JPH08301793A - Reaction control with near-infrared rays - Google Patents
Reaction control with near-infrared raysInfo
- Publication number
- JPH08301793A JPH08301793A JP10737895A JP10737895A JPH08301793A JP H08301793 A JPH08301793 A JP H08301793A JP 10737895 A JP10737895 A JP 10737895A JP 10737895 A JP10737895 A JP 10737895A JP H08301793 A JPH08301793 A JP H08301793A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- analysis
- reaction
- composition
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は化学工業における代表的
な装置である反応器の制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a reactor which is a typical device in the chemical industry.
【0002】[0002]
【従来の技術】これまでの反応器の運転管理は所望の反
応器出口の反応物の液組成を維持するために必要に応じ
てあるいは随時、反応器出口の組成分析を行っていた。
しかしながら、これは直接装置からサンプル採取をして
分析を行うために、大きな時間遅れと、作業量の増加を
招いていた。時間遅れが発生すると生産は続行している
から、測定結果が規格外であれば製品のロスになった
り、規格外の反応液が精製工程に回された場合には蒸留
塔の運転条件が一定せず、場合によってはプラントが不
安定になり運転の続行が不可能になる。時間遅れを解消
する方法として便宜的には反応器内の温度監視をし、反
応状態の変化の目安としこれをもって運転管理の目安と
しているが、温度監視だけでは近年要求されるような高
いレベルの運転は達成できない。2. Description of the Related Art In the conventional operation management of a reactor, the composition of the reactor outlet was analyzed as necessary or at any time in order to maintain a desired liquid composition of the reactant at the reactor outlet.
However, this causes a large time delay and an increase in the amount of work because the sample is taken directly from the device for analysis. When the time delay occurs, production continues, so if the measurement result is out of specification, product loss occurs, and if the out-of-specification reaction solution is sent to the purification process, the operating conditions of the distillation column are constant. Otherwise, in some cases the plant becomes unstable and it becomes impossible to continue operation. As a method of eliminating the time delay, the temperature inside the reactor is conveniently monitored and used as a guideline for changes in the reaction state, which is used as a guideline for operation control. Driving cannot be achieved.
【0003】なお、ここでいう高いレベルの運転とは、
管理目標とする反応液の組成と実際の組成のずれをほと
んどなくし、次工程の精製工程で蒸留塔の運転が安定す
ることである。時間遅れを解消する手段として、近年
は、オンライン分析機器を蒸留塔に導入し、分析の時間
遅れを最小限にし、分析値から人が判断したり、装置が
自動的に判断し制御ができるようにされている。Incidentally, the high level operation referred to here is
The difference between the composition of the reaction solution as the control target and the actual composition is almost eliminated, and the operation of the distillation column is stabilized in the subsequent purification step. As a means of eliminating the time delay, in recent years, an online analytical instrument has been introduced into the distillation column to minimize the time delay of the analysis so that the person can judge from the analysis value or the device can automatically judge and control. Has been
【0004】しかしながら、これらオンライン分析機器
は通常のガスクロマトグラフィー分析のサンプリングを
自動で行う所に特徴があり、機器が分析をする時間はな
んら短縮はされてはおらず更に迅速なオンラインのリア
ルタイム分析手法が要望されていた。一方で、オンライ
ンのリアルタイム分析を行う新しい手法として近年、近
赤外線による分析が知られている。この分析手法はもと
もと穀類などの蛋白質の測定に用いられてきたが、昨今
石油化学プラントの運転を最適化もしくは自動化する方
法に用いられ注目され始めている。However, these on-line analytical instruments are characterized by the fact that the sampling of the usual gas chromatography analysis is performed automatically, and the time for the instrument to analyze is not shortened at all, and a more rapid on-line real-time analytical method. Was requested. On the other hand, near-infrared analysis is known as a new method for online real-time analysis in recent years. This analytical method was originally used for measuring proteins such as cereals, but has recently been used for a method for optimizing or automating the operation of a petrochemical plant and has begun to attract attention.
【0005】例えば、特開平2−28293号公報に見
られるように赤外線分析光度計を使用してクラッキング
ファーネスに供給する炭化水素を分析することにより、
エチレン、プロピレン等の(ジ)オレフィン等の収率を
該分析の関数として制御する方法が開示されている。こ
の技術は供給された炭化水素をオンラインで分析し分析
値をリアルタイムで測定しており、特徴は供給液の組成
を分析して反応条件を制御しているものである。For example, as disclosed in Japanese Unexamined Patent Publication No. 2-28293, by analyzing the hydrocarbons supplied to the cracking furnace by using an infrared analysis photometer,
A method of controlling the yield of (di) olefins such as ethylene, propylene, etc. as a function of the analysis is disclosed. This technology analyzes the supplied hydrocarbons online and measures the analytical values in real time. The feature is that the composition of the feed liquid is analyzed and the reaction conditions are controlled.
【0006】しかしながら、一般の合成反応の制御で同
様に供給液の組成の分析値から、反応条件を変更しても
反応器の出口での組成を精度よく目標値にコントロール
するのは困難であり、かつコントロールすべき部位の濃
度の変動が大きく新しい制御方法が要求されていた。However, it is difficult to control the composition at the outlet of the reactor accurately to the target value even if the reaction conditions are changed from the analytical value of the composition of the feed liquid similarly in the control of the general synthesis reaction. In addition, there was a great demand for a new control method because the concentration of the part to be controlled varies greatly.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、例え
ば、ベンゼンとエチレンの合成によりエチルベンゼンを
合成するような、反応器の反応液の組成分析を時間遅れ
なく行うことにより、反応器の制御を行う方法を提供し
ようとするものである。The object of the present invention is to control the reactor by performing composition analysis of the reaction solution of the reactor without lag, for example, synthesizing ethylbenzene by synthesizing benzene and ethylene. It is meant to provide a way to do.
【0008】[0008]
【課題を解決するための手段】本発明者は鋭意研究を重
ねた結果、反応器出口の反応液に直接近赤外線を透過さ
せその吸収スペクトルを測定し、組成分析が可能である
ことを見い出し、更に反応器の運転管理を時間遅れなく
且つ高い精度でできることを見い出し、この知見に基づ
いて本発明をなすに至った。As a result of intensive studies, the present inventor found that composition analysis is possible by directly transmitting near-infrared rays to the reaction solution at the outlet of the reactor and measuring the absorption spectrum thereof. Furthermore, they have found that the operation management of the reactor can be performed with high accuracy without time delay, and the present invention has been completed based on this finding.
