside, the temperature of the combustion gas, the temperature of ethylbenzene as a raw material, or the ratio of steam to ethylbenzene as a raw material, is within the range of change. Is not intended to limit. The wavelength range of near-infrared rays is 700 nm to 2500 nm, but when the spectrum is taken, the specific peak of the substance varies depending on the target substance to be measured. It is not limited.

【0024】例えば、ポリスチレンの場合は1100n
m〜2500nmのあたりに特異的なピークが表れる。
エチルベンゼンの脱水素反応による反応生成物では11
00nm〜1900nmのあたりに特異的なピークが表
れる。具体的には、エチルベンゼンでは、1614n
m、2026nm、1656nm、2070nmの複数
の波長で挙げられ、これらを用いて組成の定量化を行う
ことが好ましい。
For example, in the case of polystyrene, 1100n
A specific peak appears around m to 2500 nm.
11 for the reaction product of the dehydrogenation reaction of ethylbenzene
A specific peak appears around 00 nm to 1900 nm. Specifically, with ethylbenzene, 1614n
m, 2026 nm, 1656 nm, 2070 nm, and a plurality of wavelengths, and it is preferable to quantify the composition using these.

【0025】[0025]

【実施例】以下、実施例をあげて本発明を更に具体的に
説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0026】[0026]

【実施例1】エチルベンゼンの脱水素反応によるスチレ
ンモノマー(ST)の合成に、等温型の反応器を使用し
た。初期の反応条件の設定値は、反応器に供給するエチ
ルベンゼン(EB)の温度が560℃、燃焼ガス(F
G)の温度は700℃、反応器入口圧力が1.0Kg/
cm2G、LHSV(触媒層の空間速度)が0.5(1
/Hr)、反応器に供給するエチルベンゼンに対するス
チームの比率(重量/重量)(以下、水比と略す)が
0.8である。
Example 1 An isothermal reactor was used for the synthesis of styrene monomer (ST) by the dehydrogenation reaction of ethylbenzene. The initial set values of the reaction conditions are that the temperature of ethylbenzene (EB) supplied to the reactor is 560 ° C, the combustion gas (F
G) temperature is 700 ° C., reactor inlet pressure is 1.0 Kg /
cm2G, LHSV (space velocity of the catalyst layer) is 0.5 (1
/ Hr), and the ratio (weight / weight) of steam to ethylbenzene supplied to the reactor (hereinafter abbreviated as water ratio) is 0.8.

【0027】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し、凝縮した反応液の分析を行
った。分析は、オンラインでしかも解析時間も短いため
に約1分程で分析でき、分析結果を見て、迅速に反応器
の運転管理に反映させることができた。従って、反応器
の出口の反応液組成の管理基準からのズレを常時監視す
ることができるので、反応液の組成が規格からズレたと
き時間的に無駄なく適正な組成に回復することが可能で
あった。
A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis was online and the analysis time was short, it could be analyzed in about 1 minute, and the analysis result was able to be promptly reflected in the operation management of the reactor. Therefore, the deviation from the control standard of the reaction solution composition at the outlet of the reactor can be constantly monitored, and when the composition of the reaction solution deviates from the standard, it is possible to recover an appropriate composition without wasting time. there were.

【0028】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、3回に分け
て、水比を1%、エチルベンゼンの温度を1℃、燃焼ガ
スの温度を2℃アップした。反応液の近赤外線による分
析結果と分析に要する時間、反応条件の変更方法、管理
されている反応液の組成に回復するまでの時間、スペク
トルの種類を表1に示す(なお、表中、TOLはトルエ
ンを指す)。
The composition analysis results of the reaction product show that the concentration of the styrene monomer is lower than the control value. Therefore, the water ratio is 1%, the temperature of ethylbenzene is 1 ° C., and the temperature of the combustion gas is 2 in three times. ℃ up. Table 1 shows the analysis results of the reaction solution by near-infrared radiation, the time required for the analysis, the method for changing the reaction conditions, the time until the composition of the controlled reaction solution is restored, and the spectrum type (in the table, TOL Refers to toluene).

【0029】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いスチレンモノマーを得ることができ
る。
As described above, the rapid control makes it possible to obtain a styrene monomer having a high purity because the composition of the reaction product does not fluctuate, the distillation separation in the purification step is easy.

【0030】[0030]

【比較例1】近赤外線分光分析器による反応液の分析を
行わない以外は、実施例1と同様にスチレンモノマーを
合成した。反応条件が適正か否かを確認する必要がある
度に反応液をサンプリングして、ガスクロマトグラフィ
にて分析した。サンプリング時間や分析時間により運転
条件変更を実際に行うまでに平均60分〜90分の時間
遅れがあり、迅速な制御ができなかった。
Comparative Example 1 A styrene monomer was synthesized in the same manner as in Example 1 except that the reaction solution was not analyzed by a near infrared spectrophotometer. The reaction solution was sampled every time it was necessary to confirm whether the reaction conditions were appropriate, and the sample was analyzed by gas chromatography. Depending on the sampling time and the analysis time, there was an average time delay of 60 to 90 minutes before the actual change of the operating conditions, and rapid control was not possible.

【0031】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、水比、エチル
ベンゼンの温度、燃焼ガスの温度を変更した。これらの
操作を3回繰り返し、最終的に、水比を1%アップし、
エチルベンゼンの温度を1℃アップし、燃焼ガスの温度
を2℃アップした。分析は、自動ではないために、常時
濃度を監視することができるわけではなく運転管理は非
常におおざっぱなものであり、分析と分析の合間には管
理濃度とのずれが発生したまま運転を行っている。
The composition analysis results of the reaction product show that the concentration of the styrene monomer is lower than the control value. Therefore, the water ratio, the temperature of ethylbenzene, and the temperature of the combustion gas were changed. Repeat these operations 3 times, finally increase the water ratio by 1%,
The temperature of ethylbenzene was increased by 1 ° C and the temperature of combustion gas was increased by 2 ° C. Since the analysis is not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and operation is performed with a deviation from the control concentration occurring between analyzes. ing.

【0032】反応器出口の反応液のガスクロマトグラフ
ィーによる分析結果と分析に要する時間、操作量の変更
方法、管理されている反応液の組成に回復するまでの時
間を表2に示す。
Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.

【0033】[0033]

【実施例2】初期の反応条件の設定値を、反応器に供給
するエチルベンゼンの温度が600℃、燃焼ガス(F
G)の温度が740℃、反応器入口圧力が0.7Kg/
cm2G、LHSV(触媒層の空間速度)が0.7(1
/Hr)、水比(wt/wt)が1.0にした以外は、
実施例1と同様にスチレンモノマーを合成した。
Example 2 The set values of the initial reaction conditions were set such that the temperature of ethylbenzene supplied to the reactor was 600 ° C., the combustion gas (F
G) temperature is 740 ° C., reactor inlet pressure is 0.7 Kg /
cm2G, LHSV (space velocity of the catalyst layer) is 0.7 (1
/ Hr) and the water ratio (wt / wt) are 1.0,
A styrene monomer was synthesized in the same manner as in Example 1.

【0034】分析結果は、迅速に反応器の運転管理に反
映させた。反応器の出口の反応液組成の管理基準からの
ズレを常時監視することができ、反応液の組成が規格か
らズレたとき時間的に無駄なく適正な組成に回復するこ
とが可能であった。反応物の組成分析結果をみるとスチ
レンモノマーの濃度が管理値に比べて高いので、2回に
分けて、水比を1%、エチルベンゼンの温度を1℃、燃
焼ガスの温度を2℃、それぞれダウンした。
The analysis results were promptly reflected in the operation management of the reactor. The deviation from the control standard of the composition of the reaction solution at the outlet of the reactor could be constantly monitored, and when the composition of the reaction solution deviated from the standard, it was possible to recover to an appropriate composition without waste in time. Looking at the composition analysis results of the reactants, the concentration of styrene monomer is higher than the control value, so the water ratio is 1%, the temperature of ethylbenzene is 1 ° C, the temperature of the combustion gas is 2 ° C. I went down.

【0035】反応液の近赤外線による分析結果と分析に
要する時間、反応条件の変更方法、管理されている反応
液の組成に回復するまでの時間、スペクトルの種類を表
1に示す。このように、迅速な制御により、反応物の組
成変動が少なく、従って、精製工程の蒸留分離が容易で
あり、純度の高いスチレンモノマーを得ることができ
る。
Table 1 shows the analysis results of the near infrared rays of the reaction solution, the time required for the analysis, the method for changing the reaction conditions, the time until the composition of the controlled reaction solution is recovered, and the type of spectrum. As described above, the rapid control makes it possible to obtain a styrene monomer having a high purity because the composition of the reaction product does not fluctuate and thus the distillation separation in the purification step is easy.

【0036】[0036]

【比較例2】近赤外線分光分析器による反応液の分析を
行わない以外は、実施例2と同様にスチレンモノマーを
合成した。反応条件が適正な値かを確認する必要がある
度に反応液をサンプリングして、ガスクロマトグラフィ
にて分析した。
Comparative Example 2 A styrene monomer was synthesized in the same manner as in Example 2 except that the reaction solution was not analyzed by a near infrared spectrophotometer. The reaction solution was sampled every time it was necessary to confirm that the reaction conditions were appropriate values, and analyzed by gas chromatography.