【0009】すなわち、本発明は、反応物を合成する反
応器の運転制御方法において、上記反応器の出口の反応
物を近赤外線スペクトルで組成分析を行い、得られた測
定値を用いて反応器へ供給する原料の量もしくは比率を
反応条件として変更し、反応器の出口の反応物の組成を
一定にすることを特徴とする近赤外線による反応制御方
法、である。That is, the present invention relates to a method for controlling the operation of a reactor for synthesizing a reaction product, in which the composition of the reaction product at the outlet of the reactor is analyzed by near-infrared spectrum, and the measured value obtained is used for the reaction. Is a reaction control method using near-infrared radiation, characterized in that the composition or composition of the reactant at the outlet of the reactor is made constant by changing the amount or ratio of the raw material supplied to
【0010】本発明で近赤外線とは可視光(400〜7
00nm)と中間赤外線(2500〜10000nm)
の中間にある波長の光のことである。近赤外線の特徴と
しては、この範囲にある波長のスペクトルは、中間赤外
線領域でおこる吸収の倍音及び結合振動によって吸収が
起こるので、中間赤外線領域でのスペクトルのピーク数
より著しく少ない。In the present invention, near infrared light means visible light (400 to 7
00 nm) and mid-infrared rays (2,500-10000 nm)
It is light with a wavelength in the middle of. As a characteristic of near-infrared light, the spectrum of wavelengths in this range is remarkably smaller than the number of peaks of the spectrum in the mid-infrared region because absorption occurs due to overtones of absorption and coupling vibrations occurring in the mid-infrared region.
【0011】また、近赤外線の吸収スペクトルの単位濃
度変化に対する吸光度変化は中間赤外線のそれと比較し
て1/10〜1/1000である。以下に分析原理を近赤外線の吸
収スペクトルを例に述べるが、反射スペクトル、内部散
乱スペクトル、透過スペクトルも基本原理は同じであ
る。被測定物質に近赤外線の所定の波長域の光を当てそ
の吸光度を測定し、濃度と吸光度との関係から検量線を
求めている。また多く場合連続吸収スペクトルを波長で
2次微分変換することにより各々のスペクトルの特徴が
強調されて更に精度の高い分析が可能になる。The change in absorbance with respect to the unit concentration change in the absorption spectrum of near infrared rays is 1/10 to 1/1000 as compared with that of mid infrared rays. The analysis principle will be described below by taking the absorption spectrum of near infrared rays as an example, but the basic principle is the same for the reflection spectrum, the internal scattering spectrum and the transmission spectrum. The substance to be measured is irradiated with light in a predetermined wavelength range of near infrared rays, the absorbance is measured, and a calibration curve is obtained from the relationship between the concentration and the absorbance. Further, in many cases, the continuous absorption spectrum is subjected to the second-order differential conversion with respect to the wavelength, so that the characteristics of each spectrum are emphasized, which enables analysis with higher accuracy.
【0012】分析目的とする注目成分の純物質スペクト
ルの1次微分もしくは2次微分の中でその成分に独自の
ピークを帰属波長と呼び、この波長で検量線を作製す
る。帰属波長が存在しないときには数百波長を用いた多
変量回帰を用いる。サンプルから近赤外線を集めるスペ
クトルを得る方法は一般に3種類ある。即ち、光を被測
定物質に照射しその反射光を集める反射法、サンプルの
透過光を集める透過法、そして透過と内部散乱との組合
せ法である。透過法は透明度の高いフィルム及び散乱度
の高い溶液、またはペースト状のもの、スラリー状のも
の、懸濁液など幅広く適用できる。透過と内部散乱の組
合せ法はクリヤーで散乱がわずかな液体、懸濁液もしく
はゲル状の物質に対して明確なスペクトルが得られる。
反射光を検出する反射法では不透明粉体、高濃度物や可
動する固体などに対して最適である。In the first derivative or second derivative of the pure substance spectrum of the component of interest to be analyzed, the peak unique to that component is called the attribution wavelength, and a calibration curve is prepared at this wavelength. When there is no attribution wavelength, multivariate regression using several hundred wavelengths is used. There are generally three methods for obtaining a spectrum that collects near-infrared rays from a sample. That is, there are a reflection method of irradiating light on a substance to be measured and collecting its reflected light, a transmission method of collecting transmitted light of a sample, and a combined method of transmission and internal scattering. The transmission method can be widely applied to a film having a high transparency and a solution having a high degree of scattering, or a paste, a slurry or a suspension. The combined method of transmission and internal scattering gives clear spectra for liquid, suspension or gel-like substances with clear and little scattering.
The reflection method that detects reflected light is most suitable for opaque powder, high-concentration substances, and movable solids.
【0013】反射法の場合、光源からの光は分散させる
ために回折格子を最初に通し、それからそのエネルギー
はサンプルに送られる。各スキャン毎にサンプルから反
射してくるエネルギーを集めてプローブで検出して、デ
ータは計器に送られる。透過法、透過と内部散乱との組
合せ法は、サンプルを透過させたサンプルスペクトルか
ら参照用のリファレンススペクトルを引き算してその演
算後のスペクトルを回折格子に導きスペクトルの分散と
検出を行う。In the case of the reflection method, the light from the light source is first passed through the diffraction grating to disperse it, and then its energy is sent to the sample. For each scan, the energy reflected from the sample is collected and detected by the probe, and the data is sent to the instrument. In the transmission method and the combined method of transmission and internal scattering, the reference spectrum for reference is subtracted from the sample spectrum in which the sample is transmitted, and the spectrum after the calculation is introduced into the diffraction grating to perform spectrum dispersion and detection.
【0014】近赤外線による分析では多成分を同時にし
かも高速に約1分位で測定できる。分析した結果をオペ
レーターが監視してそれをマニュアルで運転に反映する
ことも可能であるがそれだけでなく、分析器を直接調節
器と連結し分析結果を反応器の制御に自動で反映させる
ことも可能である。ここで制御とは反応器への原料のフ
ィード量または反応器に供給する原料の比率、(例え
ば、エチル基とベンゼン環の比率)の中の1つもしくは
2つ以上の反応条件を変更することによって、反応器出
口の反応物の組成を一定にすることを指す。すなわちオ
ペレーターは分析結果を見て、反応器への原料のフィー
ド量を変更したり、反応器に供給する原料のエチル基と
ベンゼン環の比率を変更することにより制御が可能であ
る。また、変更する反応条件は、反応器に供給する原料
の量、比率だけでなく、反応器に供給する触媒の量、さ
らにまた、反応温度、反応圧力などがある。In near infrared analysis, multiple components can be measured simultaneously and at high speed in about one minute. It is possible for the operator to monitor the analysis result and reflect it manually in the operation, but not only that, the analyzer can be directly connected to the controller and the analysis result can be automatically reflected in the control of the reactor. It is possible. Here, control means changing one or more reaction conditions in the feed amount of the raw material to the reactor or the ratio of the raw material supplied to the reactor (for example, the ratio of the ethyl group and the benzene ring). Means that the composition of the reactant at the outlet of the reactor is kept constant. That is, the operator can control by looking at the analysis result and changing the feed amount of the raw material to the reactor or the ratio of the ethyl group and the benzene ring of the raw material supplied to the reactor. The reaction conditions to be changed include not only the amount and ratio of raw materials supplied to the reactor, but also the amount of catalyst supplied to the reactor, the reaction temperature, the reaction pressure, and the like.