【0037】サンプリング時間や分析時間により運転条
件変更を実際に行うまでに平均60分〜90分の遅れが
あり、迅速な制御ができなかった。反応物の組成分析結
果をみるとスチレンモノマーの濃度が管理値に比べて高
いので、水比、エチルベンゼンの温度、燃焼ガスの温度
を変更した。これらの操作を2回繰り返し、最終的に、
水比を1%ダウンし、エチルベンゼンの温度を1℃ダウ
ンし、燃焼ガスの温度を2℃ダウンした。
There was a delay of 60 to 90 minutes on the average until the operating conditions were actually changed due to the sampling time and analysis time, and rapid control could not be performed. The composition analysis results of the reaction product show that the styrene monomer concentration is higher than the control value, so the water ratio, the temperature of ethylbenzene, and the temperature of the combustion gas were changed. Repeat these operations twice, and finally,
The water ratio was decreased by 1%, the temperature of ethylbenzene was decreased by 1 ° C, and the temperature of combustion gas was decreased by 2 ° C.

【0038】分析は自動ではないため常時濃度を監視す
ることができるわけではなく、運転管理は非常におおざ
っぱなものであり、分析と分析の合間には管理濃度との
ずれが発生したまま運転となった。また、サンプリング
して操作が終了するまでの所要時間は150分かかっ
た。反応器の出口の反応液のガスクロマトグラフィーに
よる分析結果と分析に要する時間、操作量の変更方法、
管理されている反応液の組成に回復するまでの時間を表
2に示す。
Since the analysis is not automatic, it is not possible to constantly monitor the concentration, and the operation control is very rough, so that there is a gap between the control concentration and the operation during the operation. became. In addition, it took 150 minutes to sample and complete the operation. Results of analysis by gas chromatography of the reaction liquid at the outlet of the reactor and the time required for analysis, a method for changing the manipulated variable,
Table 2 shows the time required to recover the composition of the controlled reaction solution.

【0039】[0039]

【実施例3】初期の反応条件の設定値を、反応器に供給
するエチルベンゼンの温度が580℃、燃焼ガスの温度
は710℃、反応器の入口圧力が0.6Kg/cm2
G、LHSV(触媒層の空間速度)が0.4(1/H
r)、反応器に供給する水比(wt/wt)が0.9と
した以外は、実施例1と同様にスチレンモノマーを合成
した。
Example 3 With respect to the set values of the initial reaction conditions, the temperature of ethylbenzene supplied to the reactor was 580 ° C., the temperature of combustion gas was 710 ° C., and the inlet pressure of the reactor was 0.6 kg / cm 2.
G, LHSV (space velocity of catalyst layer) is 0.4 (1 / H
r), styrene monomer was synthesized in the same manner as in Example 1 except that the water ratio (wt / wt) supplied to the reactor was 0.9.

【0040】反応器出口の冷却器からでたラインに近赤
外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析は、迅速に反応器の運転管理に反映させた。反
応器の出口の反応液組成の管理基準からのズレを常時監
視することができ、反応液の組成が規格からズレたとき
時間的に無駄なく適正な組成に回復することが可能であ
った。
A near-infrared spectroscopic analyzer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction liquid. The analysis was promptly reflected in the operation management of the reactor. The deviation from the control standard of the composition of the reaction solution at the outlet of the reactor could be constantly monitored, and when the composition of the reaction solution deviated from the standard, it was possible to recover to an appropriate composition without waste in time.

【0041】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、操作1回で、
水比を1%アップし、エチルベンゼンの温度を1℃アッ
プし、燃焼ガスの温度を2℃アップした。反応液の近赤
外線による分析結果と分析に要する時間、反応条件の変
更方法、管理されている反応液の組成に回復するまでの
時間、スペクトルの種類を表1に示す。
The composition analysis result of the reaction product shows that the concentration of styrene monomer is lower than the control value.
The water ratio was increased by 1%, the temperature of ethylbenzene was increased by 1 ° C, and the temperature of combustion gas was increased by 2 ° C. Table 1 shows the results of analysis of the reaction solution by near-infrared radiation, the time required for the analysis, the method for changing the reaction conditions, the time until the composition of the controlled reaction solution is restored, and the type of spectrum.

【0042】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いスチレンモノマーを得ることができ
る。
As described above, the rapid control makes it possible to obtain a styrene monomer having a high purity, in which the composition of the reaction product does not fluctuate, the distillation separation in the purification step is easy, and the purity is high.

【0043】[0043]

【比較例3】近赤外線分光分析器による反応液の分析を
行わない以外は、実施例3と同様にスチレンモノマーを
合成した。反応条件が適正な値かを確認する必要がある
度に反応液をサンプリングして、ガスクロマトグラフィ
にて分析した。サンプリング時間と分析時間とで運転条
件の変更を実際に行うまでに、時間遅れが平均60分〜
90分あり、迅速な制御ができなかった。
Comparative Example 3 A styrene monomer was synthesized in the same manner as in Example 3 except that the reaction solution was not analyzed by a near infrared spectrophotometer. The reaction solution was sampled every time it was necessary to confirm that the reaction conditions were appropriate values, and analyzed by gas chromatography. The average time delay is 60 minutes until the operating conditions are actually changed between the sampling time and the analysis time.
There was 90 minutes, and quick control could not be performed.