【0015】本発明で用いられる反応の反応圧力は特に
限定されるものではなく、減圧反応であっても、加圧反
応であっても、常圧反応であっても本発明をなんら制限
するものではない。本発明の制御方法として、例えば、
エチルベンゼンの製造工程において、反応器に供給する
のはエチレンとベンゼンと精製系からリサイクルされて
くるベンゼン環にエチル基が2〜6個付加したポリエチ
ルベンゼンエチレンである。反応による反応生成物はエ
チルベンゼンと未反応のベンゼン、ベンゼン環にエチル
基が1〜6付加したポリエチルベンゼン、ジフェニルエ
タン、エチルジフェニルエタンなどの沸点の高い物質で
ある。The reaction pressure of the reaction used in the present invention is not particularly limited, and any of reduced pressure reaction, pressurized reaction, and normal pressure reaction will limit the present invention. is not. As a control method of the present invention, for example,
In the process for producing ethylbenzene, what is supplied to the reactor is ethylene, benzene, and polyethylbenzeneethylene in which 2 to 6 ethyl groups are added to the benzene ring recycled from the purification system. The reaction product of the reaction is a substance having a high boiling point such as unreacted benzene with benzene, polyethylbenzene having 1 to 6 ethyl groups added to the benzene ring, diphenylethane, and ethyldiphenylethane.
【0016】一般にこれらの混合物は以下の蒸留塔で分
離され最初のベンゼン塔では塔頂よりベンゼン、塔底よ
りエチルベンゼン、ポリエチルベンゼン、ポリエチルベ
ンゼンより沸点の高い物質を分離し、2番目のエチルベ
ンゼン塔では塔頂よりエチルベンゼン、塔底よりポリエ
チルベンゼン、ポリエチルベンゼンより沸点が高い物質
を分離し、3番目のポリエチルベンゼン塔では塔頂より
ポリエチルベンゼン、塔底より沸点がポリエチルベンゼ
ンより高い物質を分離する。Generally, these mixtures are separated in the following distillation column. In the first benzene column, benzene is separated from the top, ethylbenzene, polyethylbenzene, and substances having a boiling point higher than those of polyethylbenzene are separated from the bottom, and the second ethylbenzene column is separated. Ethylbenzene is separated from the top of the column, polyethylbenzene is separated from the bottom of the column, and a substance having a boiling point higher than that of polyethylbenzene is separated. In the third polyethylbenzene column, polyethylbenzene is separated from the top of the column and a substance having a boiling point higher than that of polyethylbenzene is separated from the bottom of the column.
【0017】エチレンとベンゼンのアルキレーション反
応に使用される触媒の種類は、主触媒に塩化アルミ助触
媒に塩酸の組合せで反応器に連続供給するもの、もしく
は固定床ゼオライト触媒、流動床のゼオライト触媒など
が一般的である。反応の形態は本発明を何等限定せず気
相反応、液相反応のどちらでもよい。以上の分析の測定
対象は凝縮前の塔頂のオーバーヘッドガスでも、凝縮後
の塔頂液でも組成分析可能であるが、液状の方が近赤外
線のスペクトル感度は高く分析精度は高い。更に液体状
態の方が測定温度が一般に低く測定機器に対してより過
酷ではなく、以下の示す望ましい測定温度範囲に入りや
すい。The type of catalyst used in the alkylation reaction of ethylene and benzene is such that the main catalyst is a mixture of aluminum chloride cocatalyst and hydrochloric acid and is continuously fed to the reactor, or a fixed bed zeolite catalyst or a fluidized bed zeolite catalyst. Etc. are common. The reaction form is not limited to the present invention and may be either a gas phase reaction or a liquid phase reaction. The measurement target of the above analysis can be composition analysis of the overhead gas before the condensation or the overhead liquid after the condensation, but the liquid has higher near-infrared spectrum sensitivity and higher analysis accuracy. Furthermore, the liquid state generally has a lower measurement temperature, is less severe for the measuring instrument, and is more likely to fall within the desirable measurement temperature range shown below.
【0018】また被測定の炭化水素の温度と圧力は本発
明の組成分析をなんら制限するものではなく、炭化水素
の化学的特性には何等影響を受けないが、−10℃〜3
00℃、0〜70kg/cm2Gの範囲内に被測定物質
が維持されるのが望ましく更に望ましくは0℃〜50
℃、0〜20kg/cm2Gである。この温度範囲外、圧力範
囲外の温度域では近赤外線測定装置のプローブ等に使用
されているパッキング用シール材の耐性上の問題により
測定が一般に困難になる。Further, the temperature and pressure of the hydrocarbon to be measured do not limit the composition analysis of the present invention at all, and are not affected by the chemical characteristics of the hydrocarbon at all, but -10 ° C to 3 ° C.
It is desirable that the substance to be measured be maintained within the range of 00 ° C and 0 to 70 kg / cm2G, and more desirably 0 ° C to 50
C, 0 to 20 kg / cm 2 G. In the temperature range outside of this temperature range and pressure range, the measurement generally becomes difficult due to the problem of the durability of the sealing material for packing used in the probe of the near infrared ray measuring device.
【0019】近赤外線の波長の範囲は700nm〜25
00nmであるが、スペクトルをとった時対象となる被
測定物質によってその物質のもつ特異的なピークが異な
るため本発明では近赤外線の波長の範囲には何等限定す
るものではない。例えば、ポリエチレンやポリビニルア
セテートのペレットは、1800nm〜2200nmの
あたりに特異的なピークが表れ、ポリスチレンの場合は
1100nm〜2500nmのあたりに特異的なピーク
が表れる。エチレンとベンゼンの反応によるアルキレー
ションの反応生成物では、1100nm〜2100nm
のあたりに特異的なピークが表れる。The wavelength range of near infrared rays is 700 nm to 25
Although it is 00 nm, the specific peak of the substance varies depending on the target substance to be measured when the spectrum is taken, and therefore the present invention does not limit the wavelength range of near infrared rays. For example, a pellet of polyethylene or polyvinyl acetate shows a specific peak around 1800 nm to 2200 nm, and a polystyrene shows a specific peak around 1100 nm to 2500 nm. In the reaction product of the alkylation by the reaction of ethylene and benzene, 1100 nm to 2100 nm
A specific peak appears around.
【0020】また、具体的には、被測定物質に応じて、
下記の複数の波長があげられる。すなわち、エチルベン
ゼンでは、1614nm、2026nm、1656n
m、2070nm、m−ジエチルベンゼンでは1846
nm、1716nm、1770nm、p−ジエチルベン
ゼンでは1644nm、1874nm、1880nm、
1732nm、o−ジエチルベンゼンでは1748n
m、1646nm、1986nm、2080nm、1,
1−ジフエニルエタンでは1638nm、1830n
m、1740nm、1366nm、1,2,5トリエチ
ルベンゼンでは1726nm、2026nm、2040
nm、1,2,4−トリエチルベンゼンでは1746n
m、1862nm、1832nm、1,2,3−トリエ
チルベンゼンでは1746nm、1572nm、141
4nm、ベンゼンでは1100〜1900nmの範囲内
の波長でのスペクトルを用いて組成の定量化を行うこと
が好ましい。Further, specifically, depending on the substance to be measured,
The following multiple wavelengths are listed. That is, for ethylbenzene, 1614 nm, 2026 nm, 1656n
m, 2070 nm, 1846 for m-diethylbenzene
nm, 1716 nm, 1770 nm, 1644 nm, 1874 nm, 1880 nm for p-diethylbenzene,
1732 nm, 1748 n for o-diethylbenzene
m, 1646 nm, 1986 nm, 2080 nm, 1,
1638nm, 1830n for 1-diphenylethane
m, 1740 nm, 1366 nm, 1726 nm, 2026 nm, 2040 for 1,2,5 triethylbenzene
nm, 1746n for 1,2,4-triethylbenzene
m, 1862 nm, 1832 nm, 1746 nm, 1572 nm, 141 for 1,2,3-triethylbenzene
It is preferable to quantify the composition using a spectrum in the wavelength range of 1 nm to 1900 nm for 4 nm and benzene.
【0021】[0021]
【実施例】以下に実施例をあげて本発明を更に具体的に
説明する。EXAMPLES The present invention will be described in more detail with reference to the following examples.
【0022】[0022]
【実施例1】主触媒に塩化アルミ助触媒に塩酸を使用
し、ベンゼンとエチレンの反応によるエチルベンゼンの
合成を行った。初期の反応条件の設定値は、反応温度は
110℃、反応圧力0.6Kg/cm2G、主触媒の塩
化アルミの反応器内の濃度は0.3重量%、反応器にフ
ィードするベンゼン中の助触媒の塩酸の濃度は1重量%
である。Example 1 Ethylbenzene was synthesized by reacting benzene with ethylene using hydrochloric acid as an aluminum chloride cocatalyst as a main catalyst. The initial reaction conditions were set such that the reaction temperature was 110 ° C., the reaction pressure was 0.6 Kg / cm 2 G, the concentration of aluminum chloride as the main catalyst in the reactor was 0.3% by weight, and the auxiliary catalyst in benzene fed to the reactor was The concentration of hydrochloric acid in the catalyst is 1% by weight
Is.
【0023】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析はオンラインでしかも解析時間も短いために約
1分程で分析でき、分析結果を見て、迅速に反応器の運
転管理に反映させた。反応物の組成分析結果をみるとエ
チルベンゼン濃度が管理濃度に比べて低いので、3回に
分けてベンゼンのフイード量を減らして、モル比を1%
上げた。A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis is online and the analysis time is short, it can be analyzed in about 1 minute, and the analysis result was viewed and reflected promptly in the operation management of the reactor. Looking at the composition analysis results of the reactants, the concentration of ethylbenzene is lower than the control concentration, so the amount of benzene feed was reduced in three times and the molar ratio was 1%.
I raised it.
【0024】このように、反応器の出口の反応液組成の
管理基準からのズレを常時監視することができるので、
反応液の組成が規格からズレたとき時間的に無駄なく適
正な組成に回復することが可能になった。反応液の近赤
外線による分析結果と分析に要する時間、反応量の変更
方法、管理されている反応液の組成に回復するまでの時
間、スペクトルの種類を表1に示す。As described above, since the deviation from the control standard of the composition of the reaction solution at the outlet of the reactor can be constantly monitored,
When the composition of the reaction liquid deviates from the standard, it is possible to recover the proper composition without wasting time. Table 1 shows the results of analysis by the near infrared rays of the reaction solution, the time required for the analysis, the method for changing the reaction amount, the time until the composition of the controlled reaction solution is restored, and the type of spectrum.
【0025】原料のエチル基とベンゼン環の比率とは、
仕込まれる原料のベンゼン、エチレン、ベンゼン環にエ
チル基が2〜6付加したポリエチルベンゼンのうち、エ
チル基とベンゼン環の比率をモル比率で表したものであ
り以下モル比と呼ぶ。最終的な反応条件の変更後の状態
はモル比のみ記載した。これは原料の供給量やモル比の
変更はモル比で代表されるためである。The ratio of the ethyl group of the raw material to the benzene ring is
Of the raw materials to be charged, benzene, ethylene, and polyethylbenzene in which 2 to 6 ethyl groups are added to the benzene ring, the ratio of the ethyl group to the benzene ring is represented by the molar ratio, and is hereinafter referred to as the molar ratio. Only the molar ratio is shown in the state after the final change of the reaction conditions. This is because changes in the feed rate of raw materials and the molar ratio are represented by the molar ratio.
【0026】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いエチルベンゼンを得ることができ
る。As described above, the rapid control makes it possible to obtain a highly pure ethylbenzene in which the fluctuation of the composition of the reaction product is small, the distillation separation in the purification step is easy.
【0027】[0027]
【比較例1】オンラインの分析を行わなかつた以外は実
施例1と同様の反応条件でエチルベンゼンの合成をし
た。反応条件が適正な値か確認する必要がある度に反応
液をサンプリングして、ガスクロマトグラフィにて分析
する必要がありサンプリング時間や分析時間を考慮する
と反応器の運転条件変更を実際に行うまでに時間遅れが
あり、迅速な制御ができなかった。この時間遅れは平均
60分〜90分であった。Comparative Example 1 Ethylbenzene was synthesized under the same reaction conditions as in Example 1 except that on-line analysis was not performed. It is necessary to sample the reaction solution every time it is necessary to confirm that the reaction conditions are appropriate values, and to analyze by gas chromatography.If sampling time and analysis time are taken into consideration, it is necessary to change the operating conditions of the reactor. There was a time delay, and quick control was not possible. This time delay was 60 to 90 minutes on average.
【0028】しかも、これらは自動ではないため常時濃
度を監視することができるわけではなく運転管理は非常
におおざっぱなものであり、分析と分析の合間には管理
濃度とのずれが発生したままでの運転であった。反応物
の組成分析結果をみるとエチルベンゼン濃度が管理濃度
に比べて低いので、3回に分けてベンゼンのフイード量
を減らして、モル比を1%上げたが、所要時間が210
分もかかった。Moreover, since these are not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and there is a gap between the control concentration and the analysis between the analyzes. It was driving. Looking at the composition analysis results of the reactants, the ethylbenzene concentration was lower than the control concentration, so the amount of benzene feed was reduced in three steps and the molar ratio was increased by 1%.
It took a minute.
【0029】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表2に示す。Table 2 shows the results of analysis by gas chromatography of the reaction liquid at the outlet of the reactor, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.