【0044】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、水比、エチル
ベンゼンの温度、燃焼ガスの温度を変更した。これらの
操作を1回で、水比を1%アップし、エチルベンゼンの
温度を1℃アップし、燃焼ガスの温度を2℃アップし
た。分析は自動ではないため常時濃度を監視することが
できるわけではなく運転管理は非常におおざっぱなもの
であり、分析と分析の合間には管理濃度とのずれが発生
したまま運転を行った。所要時間は70分かかった。
The composition analysis results of the reaction product show that the concentration of the styrene monomer is lower than the control value. Therefore, the water ratio, the temperature of ethylbenzene, and the temperature of the combustion gas were changed. These operations were carried out once, the water ratio was increased by 1%, the temperature of ethylbenzene was increased by 1 ° C, and the temperature of the combustion gas was increased by 2 ° C. Since the analysis is not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and the operation was performed with a deviation from the control concentration occurring between the analyzes. It took 70 minutes.

【0045】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表2に示す。
Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.

【0046】[0046]

【実施例4】エチルベンゼンの脱水素反応によりスチレ
ンモノマーの合成に、断熱型の反応器を使用した。初期
の反応条件の設定値は、反応器に供給するエチルベンゼ
ンの温度が610℃、燃焼ガスの温度が740℃、反応
器入口圧力が0.4Kg/cm2G、LHSV(触媒層
の空間速度)が0.6(1/Hr)、反応器に供給する
水比(wt/wt)が1.2である。
Example 4 An adiabatic reactor was used for the synthesis of styrene monomer by the dehydrogenation reaction of ethylbenzene. The initial setting values of the reaction conditions are as follows: the temperature of ethylbenzene supplied to the reactor is 610 ° C., the temperature of the combustion gas is 740 ° C., the reactor inlet pressure is 0.4 Kg / cm 2 G, and the LHSV (space velocity of the catalyst layer) is 0. 0.6 (1 / Hr), and the water ratio (wt / wt) supplied to the reactor is 1.2.

【0047】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し、凝縮した反応液の分析を行
った。分析はオンラインでしかも解析時間も短いために
約1分程で分析でき、分析結果を見て、迅速に反応器の
運転管理に反映させることができた。従って、反応器の
出口の反応液組成の管理基準からのズレを常時監視する
ことができるので、反応液の組成が規格からズレたとき
時間的に無駄なく適正な組成に回復することが可能であ
った。
A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis was online and the analysis time was short, it could be analyzed in about 1 minute, and the analysis result was able to be promptly reflected in the operation management of the reactor. Therefore, the deviation from the control standard of the reaction solution composition at the outlet of the reactor can be constantly monitored, and when the composition of the reaction solution deviates from the standard, it is possible to recover an appropriate composition without wasting time. there were.

【0048】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて高いので、操作を3回に
分けて、水比を1%ダウンし、エチルベンゼンの温度を
1℃ダウンした。反応液の近赤外線による分析結果と分
析に要する時間、反応条件の変更方法、管理されている
反応液の組成に回復するまでの時間、スペクトルの種類
を表1に示す。
The composition analysis result of the reaction product showed that the concentration of the styrene monomer was higher than the control value. Therefore, the operation was divided into 3 times to reduce the water ratio by 1% and the temperature of ethylbenzene by 1 ° C. Table 1 shows the analysis results of the reaction solution by near infrared rays, the time required for the analysis, the method of changing the reaction conditions, the time until the composition of the controlled reaction solution is recovered, and the type of spectrum.

【0049】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いスチレンモノマーを得ることができ
る。
As described above, the rapid control makes it possible to obtain a styrene monomer having a high purity because the composition of the reaction product is less likely to change, and the separation by distillation in the purification step is easy.

【0050】[0050]

【比較例4】近赤外線分光分析器による反応液の分析を
行わない以外は、実施例4と同様にスチレンモノマーの
合成をした。反応条件が適正な値かを確認する必要があ
る度に反応液をサンプリングして、ガスクロマトグラフ
ィにて分析した。サンプリング時間と分析時間とで運転
条件変更を実際に行うまでに、時間遅れが平均60分〜
90分あり、迅速な制御ができなかった。
[Comparative Example 4] A styrene monomer was synthesized in the same manner as in Example 4 except that the reaction solution was not analyzed by a near infrared spectrophotometer. The reaction solution was sampled every time it was necessary to confirm that the reaction conditions were appropriate values, and analyzed by gas chromatography. The average time delay is 60 minutes before the operating conditions are actually changed with the sampling time and analysis time.
There was 90 minutes, and quick control could not be performed.

【0051】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて高いので、水比、エチル
ベンゼンの温度を変更した。これらの操作を3回繰り返
し、最終的に、水比を1%ダウンし、エチルベンゼンの
温度を1%ダウンした。分析は自動ではないため常時濃
度を監視することができるわけではなく運転管理は非常
におおざっぱなものであり、分析と分析の合間には管理
濃度とのずれが発生したまま運転を行った。所要時間は
210分とかなりかかった。
The composition analysis results of the reaction product show that the concentration of the styrene monomer is higher than the control value. Therefore, the water ratio and the temperature of ethylbenzene were changed. These operations were repeated 3 times, and finally the water ratio was reduced by 1% and the temperature of ethylbenzene was reduced by 1%. Since the analysis is not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and the operation was performed with a deviation from the control concentration occurring between the analyzes. The time required was 210 minutes.