【0030】[0030]
【実施例2】主触媒に塩化アルミ助触媒に塩酸を使用
し、ベンゼンとエチレンの反応によるエチルベンゼンの
合成を行った。初期の反応条件の設定値は反応温度は1
20℃、反応圧力0.7kg/cm2G、主触媒の塩化
アルミの反応器内の濃度は0.4重量%、反応器にフィ
ードするベンゼン中の助触媒の塩酸の濃度は0.8重量
%である。Example 2 Using aluminum chloride as a main catalyst and hydrochloric acid as a cocatalyst, ethylbenzene was synthesized by the reaction of benzene and ethylene. The reaction temperature is set to 1 for the initial reaction conditions.
At a temperature of 20 ° C., a reaction pressure of 0.7 kg / cm 2 G, the concentration of aluminum chloride as a main catalyst in the reactor was 0.4% by weight, and the concentration of hydrochloric acid as a cocatalyst in benzene fed to the reactor was 0.8% by weight. is there.
【0031】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析はオンラインでしかも解析時間も短いために約
1分程で分析でき分析結果を見て、迅速に反応器の運転
管理に反映させた。反応物の組成分析結果をみるとエチ
ルベンゼン濃度が管理濃度に比べて低いので、3回に分
けてベンゼンのフイード量を減らして、モル比を1%上
げた。A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis is online and the analysis time is short, the analysis can be done in about 1 minute, and the analysis result was seen and promptly reflected in the operation management of the reactor. The composition analysis result of the reaction product shows that the concentration of ethylbenzene is lower than the control concentration, so the amount of benzene feed was reduced in three times and the molar ratio was increased by 1%.
【0032】このように、反応器の出口の反応液組成の
管理基準からのズレを常時監視することができるので、
反応液の組成が規格からズレたとき時間的に無駄なく適
正な組成に回復することが可能になった。反応液の近赤
外線による分析結果と分析に要する時間、操作量の変更
方法、管理されている反応液の組成に回復するまでの時
間、スペクトルの種類を表1に示す。As described above, since the deviation from the control standard of the composition of the reaction solution at the outlet of the reactor can be constantly monitored,
When the composition of the reaction liquid deviates from the standard, it is possible to recover the proper composition without wasting time. Table 1 shows the results of analysis by the near infrared rays of the reaction solution, the time required for the analysis, the method of changing the manipulated value, the time until the composition of the reaction solution being controlled is recovered, and the type of spectrum.
【0033】このように、迅速な制御により、反応物の
組成変動が少なく、従って、精製工程の蒸留分離が容易
であり、純度の高いエチルベンゼンを得ることができ
る。As described above, the rapid control makes it possible to obtain a highly pure ethylbenzene in which the fluctuation of the composition of the reaction product is small, the distillation separation in the purification step is easy.
【0034】[0034]
【比較例2】オンラインでの分析を行わなかつた以外は
実施例2と同様の反応条件でエチルベンゼンの合成をし
た。反応条件が適正な値か確認する必要がある度に反応
液をサンプリングして、ガスクロマトグラフィにて分析
する必要がありサンプリング時間や分析時間を考慮する
と反応器の運転条件変更を実際に行うまでに時間遅れが
あり迅速な制御ができなかった。この時間遅れは平均6
0分〜90分である。Comparative Example 2 Ethylbenzene was synthesized under the same reaction conditions as in Example 2 except that the on-line analysis was not performed. It is necessary to sample the reaction solution every time it is necessary to confirm that the reaction conditions are appropriate values, and to analyze by gas chromatography.If sampling time and analysis time are taken into consideration, it is necessary to change the operating conditions of the reactor. There was a time delay and quick control was not possible. This time delay is 6 on average
It is 0 minutes to 90 minutes.
【0035】しかも、これらは自動ではないため常時濃
度を監視することができるわけではなく運転管理は非常
におおざっぱなものであり、分析と分析の合間には管理
濃度とのずれが発生したままでの運転であった。反応物
の組成分析結果をみるとエチルベンゼン濃度が管理濃度
に比べて低いので、ベンゼンのフイード量を減らした
が、再分析結果ではポリエチルベンゼン濃度が管理濃度
に比べて高くなつたので、今度はポリエチルベンゼンの
フイード量を減らして最終的にモル比を2%下げた。、
所要時間が150分かかった。Moreover, since these are not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and there is a gap between the control concentration and the analysis between analysis. It was driving. Looking at the composition analysis results of the reactants, the ethylbenzene concentration was lower than the control concentration, so the amount of benzene feed was reduced, but the reanalysis result showed that the polyethylbenzene concentration was higher than the control concentration, so this time the polybenzene concentration was higher than the control concentration. The amount of ethylbenzene feed was reduced to finally reduce the molar ratio by 2%. ,
It took 150 minutes.
【0036】反応器出口の反応液のガスクロマトグラフ
ィーによる分析結果と分析に要する時間、操作量の変更
方法、管理されている反応液の組成に回復するまでの時
間を表2に示す。Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.
【0037】[0037]
【実施例3】主触媒に塩化アルミ助触媒に塩酸を使用し
てベンゼンとエチレンの反応によるエチルベンゼンの合
成を行った。初期の反応条件の設定値は反応温度は12
5℃、反応圧力0.7kg/cm2G、主触媒の塩化ア
ルミの反応器内の濃度は0.4重量%、反応器にフィー
ドするベンゼン中の助触媒の塩酸の濃度は0.9重量%
である。Example 3 Ethylbenzene was synthesized by the reaction of benzene and ethylene using hydrochloric acid as the main catalyst and aluminum chloride as the cocatalyst. The reaction temperature is set to 12 at the initial setting of reaction conditions.
5 ° C., reaction pressure 0.7 kg / cm 2 G, concentration of main catalyst aluminum chloride in the reactor is 0.4 wt%, concentration of co-catalyst hydrochloric acid in benzene fed to the reactor is 0.9 wt%.
Is.
【0038】反応器出口の冷却器からでたラインに近赤
外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析はオンラインでしかも解析時間も短いために約
1分程で分析でき分析結果を見て、迅速に反応器の運転
管理に反映させた。反応物の組成分析結果をみるとエチ
ルベンゼン濃度が管理濃度に比べて低いので、エチレン
のフイード量を増やして、モル比を2%上げた。A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis is online and the analysis time is short, the analysis can be done in about 1 minute, and the analysis result was seen and promptly reflected in the operation management of the reactor. Looking at the composition analysis results of the reaction product, the concentration of ethylbenzene was lower than the control concentration, so the amount of ethylene feed was increased to raise the molar ratio by 2%.
【0039】このように、反応器出口の反応液組成の管
理基準からのズレを常時監視することができるので、反
応液の組成が規格からズレたとき時間的に無駄なく適正
な組成に回復することが可能になった。反応液の近赤外
線による分析結果と分析に要する時間、操作量の変更方
法、管理されている反応液の組成に回復するまでの時
間、スペクトルの種類を表1に示す。As described above, since the deviation of the composition of the reaction solution from the control standard at the outlet of the reactor can be constantly monitored, when the composition of the reaction solution deviates from the standard, the composition is recovered to an appropriate composition without waste in time. It has become possible. Table 1 shows the results of analysis by the near infrared rays of the reaction solution, the time required for the analysis, the method of changing the manipulated value, the time until the composition of the reaction solution being controlled is recovered, and the type of spectrum.
【0040】このように、迅速な制御により反応物の組
成変動が少なく、従って、精製工程の蒸留分離が容易で
あり、純度の高いエチルベンゼンをうることができる。As described above, the composition of the reaction product is little changed by the rapid control, and therefore, the distillation separation in the purification step is easy, and highly pure ethylbenzene can be obtained.
【0041】[0041]
【比較例3】オンラインの分析を行わなかつた以外は実
施例3と同様の反応条件でエチルベンゼンの合成をし
た。反応条件が適正な値か確認する必要がある度に反応
液をサンプリングして、ガスクロマトグラフィにて分析
する必要がありサンプリング時間や分析時間を考慮する
と反応器の運転条件変更を実際に行うまでに時間遅れが
あり迅速な制御ができなかった。この時間遅れは平均6
0分〜90分である。Comparative Example 3 Ethylbenzene was synthesized under the same reaction conditions as in Example 3 except that on-line analysis was not performed. It is necessary to sample the reaction solution every time it is necessary to confirm that the reaction conditions are appropriate values, and to analyze by gas chromatography.If sampling time and analysis time are taken into consideration, it is necessary to change the operating conditions of the reactor. There was a time delay and quick control was not possible. This time delay is 6 on average
It is 0 minutes to 90 minutes.
【0042】しかもこれらは自動ではないため常時濃度
を監視することができるわけではなく運転管理は非常に
おおざっぱなものであり、分析と分析の合間には管理濃
度とのずれが発生したままで運転を行っている。反応物
の組成分析結果をみるとエチルベンゼン濃度が管理濃度
に比べて低いので、エチレンのフイード量を増やしてモ
ル比を2%上げた。、所要時間が70分かかった。Moreover, since these are not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and operation is performed with a deviation from the control concentration occurring between analyzes. It is carried out. The composition analysis result of the reaction product showed that the ethylbenzene concentration was lower than the control concentration, so the ethylene feed amount was increased and the molar ratio was increased by 2%. It took 70 minutes.
【0043】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表2に示す。Table 2 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the reaction liquid was controlled.
【0044】[0044]
【実施例4】主触媒に塩化アルミ助触媒に塩酸を使用し
てベンゼンとエチレンの反応によるエチルベンゼンの合
成をした。初期の反応条件の設定値は反応温度は105
℃、反応圧力0.6kg/cm2G、主触媒の塩化アル
ミの反応器内の濃度は0.3重量%、反応器にフィード
するベンゼン中の助触媒の塩酸の濃度は0.7重量%で
ある。Example 4 Ethylbenzene was synthesized by the reaction of benzene and ethylene using hydrochloric acid as an aluminum chloride cocatalyst as a main catalyst. The reaction temperature is set to 105 at the initial setting of reaction conditions
℃, reaction pressure 0.6kg / cm2G, the concentration of the main catalyst of aluminum chloride in the reactor is 0.3% by weight, the concentration of hydrochloric acid of the cocatalyst in benzene fed to the reactor is 0.7% by weight .
【0045】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析はオンラインでしかも解析時間も短いために約
1分程で分析でき分析結果を見て、迅速に反応器の運転
管理に反映させた。反応物の組成分析結果をみるとエチ
ルベンゼン濃度が管理濃度に比べて低く、ポリエチルベ
ンゼンの濃度が管理濃度に比べて高いので、主触媒であ
る塩化アルミのフイード量を反応器内で0.4重量%に
なるように増やし、反応器内の温度を5℃上げ、圧力を
0.05kg/cm2 上げた。また、ベンゼンのフイー
ド量を増やし、最終的にモル比を5%下げた。なお、こ
れらの操作は3回に分けて行った。A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis is online and the analysis time is short, the analysis can be done in about 1 minute, and the analysis result was seen and promptly reflected in the operation management of the reactor. The composition analysis results of the reaction products show that the concentration of ethylbenzene is lower than the control concentration and the concentration of polyethylbenzene is higher than the control concentration. Therefore, the feed amount of aluminum chloride, which is the main catalyst, was 0.4 weight in the reactor. %, The temperature inside the reactor was increased by 5 ° C., and the pressure was increased by 0.05 kg / cm 2. Also, the amount of benzene feed was increased, and the molar ratio was finally reduced by 5%. In addition, these operations were performed in three steps.
【0046】このように、反応器の出口の反応液組成の
管理基準からのズレを常時監視することができるので、
反応液の組成が規格からズレたとき時間的に無駄なく適
正な組成に回復することが可能になった。反応液の近赤
外線による分析結果と分析に要する時間、操作量の変更
方法、管理されている反応液の組成に回復するまでの時
間、スペクトルの種類を表1に示す。As described above, since the deviation from the control standard of the composition of the reaction solution at the outlet of the reactor can be constantly monitored,
When the composition of the reaction liquid deviates from the standard, it is possible to recover the proper composition without wasting time. Table 1 shows the results of analysis by the near infrared rays of the reaction solution, the time required for the analysis, the method of changing the manipulated value, the time until the composition of the reaction solution being controlled is recovered, and the type of spectrum.
【0047】このように、迅速な制御により反応物の組
成変動が少なく、従って、精製工程の蒸留分離が容易で
あり、純度の高いエチルベンゼンを得ることができる。In this way, the composition of the reaction product is little changed by the rapid control, and therefore, the distillation separation in the purification step is easy, and highly pure ethylbenzene can be obtained.
【0048】[0048]
【比較例4】オンラインの分析を行わなかつた以外は実
施例3と同様の反応条件でエチルベンゼンの合成をし
た。反応条件が適正な値かを確認する必要がある度に反
応液をサンプリングして、ガスクロマトグラフィにて分
析する必要がありサンプリング時間や分析時間を考慮す
ると反応条件の運転条件変更を実際に行うまでに時間遅
れがあり迅速な制御ができなかった。この時間遅れは平
均60分〜90分である。Comparative Example 4 Ethylbenzene was synthesized under the same reaction conditions as in Example 3 except that on-line analysis was not performed. It is necessary to sample the reaction solution every time it is necessary to confirm that the reaction conditions are appropriate values, and to analyze by gas chromatography.If the sampling time and analysis time are taken into consideration, the operating conditions of the reaction conditions must be changed. There was a time delay and it was not possible to control quickly. This time delay is 60 to 90 minutes on average.