【0052】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表2に示す。
Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.

【0053】[0053]

【実施例5】初期の反応条件の設定値は、反応器に供給
するエチルベンゼンの温度が600℃、燃焼ガスの温度
は730℃、反応器入口圧力が0.4Kg/cm2G、
LHSV(触媒層の空間速度)が0.5(1/Hr)、
反応器に供給する水比(wt/wt)が1.3とした以
外は、実施例4と同様にスチレンモノマーの合成をし
た。
Example 5: Initial reaction conditions were set such that the temperature of ethylbenzene supplied to the reactor was 600 ° C., the temperature of combustion gas was 730 ° C., and the reactor inlet pressure was 0.4 Kg / cm 2 G.
LHSV (space velocity of the catalyst layer) is 0.5 (1 / Hr),
A styrene monomer was synthesized in the same manner as in Example 4 except that the water ratio (wt / wt) supplied to the reactor was 1.3.

【0054】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し、凝縮した反応液の分析は、
解析時間が短いために約1分程で分析でき、分析結果を
見て、迅速に反応器の運転管理に反映させることができ
た。従って、反応器出口の反応液組成の管理基準からの
ズレを常時監視することができるので、反応液の組成が
規格からズレたとき時間的に無駄なく適正な組成に回復
することが可能になった。
A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor, and the condensed reaction solution was analyzed by
Since the analysis time was short, the analysis could be completed in about 1 minute, and the analysis result was able to be promptly reflected in the operation management of the reactor. Therefore, it is possible to constantly monitor the deviation from the control standard of the reaction solution composition at the reactor outlet, and when the composition of the reaction solution deviates from the standard, it is possible to recover to an appropriate composition without waste in time. It was

【0055】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、操作を2回に
分けて、水比を2%アップし、エチルベンゼンの温度を
2℃アップした。反応液の近赤外線による分析結果と分
析に要する時間、反応条件の変更方法、管理されている
反応液の組成に回復するまでの時間、スペクトルの種類
を表1に示す。
The composition analysis result of the reaction product showed that the concentration of the styrene monomer was lower than the control value. Therefore, the operation was divided into two steps, the water ratio was increased by 2%, and the temperature of ethylbenzene was increased by 2 ° C. Table 1 shows the analysis results of the reaction solution by near infrared rays, the time required for the analysis, the method of changing the reaction conditions, the time until the composition of the controlled reaction solution is recovered, and the type of spectrum.

【0056】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いスチレンモノマーを得ることができ
る。
As described above, the rapid control makes it possible to obtain a highly pure styrene monomer in which the fluctuation of the composition of the reaction product is small and the distillation separation in the purification step is easy.

【0057】[0057]

【比較例5】近赤外線分光分析器による反応液の分析を
行わない以外は、実施例4と同様にしてスチレンモノマ
ーの合成をした。運転管理は反応条件が適正な値かを確
認する必要がある度に反応液をサンプリングして、ガス
クロマトグラフィにて分析した。運転条件変更を実際に
行うまでに時間遅れが平均60分〜90分であり、迅速
な制御ができなかった。
[Comparative Example 5] A styrene monomer was synthesized in the same manner as in Example 4 except that the reaction solution was not analyzed by a near infrared spectrophotometer. In operation management, the reaction solution was sampled every time it was necessary to confirm that the reaction conditions were appropriate values, and analyzed by gas chromatography. The time delay was 60 to 90 minutes on average before actually changing the operating conditions, and rapid control could not be performed.

【0058】反応物の組成分析結果をみるとスチレンモ
ノマーの濃度が管理値に比べて低いので、水比、エチル
ベンゼンの温度を変更した。これらの操作を2回繰り返
し、最終的に、水比を2%アップし、エチルベンゼンの
温度を2℃アップした。分析は自動ではないため常時濃
度を監視することができるわけではなく、運転管理は非
常におおざっぱなものであり、分析と分析の合間には管
理濃度とのずれが発生したまま運転となった。なお、所
要時間は150分かかった。
The composition analysis result of the reaction product showed that the concentration of the styrene monomer was lower than the control value. Therefore, the water ratio and the temperature of ethylbenzene were changed. These operations were repeated twice, and finally the water ratio was increased by 2% and the temperature of ethylbenzene was increased by 2 ° C. Since the analysis is not automatic, it is not possible to constantly monitor the concentration, and the operation management is very rough, and the operation was carried out with a gap between the control concentration and the analysis. The required time was 150 minutes.

【0059】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、反応条件の
変更方法、管理されている反応液の組成に回復するまで
の時間を表2に示す。
Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the reaction conditions, and the time until the composition of the controlled reaction liquid is recovered.