【0049】しかもこれらは自動ではないため常時濃度
を監視することができるわけではなく運転管理は非常に
おおざっぱなものであり、分析と分析の合間には管理濃
度とのずれが発生したままで運転を行っている。反応物
の組成分析結果をみるとエチルベンゼン濃度が管理濃度
に比べて低く、ポリエチルベンゼンの濃度が管理濃度に
比べて高いので、主触媒である塩化アルミ助触媒のフイ
ード量を反応器内で0.4重量%になるように増やし、
反応器内の温度を5℃上げ、圧力を0.05kg/cm
2 上げた。また、ベンゼンのフイード量を増やし、最終
的にモル比を5%下げた。なお、これらの操作は3回に
分けて行った。所要時間が210分かかった。Moreover, since these are not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and there is a gap between the control concentration and the analysis between the analyzes. It is carried out. The composition analysis results of the reaction products show that the concentration of ethylbenzene was lower than the control concentration and the concentration of polyethylbenzene was higher than the control concentration, so that the feed amount of the aluminum chloride cocatalyst as the main catalyst was 0. Increase to 4% by weight,
Raise the temperature in the reactor by 5 ° C and increase the pressure to 0.05 kg / cm
Raised 2. Also, the amount of benzene feed was increased, and the molar ratio was finally reduced by 5%. In addition, these operations were performed in three steps. It took 210 minutes.
【0050】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表1に示す。Table 1 shows the results of analysis of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the reaction liquid was controlled.
【0051】[0051]
【実施例5】主触媒に塩化アルミ助触媒に塩酸を使用し
てベンゼンとエチレンの反応によるエチルベンゼンの合
成をした。初期の反応条件の設定値は反応温度は115
℃、反応圧力0.7kg/cm2G、主触媒の塩化アル
ミの反応器内の濃度は0.4重量%、反応器にフィード
するベンゼン中の助触媒の塩酸の濃度は0.7重量%で
ある。Example 5 Ethylbenzene was synthesized by the reaction of benzene and ethylene using hydrochloric acid as an aluminum chloride co-catalyst as a main catalyst. The reaction temperature is set to 115 as the initial set value of the reaction conditions.
℃, reaction pressure 0.7kg / cm2G, the concentration of the main catalyst of aluminum chloride in the reactor is 0.4% by weight, the concentration of hydrochloric acid of the cocatalyst in benzene fed to the reactor is 0.7% by weight .
【0052】反応器の出口の冷却器からでたラインに近
赤外線分光分析器を設置し凝縮した反応液の分析を行っ
た。分析はオンラインでしかも解析時間も短いために約
1分程で分析でき分析結果を見て、迅速に反応器の運転
管理に反映させた。反応物の組成分析結果をみるとエチ
ルベンゼン濃度が管理濃度に比べて低いので、ベンゼン
のフイード量を減らし、ポリエチルベンゼンのフイード
量を増やし、モル比を5%アップした。なお、これらの
操作は2回に分けて行った。A near-infrared spectrophotometer was installed on the line extending from the cooler at the outlet of the reactor to analyze the condensed reaction solution. Since the analysis is online and the analysis time is short, the analysis can be done in about 1 minute, and the analysis result was seen and promptly reflected in the operation management of the reactor. The composition analysis result of the reaction product showed that the concentration of ethylbenzene was lower than the control concentration. Therefore, the amount of benzene feed was reduced, the amount of polyethylbenzene feed was increased, and the molar ratio was increased by 5%. Note that these operations were performed twice.
【0053】このように、反応器の出口の反応液組成の
管理基準からのズレを常時監視することができるので、
反応液の組成が規格からズレたとき時間的に無駄なく適
正な組成に回復することが可能になった。反応液の近赤
外線による分析結果と分析に要する時間、操作量の変更
方法、管理されている反応液の組成に回復するまでの時
間、スペクトルの種類を表1に示す。As described above, since the deviation from the control standard of the composition of the reaction solution at the outlet of the reactor can be constantly monitored,
When the composition of the reaction liquid deviates from the standard, it is possible to recover the proper composition without wasting time. Table 1 shows the results of analysis by the near infrared rays of the reaction solution, the time required for the analysis, the method of changing the manipulated value, the time until the composition of the reaction solution being controlled is recovered, and the type of spectrum.
【0054】このように、迅速な制御により反応物の組
成変動が少なく、従って、精製工程の蒸留分離が容易で
あり、純度の高いエチルベンゼンを得ることができる。As described above, the composition of the reaction product is little changed by the rapid control, and therefore, the distillation separation in the purification step is easy, and highly pure ethylbenzene can be obtained.
【0055】[0055]
【比較例5】反応液の近赤外線による分析を行わなかっ
た以外は実施例5と同様にエチルベンゼンの合成を行っ
た。反応条件が適正な値かを確認する必要がある度に反
応液をサンプリングして、ガスクロマトグラフィにて分
析する必要がありサンプリング時間や分析時間を考慮す
ると反応器の運転条件変更を実際に行うまでに時間遅れ
があり迅速な制御ができなかった。この時間遅れは平均
60分〜90分である。Comparative Example 5 Ethylbenzene was synthesized in the same manner as in Example 5 except that the reaction solution was not analyzed by near infrared rays. It is necessary to sample the reaction solution every time it is necessary to confirm that the reaction conditions are appropriate values, and to analyze by gas chromatography. Considering the sampling time and analysis time, until the operating conditions of the reactor are actually changed There was a time delay and it was not possible to control quickly. This time delay is 60 to 90 minutes on average.
【0056】しかもこれらは自動ではないため常時濃度
を監視することができるわけではなく運転管理は非常に
おおざっぱなものであり、分析と分析の合間には管理濃
度とのずれが発生したまま運転を行っている。反応物の
組成分析結果をみるとエチルベンゼン濃度が管理濃度に
比べて高く、ポリエチルベンゼンの濃度が管理濃度に比
べて低いので、ベンゼンのフイード量を減らし、ポリエ
チルベンゼンのフイード量を増やし、最終的にモル比を
5%アップした。ポリエチルベンゼンのフイード量を増
やし、モル比を5%アップした。なお、これらの操作は
2回に分けて行った。所要時間が210分かかった。Moreover, since these are not automatic, it is not possible to constantly monitor the concentration, and operation management is very rough, and operation is performed with a deviation from the control concentration occurring between analyzes. Is going. The composition analysis results of the reaction product show that the concentration of ethylbenzene is higher than the control concentration and the concentration of polyethylbenzene is lower than the control concentration, so the amount of benzene feed is reduced, the amount of polyethylbenzene feed is increased, and finally The molar ratio was increased by 5%. The feed amount of polyethylbenzene was increased and the molar ratio was increased by 5%. Note that these operations were performed twice. It took 210 minutes.