【0060】[0060]

【比較例6】比較例1と同様の条件下で、反応器のフィ
ードラインに近赤外線分光分析器を設置しフィード液の
分析を行った。フィード液の分析結果を見て、反応器の
運転管理に反映させた。反応器入口のフィード液組成の
管理基準からのズレを常時監視して反応器へ供給する水
比または反応器への供給熱量などを変更して、反応器の
出口の反応液の組成が管理値になるか否かを評価した。
但し、反応液の組成が管理濃度かどうかの判定はガス
クロマトグラフィー測定にて実施した。
Comparative Example 6 Under the same conditions as in Comparative Example 1, a near-infrared spectrophotometer was installed in the feed line of the reactor to analyze the feed liquid. The analysis result of the feed liquid was observed and reflected in the operation management of the reactor. The deviation from the control standard of the feed liquid composition at the reactor inlet is constantly monitored and the ratio of water supplied to the reactor or the amount of heat supplied to the reactor is changed to control the composition of the reaction liquid at the reactor outlet as a control value. It was evaluated whether or not.
However, the determination as to whether the composition of the reaction solution had a controlled concentration was carried out by gas chromatography measurement.

【0061】反応器入口の原料の組成をみると、エチル
ベンゼンの濃度が管理値に比べて高いので、操作を3回
に分けて最終的に、水比を2%アップし、エチルベンゼ
ンの温度を2℃アップし、燃焼ガスの温度を2℃アップ
した。このとき、反応液中、スチレンモノマーの濃度
は、操作前38.0重量%であったが操作後では40.
0重量%であり、管理濃度である39.0重量%までは
回復しなかった。
Looking at the composition of the raw material at the inlet of the reactor, the concentration of ethylbenzene is higher than the control value. Therefore, the operation was divided into three times, and finally the water ratio was increased by 2% and the temperature of ethylbenzene was increased to 2%. The temperature of the combustion gas was raised by 2 ° C. At this time, the concentration of the styrene monomer in the reaction solution was 38.0% by weight before the operation, but 40.
It was 0% by weight, and it did not recover up to the control concentration of 39.0% by weight.

【0062】反応器フィード液の近赤外線による分析結
果と反応条件の変更方法、スペクトルの種類、それに反
応液のガスクロマトグラフィー分析による分析結果を表
3に示す。反応条件の変更に対する組成変化の感度は、
反応器入口の液組成に比較して反応器の出口の液組成の
方が大きく、反応器入口の組成を管理値に合わせても、
反応器の出口の組成は一定せず、変動し、3回の操作
(60分所要)でも管理濃度に回復しなかった。
Table 3 shows the analysis results of the reactor feed solution by near infrared rays, the method of changing the reaction conditions, the type of spectrum, and the analysis results of the reaction solution by gas chromatography analysis. The sensitivity of composition changes to changes in reaction conditions is
Compared to the liquid composition at the reactor inlet, the liquid composition at the outlet of the reactor is larger, and even if the composition at the reactor inlet is adjusted to the control value,
The composition at the outlet of the reactor was not constant and fluctuated, and the control concentration was not recovered even after three operations (requiring 60 minutes).

【0063】[0063]

【比較例7】比較例1と同様の条件下で、反応器のフィ
ードラインに近赤外線分光分析器を設置しフィード液の
分析を行った。フィード液の分析結果を見て、反応器の
運転管理に反映させた。反応器入口のフィード液組成の
管理基準からのズレを常時監視して反応器へ供給する水
比または反応器への供給熱量などを変更して反応器の出
口の反応液の組成が管理値になるか否かを評価した。
但し、反応液の組成が管理濃度かどうかの判定はガスク
ロマトグラフィー測定にて実施した。
Comparative Example 7 Under the same conditions as in Comparative Example 1, a near-infrared spectrophotometer was installed in the feed line of the reactor to analyze the feed liquid. The analysis result of the feed liquid was observed and reflected in the operation management of the reactor. The deviation from the control standard of the feed liquid composition at the reactor inlet is constantly monitored, and the composition of the reaction liquid at the reactor outlet is adjusted to the control value by changing the ratio of water supplied to the reactor or the amount of heat supplied to the reactor. It was evaluated whether or not.
However, the determination as to whether the composition of the reaction solution had a controlled concentration was carried out by gas chromatography measurement.

【0064】反応器入口の原料の組成をみると、エチル
ベンゼンの濃度が管理値に比べて高いので、操作を2回
に分けて、最終的に、水比を1%ダウンし、エチルベン
ゼンの温度を1℃ダウンし、燃焼ガスの温度を1℃ダウ
ンした。このとき、反応液中、スチレンモノマーの濃度
は、操作前38.5重量%であったが操作後では38.
0重量%であり、管理濃度である39.0重量%までは
回復しなかった。
Looking at the composition of the raw material at the inlet of the reactor, the concentration of ethylbenzene is higher than the control value. Therefore, the operation was divided into two steps, and finally the water ratio was reduced by 1% to reduce the temperature of ethylbenzene. The temperature of the combustion gas was lowered by 1 ° C. At this time, the concentration of the styrene monomer in the reaction solution was 38.5% by weight before the operation, but 38.
It was 0% by weight, and it did not recover up to the control concentration of 39.0% by weight.

【0065】反応器フィード液の近赤外線による分析結
果と反応条件の変更方法、スペクトルの種類、それに反
応液のガスクロマトグラフィー分析による分析結果を表
3に示す。反応条件の変更に対する組成変化の感度は、
反応器入口の液組成に比較して反応器の出口の液組成の
方が大きく、反応器入口の組成を管理値に合わせても、
反応器の出口の組成は一定せず変動し、2回の操作(5
0分所要)でも管理濃度に回復しなかった。
Table 3 shows the analysis results of the reactor feed solution by near infrared rays, the method of changing the reaction conditions, the type of spectrum, and the analysis results of the reaction solution by gas chromatography analysis. The sensitivity of composition changes to changes in reaction conditions is
Compared to the liquid composition at the reactor inlet, the liquid composition at the outlet of the reactor is larger, and even if the composition at the reactor inlet is adjusted to the control value,
The composition at the outlet of the reactor is not constant and fluctuates, and the operation is repeated twice (5
Even if it took 0 minutes, the control concentration did not recover.

【0066】[0066]

【比較例8】比較例1と同様の条件下で、反応器のフィ
ードラインに近赤外線分光分析器を設置しフィード液の
分析を行った。フィード液の分析結果を見て、反応器の
運転管理に反映させた。反応器入口のフィード液組成の
管理基準からのズレを常時監視して反応器へ供給する水
比または反応器への供給熱量などを変更して反応器の出
口の反応液の組成が管理値になるか否かを評価した。
但し、反応液の組成が管理濃度かどうかの判定はガスク
ロマトグラフィー測定にて実施した。
Comparative Example 8 Under the same conditions as in Comparative Example 1, a near-infrared spectrophotometer was installed in the feed line of the reactor to analyze the feed liquid. The analysis result of the feed liquid was observed and reflected in the operation management of the reactor. The deviation from the control standard of the feed liquid composition at the reactor inlet is constantly monitored, and the composition of the reaction liquid at the reactor outlet is adjusted to the control value by changing the ratio of water supplied to the reactor or the amount of heat supplied to the reactor. It was evaluated whether or not.
However, the determination as to whether the composition of the reaction solution had a controlled concentration was carried out by gas chromatography measurement.

【0067】反応器入口の原料の組成をみると、エチル
ベンゼンの濃度が管理値に比べて高いので、操作を2回
に分けて最終的に、水比を1%アップし、エチルベンゼ
ンの温度を1℃アップし、燃焼ガスの温度を1℃アップ
した。このとき、反応液中、スチレンモノマーの濃度
は、操作前38.0重量%であったものが操作後でも3
8.5重量%であり、管理濃度である39.0重量%ま
では回復しなかった。
Looking at the composition of the raw material at the reactor inlet, since the concentration of ethylbenzene is higher than the control value, the operation is divided into two times and finally the water ratio is increased by 1% and the temperature of ethylbenzene is increased to 1%. The temperature of the combustion gas was raised by 1 ° C. At this time, the concentration of the styrene monomer in the reaction solution was 38.0% by weight before the operation, but was 3% even after the operation.
It was 8.5% by weight and did not recover up to the control concentration of 39.0% by weight.

【0068】反応器フィード液の近赤外線による分析結
果、反応条件の変更方法、スペクトルの種類、それに反
応液のガスクロマトグラフィー分析による分析結果を表
3に示す。反応条件の変更に対する組成変化の感度は、
反応器入口の液組成に比較して反応器の出口の液組成の
方が大きく、反応器入口の組成を管理値に合わせても、
反応器の出口の組成は一定せず変動し、2回の操作(4
0分所要)でも管理濃度に回復しなかった。
Table 3 shows the results of the near-infrared analysis of the reactor feed solution, the method of changing the reaction conditions, the type of spectrum, and the results of the gas chromatography analysis of the reaction solution. The sensitivity of composition changes to changes in reaction conditions is
Compared to the liquid composition at the reactor inlet, the liquid composition at the outlet of the reactor is larger, and even if the composition at the reactor inlet is adjusted to the control value,
The composition at the outlet of the reactor was not constant and fluctuated.
Even if it took 0 minutes, the control concentration did not recover.

【0069】[0069]

【表1】 [Table 1]

【0070】[0070]

【表2】 [Table 2]

【0071】[0071]

【表3】 [Table 3]

【0072】[0072]

【発明の効果】本発明の近赤外線による反応器制御方法
は、反応液の組成分析をオンラインでかつ迅速に行うこ
とにより、従来の方法に比べて、組成変化を反応器の運
転条件に迅速に反映し、反応物の組成を一定にし、後工
程の蒸留塔の運転を安定させることができる。
INDUSTRIAL APPLICABILITY The reactor control method using near-infrared rays according to the present invention allows compositional analysis of a reaction solution to be performed online and quickly, so that a composition change can be performed more quickly in the operating conditions of the reactor than in the conventional method. Reflecting this, the composition of the reaction product can be kept constant, and the operation of the distillation column in the subsequent step can be stabilized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エチルベンゼンの脱水素反応でスチレン
モノマーを合成する反応器の運転方法において、上記反
応器の出口における反応物を近赤外線スペクトルで組成
分析を行い、得られた測定値により反応器へ供給するス
チームとエチルベンゼンとの比率または反応器への供給
熱量を変更し、反応制御することを特徴とする近赤外線
による脱水素反応制御方法。
1. A method of operating a reactor for synthesizing a styrene monomer by a dehydrogenation reaction of ethylbenzene, wherein a composition of a reaction product at the outlet of the reactor is analyzed by a near infrared spectrum, and the measured value is transferred to the reactor. A method for controlling dehydrogenation reaction by near-infrared radiation, which comprises controlling the reaction by changing the ratio of steam to be supplied and ethylbenzene or the amount of heat supplied to the reactor.
JP11427595A 1995-05-12 1995-05-12 Control of dehydrogenation reaction with near infrared rays Withdrawn JPH08301799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11427595A JPH08301799A (en) 1995-05-12 1995-05-12 Control of dehydrogenation reaction with near infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11427595A JPH08301799A (en) 1995-05-12 1995-05-12 Control of dehydrogenation reaction with near infrared rays

Publications (1)

Publication Number Publication Date
JPH08301799A true JPH08301799A (en) 1996-11-19

Family

ID=14633755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11427595A Withdrawn JPH08301799A (en) 1995-05-12 1995-05-12 Control of dehydrogenation reaction with near infrared rays

Country Status (1)

Country Link
JP (1) JPH08301799A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304691A (en) * 1999-04-21 2000-11-02 Asahi Optical Co Ltd State-evaluation support apparatus, state evaluation method, and computer-readable recording medium
WO2009059153A1 (en) * 2007-11-01 2009-05-07 Shell Oil Company An alkylaromatic dehydrogenation system and method for monitoring and controlling the system
JP2014505674A (en) * 2010-12-13 2014-03-06 ルムス テクノロジー インコーポレイテッド Process for producing styrene from ethylbenzene using azeotropic vaporization and low water to ethylbenzene total ratio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304691A (en) * 1999-04-21 2000-11-02 Asahi Optical Co Ltd State-evaluation support apparatus, state evaluation method, and computer-readable recording medium
WO2009059153A1 (en) * 2007-11-01 2009-05-07 Shell Oil Company An alkylaromatic dehydrogenation system and method for monitoring and controlling the system
JP2014505674A (en) * 2010-12-13 2014-03-06 ルムス テクノロジー インコーポレイテッド Process for producing styrene from ethylbenzene using azeotropic vaporization and low water to ethylbenzene total ratio

Similar Documents

Publication Publication Date Title
US5712481A (en) Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy
US11953433B2 (en) Method for analysing process streams
US5861228A (en) Cracking property determination
US6723804B1 (en) Monitoring and control of slurry processes for polymerizing olefins
KR970007493B1 (en) Process and apparatus for hydrocarbon steam cracking controlled by near infrared analysis
US7115791B2 (en) Method and apparatus for controlling effluent composition in oxygenates to olefins conversion
KR100277721B1 (en) A method and apparatus for control and optimization of xylene separation and isomerization process by near-infrared spectroscopy
CA2310496C (en) Method for on-line analysis of acid catalyst for hydrocarbon conversion process
US6420595B1 (en) Process control for vinyl acetate manufacture
WO2000060336A1 (en) Apparatus and process for monitor and control of an ammoxidation reactor with a fourier transform infrared spectrometer
US5404015A (en) Method and system for controlling and optimizing isomerization processes
US7754932B2 (en) Monitoring and control of processes for making 1-hexene
CN100538336C (en) Method and device for determining isomer composition in isocyanate production process
CA2346736A1 (en) Multi-component process analysis and control
JPH08301793A (en) Reaction control with near-infrared rays
US6228650B1 (en) Acid catalyst regeneration control
JP2002527721A (en) In-line method for measuring residual content of isocyanate and apparatus useful therefor
Ward et al. On-line determination of reaction completion in a closed-loop hydrogenator using NIR spectroscopy
JPH08301799A (en) Control of dehydrogenation reaction with near infrared rays
RU2335526C2 (en) Device and method of hydrogen to carbon ratio determination and adjustment in liquid fraction of pyrolysis product
WO2001002088A1 (en) Method for the control of the manufacturing process of polyols
US5840582A (en) Method for determining the hydrogen-to-carbon ratio in a liquid hydrocarbon fraction and use thereof
JPH08266802A (en) Distillation column control method by near infrared rays
JP2003340270A (en) Method for controlling operation of reactor
JPH1112211A (en) Production of phenol compounds and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806