【0057】反応器の出口の反応液のガスクロマトグラ
フィーによる分析結果と分析に要する時間、操作量の変
更方法、管理されている反応液の組成に回復するまでの
時間を表2に示す。Table 2 shows the analysis results of the reaction liquid at the outlet of the reactor by gas chromatography, the time required for the analysis, the method of changing the manipulated variable, and the time until the composition of the controlled reaction liquid is recovered.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】[0060]
【発明の効果】本発明の近赤外線による反応器制御方法
は、従来の方法に比べて、反応物の組成変化を反応器の
運転に迅速に反映し、一定の反応物を合成し、高いレベ
ルの運転をすることが可能である。INDUSTRIAL APPLICABILITY The reactor control method using near-infrared rays according to the present invention reflects the composition change of the reactants in the operation of the reactor more quickly than the conventional method, synthesizes a certain reactant, and has a high level. It is possible to drive.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 11/08 G05D 11/08 21/00 21/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G05D 11/08 G05D 11/08 21/00 21/00 A
Claims (1)
において、上記反応器の出口の反応物を近赤外線スペク
トルで組成分析を行い、得られた測定値を用いて反応器
へ供給する原料の量もしくは比率を変更し、反応器の出
口の反応物の組成を一定にすることを特徴とする近赤外
線による反応制御方法。1. A method for controlling the operation of a reactor for synthesizing a reaction product, wherein a composition of the reaction product at the outlet of the reactor is analyzed by near-infrared spectrum, and a raw material supplied to the reactor using the obtained measurement value. A method for controlling reaction by near-infrared radiation, characterized in that the composition of the reactant at the outlet of the reactor is made constant by changing the amount or ratio of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10737895A JPH08301793A (en) | 1995-05-01 | 1995-05-01 | Reaction control with near-infrared rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10737895A JPH08301793A (en) | 1995-05-01 | 1995-05-01 | Reaction control with near-infrared rays |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08301793A true JPH08301793A (en) | 1996-11-19 |
Family
ID=14457601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10737895A Withdrawn JPH08301793A (en) | 1995-05-01 | 1995-05-01 | Reaction control with near-infrared rays |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08301793A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228650B1 (en) * | 1997-12-17 | 2001-05-08 | Phillips Petroleum Company | Acid catalyst regeneration control |
JP2002533305A (en) * | 1998-12-18 | 2002-10-08 | ミレニアム ペトロケミカルズ インコーポレーテッド | Process control method in acetic acid production |
JP2003028792A (en) * | 2001-07-13 | 2003-01-29 | Nippon Soda Co Ltd | Reaction control system for aqueous powder substance and manufacturing method of diphenyl sulfone compound |
EP1299338A1 (en) * | 2000-07-06 | 2003-04-09 | Millennium Petrochemicals, Inc. | Process control for acetic acid manufacture |
JP2008531491A (en) * | 2005-02-23 | 2008-08-14 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing aromatic amine or aliphatic amino alcohol |
JP2009062289A (en) * | 2007-09-04 | 2009-03-26 | Nippon Shokubai Co Ltd | Method for producing acrylic acid and (meth)acrylic acid ester |
JP2010127942A (en) * | 2008-11-29 | 2010-06-10 | Bayer Materialscience Ag | Manufacturing method of formaldehyde aqueous solution |
JP2012504618A (en) * | 2008-10-01 | 2012-02-23 | アーケマ・インコーポレイテッド | Control the process to purify (meth) acrylic acid using online near infrared analysis |
-
1995
- 1995-05-01 JP JP10737895A patent/JPH08301793A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228650B1 (en) * | 1997-12-17 | 2001-05-08 | Phillips Petroleum Company | Acid catalyst regeneration control |
JP2002533305A (en) * | 1998-12-18 | 2002-10-08 | ミレニアム ペトロケミカルズ インコーポレーテッド | Process control method in acetic acid production |
EP1299338A1 (en) * | 2000-07-06 | 2003-04-09 | Millennium Petrochemicals, Inc. | Process control for acetic acid manufacture |
JP2003028792A (en) * | 2001-07-13 | 2003-01-29 | Nippon Soda Co Ltd | Reaction control system for aqueous powder substance and manufacturing method of diphenyl sulfone compound |
JP2008531491A (en) * | 2005-02-23 | 2008-08-14 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing aromatic amine or aliphatic amino alcohol |
JP2009062289A (en) * | 2007-09-04 | 2009-03-26 | Nippon Shokubai Co Ltd | Method for producing acrylic acid and (meth)acrylic acid ester |
JP2012504618A (en) * | 2008-10-01 | 2012-02-23 | アーケマ・インコーポレイテッド | Control the process to purify (meth) acrylic acid using online near infrared analysis |
JP2015063539A (en) * | 2008-10-01 | 2015-04-09 | アーケマ・インコーポレイテッド | Method for producing (meth)acrylic acid |
JP2010127942A (en) * | 2008-11-29 | 2010-06-10 | Bayer Materialscience Ag | Manufacturing method of formaldehyde aqueous solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5712481A (en) | Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy | |
US6162644A (en) | Method for controlling and optimizing xylene isomer separation and isomerization process using near infrared analyzer system and apparatus for carrying out same | |
RU2594741C2 (en) | Method of producing acetic acid | |
CA2310496C (en) | Method for on-line analysis of acid catalyst for hydrocarbon conversion process | |
JPH08301793A (en) | Reaction control with near-infrared rays | |
WO2002095373A1 (en) | Use of infrared spectroscopy for on-line process control and endpoint detection | |
EP0644421A2 (en) | Method for controlling an isomerization process | |
RU2585614C2 (en) | Method of producing vinyl acetate | |
KR20040077437A (en) | Para-xylene and ethylbenzene separation from mixed c8 aromatics | |
EP0941129B1 (en) | Process for the production of iodinated organic x-ray contrast agents | |
US7754932B2 (en) | Monitoring and control of processes for making 1-hexene | |
US6228650B1 (en) | Acid catalyst regeneration control | |
JP2002527721A (en) | In-line method for measuring residual content of isocyanate and apparatus useful therefor | |
Ward et al. | On-line determination of reaction completion in a closed-loop hydrogenator using NIR spectroscopy | |
JPH08301799A (en) | Control of dehydrogenation reaction with near infrared rays | |
JP2003340270A (en) | Method for controlling operation of reactor | |
EP2595946B1 (en) | Controlling decanter phase separation of acetic acid production process | |
JPH08266802A (en) | Distillation column control method by near infrared rays | |
WO2001002088A1 (en) | Method for the control of the manufacturing process of polyols | |
Zilian | In situ Analytics for Hydrogenation Reactions | |
JPH1112211A (en) | Production of phenol compounds and device therefor | |
Igne et al. | Multivariate data analysis for enhancing process understanding, monitoring, and control—active pharmaceutical ingredient manufacturing case studies | |
XuanYuan et al. | Quantitative analysis of solid and liquid contents in reactive crystallization by in-situ Raman with support vector regression | |
JP2001509597A (en) | Method and apparatus for analyzing hydrocarbon species by near infrared spectroscopy | |
Wood et al. | Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |