JPH08300124A - Production of austenitic stainless steel thin cast slab - Google Patents

Production of austenitic stainless steel thin cast slab

Info

Publication number
JPH08300124A
JPH08300124A JP10387795A JP10387795A JPH08300124A JP H08300124 A JPH08300124 A JP H08300124A JP 10387795 A JP10387795 A JP 10387795A JP 10387795 A JP10387795 A JP 10387795A JP H08300124 A JPH08300124 A JP H08300124A
Authority
JP
Japan
Prior art keywords
casting
slab
stainless steel
austenitic stainless
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10387795A
Other languages
Japanese (ja)
Other versions
JP3423818B2 (en
Inventor
Shigeo Fukumoto
成雄 福元
Shigenori Tanaka
重典 田中
Toshiyuki Suehiro
利行 末廣
Yoshiyuki Uejima
良之 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10387795A priority Critical patent/JP3423818B2/en
Publication of JPH08300124A publication Critical patent/JPH08300124A/en
Application granted granted Critical
Publication of JP3423818B2 publication Critical patent/JP3423818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To micronize the grain size of structure in a cast slab and to prevent the roping of a product thin sheet by specifying a value defined with the equation I, the degree of overheat at the time of casting defined with the equation II and the average cooling velocity at the time of solidifying. CONSTITUTION: The components in molten steel before casting are adjusted so that the value of a δ-Fe defined with the equation I becomes >=7.5. Further, the degree of overheat ΔT at the time of casting defined with the equation II is restrained to <=40 deg.C and further, the average cooling velocity at the time of solidifying is made to be >=100 deg.C/sec to execute the casting. Further, after casting the thin case slab, rolling is executed in the range of 900-1200 deg.C at >=20% draft and successively, heat treatment is executed in the range of 900-1150 deg.C. By this method, the producing method of an austenitic stainless steel which can reduce the roping of the product and has excellent surface quality, is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳片と鋳型内壁面間に
相対速度差の無い、いわゆる同期式連続鋳造プロセスに
よって製品厚さに近いサイズのオーステナイト系ステン
レス鋼薄板鋳片を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an austenitic stainless steel sheet slab having a size close to the product thickness by a so-called synchronous continuous casting process in which there is no relative speed difference between the slab and the inner wall surface of the mold. Regarding

【0002】[0002]

【従来の技術】従来、連続鋳造法によりステンレス鋼薄
板を製造するには、鋳型を鋳造方向に振動させながら、
厚さ100mm以上の鋳片に鋳造し、得られた鋳片の表面
手入れを行ない、加熱炉において1000℃以上に加熱
した後、ホットストリップミルによって熱間圧延を施
し、厚さ数mmのホットストリップとしていた。
2. Description of the Related Art Conventionally, in order to manufacture a stainless steel thin plate by a continuous casting method, while vibrating a mold in a casting direction,
Hot strip with a thickness of several mm is cast into a slab with a thickness of 100 mm or more, the surface of the slab is cared for, heated to 1000 ° C or higher in a heating furnace, and hot-rolled with a hot strip mill. I was trying.

【0003】従来のプロセスにおいては、長大な熱間圧
延設備で、材料の加熱及び加工を行うために多大のエネ
ルギーを必要とし、生産性の面でも優れた製造プロセス
とは言い難かった。長大な熱間圧延設備と多大なエネル
ギー、圧延動力を必要とするという問題を解決すべく、
近年、連続鋳造工程でホットストリップと同等か、或は
それに近い厚さの鋳片(薄帯)を得るプロセスの研究が
進められている。例えば、「鉄と鋼」 '85,A197
〜 'A256において特集された論文に、ホットストリ
ップを連続鋳造によって直接的に得るプロセスが開示さ
れている。
In the conventional process, a large amount of energy is required to heat and process the material in a long hot rolling facility, and it is difficult to say that the manufacturing process is excellent in productivity. In order to solve the problem of requiring long hot rolling equipment, enormous energy, rolling power,
In recent years, research on a process for obtaining a slab (thin band) having a thickness equal to or close to that of a hot strip in a continuous casting process has been advanced. For example, "Iron and Steel"'85, A197.
~ The paper featured in 'A256 discloses a process for directly obtaining hot strip by continuous casting.

【0004】この種の方式の連続鋳造プロセスにおいて
は、最終製品形状に近い鋳片を製造し、熱延工程、熱処
理工程等の中間段階を省略又は簡略しているため、鋳片
の組織および表面性状等が製品の材質や表面性状に大き
な影響を与える。例えば、特開平2−19426号公報
に述べられているように、冷間圧延後に鋳片の粗大な結
晶粒に起因するローピングと称される表面欠陥が発生す
ることが知られている。このようなローピングの対策と
して、特開平2−19426号公報では鋳造後の冷却速
度の増大による結晶粒の成長抑制および2回冷延を施す
方法が提案されている。しかしながら、上記の発明では
熱間圧延を省略する代わりに冷間圧延・焼鈍工程を1回
追加する必要があるため、望ましい方法とは言えなかっ
た。
In the continuous casting process of this type, since the cast product having a shape close to that of the final product is manufactured and intermediate steps such as the hot rolling process and the heat treatment process are omitted or simplified, the structure and surface of the cast product are obtained. Properties and the like have a great influence on the material and surface properties of the product. For example, as described in JP-A-2-19426, it is known that after cold rolling, surface defects called roping due to coarse crystal grains of a slab occur. As a countermeasure against such roping, Japanese Patent Application Laid-Open No. 2-19426 proposes a method of suppressing the growth of crystal grains by increasing the cooling rate after casting and performing cold rolling twice. However, in the above invention, it is necessary to add the cold rolling / annealing process once instead of omitting the hot rolling, and thus it cannot be said to be a desirable method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる連続
鋳造プロセス、すなわち溶鋼から直接に板厚10mm以下
の薄板鋳片を連続鋳造し、この薄板鋳片を冷間加工し
て、板厚0.5〜3mmのオーステナイト系ステンレス鋼
板を製造する方法において、前記薄板鋳片のγ粒を細粒
化することにより、製品のローピングを著しく低減でき
る表面品質の優れたオーステナイト系ステンレス鋼薄板
鋳片の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to such a continuous casting process, that is, continuous casting of a thin sheet slab having a sheet thickness of 10 mm or less directly from molten steel, and cold working the thin sheet slab to obtain a sheet thickness of 0. In the method for producing an austenitic stainless steel sheet having a thickness of 0.5 to 3 mm, the roping of the thin plate slab is made finer to significantly reduce the roping of the product. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明は、オーステナイ
ト系ステンレス鋼薄板鋳片の鋳造において、鋳造前の溶
鋼成分を(1)式で定義されるδ−Feの値が7.5以
上となるように調整し、かつ(2)式で定義される鋳造
時の過熱度ΔTを40℃以下に調整し、さらに凝固時の
平均冷却速度を100℃/sec 以上として鋳造すること
を特徴とするオーステナイト系ステンレス鋼薄板鋳片の
製造方法である。
According to the present invention, in the casting of an austenitic stainless steel sheet slab, the value of δ-Fe defined by the formula (1) for the molten steel component before casting is 7.5 or more. And the superheat ΔT at the time of casting defined by the formula (2) is adjusted to 40 ° C. or less, and the average cooling rate at the time of solidification is 100 ° C./sec or more. It is a method of manufacturing a stainless steel thin plate cast slab.

【0007】 δ−Fe=3.0(Cr+1.5Si+Mo) −2.8(Ni+0.5Mn+0.5Cu) −84(C+N)−19.8 ……………………………(1) (各成分は重量%) ΔT =鋳造温度Tc(℃)−凝固開始温度Tl(℃)…………(2) Dave=Σ2×(3×Si/2π)1/2 ×Si/S …………(3) Si;i番目の粒の面積(μm2) S ;粒径の測定総面積(μm2) また、上記の鋳造に続いて、900〜1200℃の範囲
で圧下率が20%以上の圧延を行い、引き続いて900
〜1150℃の温度で熱処理することを特徴とするオー
ステナイト系ステンレス鋼薄板鋳片の製造方法である。
Δ-Fe = 3.0 (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn + 0.5Cu) -84 (C + N) -19.8 ……………………………… (1) ( Each component is in weight%) ΔT = casting temperature Tc (° C.)-Solidification start temperature Tl (° C.) (2) Dave = Σ2 × (3 × Si / 2π) 1/2 × Si / S ... (3) Si; area of i-th grain (μm 2 ) S; total area of grain size measurement (μm 2 ). Further, following the above casting, a reduction rate of 20% or more in the range of 900 to 1200 ° C. Rolling, and then 900
A method for producing an austenitic stainless steel thin plate slab, characterized in that the heat treatment is performed at a temperature of ˜1150 ° C.

【0008】[0008]

【作用】本発明者らは、双ロール(ツインドラム)式連
続鋳造などの急冷凝固組織は不均一な混粒組織であり、
従来用いられてきた結晶粒の個数頻度に対する期待値と
して定義されるX(=Σ2×(3×Si/2π)1/2
N)では急冷凝固の混粒組織を代表できないことがわか
り、結晶粒の面積率に対する期待値として(3)式で定
義されるDaveを新たに定義した。
The present inventors have found that the rapidly solidified structure such as twin roll (twin drum) continuous casting is a non-uniform mixed grain structure,
X (= Σ2 × (3 × Si / 2π) 1/2 / which is defined as an expected value for the frequency of the number of crystal grains that has been used conventionally
It was found that N) cannot represent the mixed grain structure of rapid solidification, and Dave defined by the equation (3) was newly defined as an expected value for the area ratio of crystal grains.

【0009】本発明においては、δ−Feを7.5以上
にした場合には、凝固がδフェライト相を初晶として起
こり、固相でδ→γの変態が起こることになる。この場
合には微細なフェライトを分散していることにより、δ
→γの変態サイトの増加、またδフェライトによるγ粒
の成長のピニング効果によって、γ粒が微細化する。つ
まり、粗大な柱状晶を変態により分断化させることによ
り細粒化できると考えられる。
In the present invention, when δ-Fe is 7.5 or more, solidification occurs with the δ ferrite phase as the primary crystal, and the δ → γ transformation occurs in the solid phase. In this case, since fine ferrite is dispersed, δ
→ The γ grains are refined due to the increase of γ transformation sites and the pinning effect of γ grain growth by δ ferrite. In other words, it is considered that coarse columnar crystals can be finely divided by dividing them by transformation.

【0010】また、鋳造時の過熱度(ΔT)を低くして
鋳造することは粗大な柱状晶から幅の狭い、比較的微細
な柱状晶に変えることができることがわかった。このこ
とは、ΔTが低い場合には凝固界面近傍の温度勾配が小
さく、結晶の成長が遅いために放出した潜熱が拡散しや
すく、周囲の結晶の成長を妨げることなく(ある特定結
晶が優先的に成長することなく)、微細な柱状晶が成長
していくためと考えられる。
It has also been found that by casting with a low degree of superheat (ΔT) during casting, it is possible to change from coarse columnar crystals to narrow fine columnar crystals. This means that when ΔT is low, the temperature gradient in the vicinity of the solidification interface is small and the growth of crystals is slow, so the released latent heat is likely to diffuse, and the growth of surrounding crystals is not hindered (a certain specific crystal is preferentially). It is considered that fine columnar crystals grow without growing.

【0011】また、凝固時の平均冷却速度を増大するこ
とにより、凝固ミクロ組織が微細化し、特に凝固時に初
晶として生成するδフェライトが微細に分散する。その
ために、δ→γの変態サイトの増加、またδフェライト
によるγ粒の成長のピニング効果が一層促進され、γ粒
が微細化すると考えられる。なお、凝固時の平均冷却速
度は冷却ロールの材質およびロール表面性状、凹凸によ
りコントロールできる。
Further, by increasing the average cooling rate during solidification, the solidification microstructure becomes finer, and in particular, δ-ferrite produced as a primary crystal during solidification is finely dispersed. Therefore, it is considered that the increase of δ → γ transformation sites and the pinning effect of γ grain growth by δ ferrite are further promoted, and the γ grains are refined. The average cooling rate during solidification can be controlled by the material of the cooling roll, the surface properties of the roll, and the unevenness.

【0012】本発明では、ΔTおよび凝固時の平均冷却
速度の制御による凝固組織微細化と、δ−Feを制御す
ることによる変態微細化を組合わせることにより鋳片の
γ粒を微細化できるものである。さらに、本発明におけ
る鋳造に引き続いた圧延・熱処理は再結晶を利用した等
軸・細粒化組織を得る手法である。
In the present invention, the γ grains of the cast slab can be refined by combining the refinement of the solidification structure by controlling ΔT and the average cooling rate during solidification and the refinement of the transformation by controlling δ-Fe. Is. Further, the rolling and heat treatment subsequent to the casting in the present invention is a method for obtaining an equiaxed grain refinement structure utilizing recrystallization.

【0013】以下に本発明の内容について詳細に説明す
る。図1は本発明を実施する一手段としての双ロール
(ツインドラム)式連続鋳造装置1の概略側断面を示し
ている。所定幅の間隙を隔てて対向位置される一対の冷
却ロール2及び3の両端面に対しては、扇状のサイド堰
4が圧着されている。鋳造時、各冷却ロール2,3は駆
動機構によって図中、矢印に示すように互いに反対方向
に回転駆動され、冷却ロール2,3の外周面2a及び3
aと両サイド堰4によって画成される湯溜り部5に対し
て、その上方に位置する注湯装置(図示せず)から、例
えばSUS304に代表されるようなオーステナイト系
ステンレス鋼の溶鋼6が供給される。
The contents of the present invention will be described in detail below. FIG. 1 shows a schematic side section of a twin roll type continuous casting apparatus 1 as one means for carrying out the present invention. A fan-shaped side dam 4 is pressure-bonded to both end faces of a pair of cooling rolls 2 and 3 which are opposed to each other with a gap of a predetermined width. At the time of casting, the cooling rolls 2 and 3 are rotationally driven in opposite directions as indicated by arrows in the drawing by the drive mechanism, and the outer peripheral surfaces 2a and 3 of the cooling rolls 2 and 3 are rotated.
a molten metal 6 of austenitic stainless steel represented by SUS304, for example, from a pouring device (not shown) located above the molten metal pool 5 defined by a and both side dams 4. Supplied.

【0014】そして溶鋼6は、冷却ロール2,3の外周
面2a,3aと接触することにより抜熱され、湯面と外
周面2a,3aとの接点近傍(メニスカスと呼ぶ)8に
生成した凝固シェル7a,7bは、ロールの回転に沿っ
て成長し、キッシングポイント9において互いに圧着さ
れる。このようにして連続してオーステナイト系ステン
レス鋼の薄板鋳片7が製造されることになる。
The molten steel 6 is deheated by coming into contact with the outer peripheral surfaces 2a, 3a of the cooling rolls 2, 3 and solidified in the vicinity of the contact point (called meniscus) 8 between the molten metal surface and the outer peripheral surfaces 2a, 3a. The shells 7a, 7b grow along the rotation of the roll and are pressed together at the kissing point 9. In this way, the thin cast piece 7 of austenitic stainless steel is continuously manufactured.

【0015】種々の組成のオーステナイト系ステンレス
鋼溶鋼を、前述の双ロール式連続鋳造機によって種々の
鋳造条件で、厚さ3mmの薄板鋳片に鋳造した。得られた
鋳片を酸洗した後、鋳片のL断面でγ粒径を観察し、
(3)式により平均粒径Daveを測定した。 Dave=Σ2×(3×Si/2π)1/2 ×Si/S …………(3) Si;i番目の粒の面積(μm2) S ;粒径の測定総面積(μm2) 図2に(1)式で計算されるδ−Feと鋳片の平均粒径
Daveの関係を示す。なお、ここで、(2)式で定義
される溶鋼過熱度ΔTは40℃以下、凝固時の平均冷却
速度は100〜300℃/sec とした。δ−Feを7.
5以上とすることにより、鋳片の平均粒径Daveが大
幅に低減できることがわかった。
Austenitic stainless steel molten steels having various compositions were cast into thin plate cast pieces having a thickness of 3 mm under various casting conditions by the twin roll type continuous casting machine described above. After pickling the obtained slab, γ grain size is observed in the L cross section of the slab,
The average particle size Dave was measured by the formula (3). Dave = Σ2 × (3 × Si / 2π) 1/2 × Si / S (3) Si; area of i-th grain (μm 2 ) S; total area of grain size measurement (μm 2 ) 2 shows the relationship between δ-Fe calculated by the equation (1) and the average particle diameter Dave of the cast slab. Here, the molten steel superheat degree ΔT defined by the equation (2) was 40 ° C. or less, and the average cooling rate during solidification was 100 to 300 ° C./sec. δ-Fe is 7.
It was found that the average particle size Dave of the cast slab can be significantly reduced by setting it to 5 or more.

【0016】図3に(2)式で計算されるΔTと鋳片の
平均粒径Daveの関係を示す。ここで、鋳造温度Tc
は図1の双ロール間の溶鋼6の表面付近で測定した。ま
た、δ−Feは7.5以上、凝固時の平均冷却速度は1
00℃/sec 以上とした。ΔTを40℃以下とすること
により、鋳片の平均粒径Daveが大幅に低減できるこ
とがわかる。なお、溶鋼過熱度ΔTは鋳造時の溶鋼の皮
張りの発生を考慮すると10℃以上にすることが望まし
い。
FIG. 3 shows the relationship between ΔT calculated by the equation (2) and the average particle diameter Dave of the slab. Where casting temperature Tc
Was measured near the surface of the molten steel 6 between the twin rolls in FIG. Further, δ-Fe is 7.5 or more, and the average cooling rate during solidification is 1
It was set to 00 ° C./sec or more. It can be seen that the average particle diameter Dave of the cast slab can be significantly reduced by setting ΔT to 40 ° C. or less. The molten steel superheat degree ΔT is preferably 10 ° C. or higher in consideration of the occurrence of skinning of the molten steel during casting.

【0017】図4に凝固時の平均冷却速度と鋳片の平均
粒径Daveの関係を示す。ここで、凝固時の平均冷却
速度は鋳造温度Tcと冷却ロール直下での鋳片温度の差
を鋳造速度より求められる経過時間で割ることにより算
出した。また、δ−Feは7.5以上、ΔTは40℃以
下とした。凝固時の平均冷却速度を100℃/sec 以上
とすることにより、鋳片の平均粒径Daveが大幅に低
減できることがわかった。
FIG. 4 shows the relationship between the average cooling rate during solidification and the average particle size Dave of the slab. Here, the average cooling rate during solidification was calculated by dividing the difference between the casting temperature Tc and the slab temperature immediately below the cooling roll by the elapsed time obtained from the casting rate. Further, δ-Fe was 7.5 or more and ΔT was 40 ° C or less. It was found that by setting the average cooling rate during solidification to 100 ° C./sec or more, the average particle diameter Dave of the slab can be significantly reduced.

【0018】次に、本発明における圧延、熱処理条件に
ついて説明する。圧延温度は900℃未満では鋼材の変
形抵抗が大きくなり、熱間圧延の負荷が大きいこと、お
よび形状制御が困難なことから不適当である。また、1
200℃超では加工歪が開放されやすく、圧延による加
工歪付与の効果が小さくなること、および鋳片の加熱が
必要になるために経済的でないことから不適当である。
従って、圧延温度は900〜1200℃の範囲が適当で
ある。
Next, the rolling and heat treatment conditions in the present invention will be described. If the rolling temperature is lower than 900 ° C., the deformation resistance of the steel material becomes large, the load of hot rolling is large, and it is difficult to control the shape. Also, 1
If it exceeds 200 ° C, the processing strain is likely to be released, the effect of imparting the processing strain by rolling becomes small, and it is not economical because heating of the slab is required, which is not suitable.
Therefore, the rolling temperature is appropriately in the range of 900 to 1200 ° C.

【0019】圧下率は20%未満では再結晶に必要な歪
量が得られないために、十分な組織微細化効果が得られ
ず、不適当である。従って圧下率を20%以上とした。
熱処理温度は900℃未満ではオーステナイト系ステン
レス鋼の再結晶が起こらないために不適当である。ま
た、再結晶を促進するためには高温が望ましいが、11
50℃超では加熱が必要になるために経済的でないこと
から不適当である。従って熱処理温度は900〜115
0℃の範囲が適当である。なお、熱処理時間は熱処理温
度に依存するが、1100℃では5sec 以上の熱処理時
間で再結晶できる。
If the rolling reduction is less than 20%, the amount of strain required for recrystallization cannot be obtained, so that a sufficient effect of refining the structure cannot be obtained, which is unsuitable. Therefore, the rolling reduction is set to 20% or more.
If the heat treatment temperature is lower than 900 ° C., recrystallization of austenitic stainless steel does not occur, which is unsuitable. High temperature is desirable to promote recrystallization, but 11
If it exceeds 50 ° C, it is not economical because it requires heating and is not suitable. Therefore, the heat treatment temperature is 900 to 115
A range of 0 ° C is suitable. Although the heat treatment time depends on the heat treatment temperature, recrystallization can be performed at 1100 ° C. in a heat treatment time of 5 seconds or more.

【0020】[0020]

【実施例】表1に示す種々の組成のオーステナイト系ス
テンレス鋼溶鋼を、双ロール式連続鋳造機によって、種
々の鋳造条件で(すなわちΔTおよび凝固時の平均冷却
速度)、厚さ2〜4mmの薄帯状鋳片に鋳造し、凝固後は
1400〜1200℃までの温度域を10〜30℃/se
c の冷却温度で冷却し、その後引き続き空冷で室温まで
冷却した。得られた鋳片の結晶粒径を測定した。また、
表2は表1と同様に種々の組成のオーステナイト系ステ
ンレス鋼溶鋼を、双ロール式連続鋳造機によって、種々
の鋳造条件で(すなわちΔTおよび凝固時の平均冷却速
度)、厚さ2〜4mmの薄帯状鋳片に鋳造し、引き続い
て、圧延・熱処理を行った。得られた鋳片は酸洗した
後、50%から85%の圧下率でそれぞれ冷間圧延し、
その後最終焼鈍、酸洗、および調質圧延した。得られた
薄板製品のローピングを評価した。なお、ローピング高
さは許容範囲内(0.2μm以下)のものを良好、許容
範囲外のものを不良とした。
EXAMPLES Molten austenitic stainless steels having various compositions shown in Table 1 were produced by a twin roll type continuous casting machine under various casting conditions (that is, ΔT and average cooling rate during solidification) with a thickness of 2 to 4 mm. Cast into thin strip slabs, and after solidification, the temperature range from 1400 to 1200 ° C is 10 to 30 ° C / se
It was cooled at the cooling temperature of c and then cooled by air cooling to room temperature. The crystal grain size of the obtained cast piece was measured. Also,
Similar to Table 1, Table 2 shows austenitic stainless steel molten steel having various compositions under a variety of casting conditions (that is, ΔT and an average cooling rate during solidification) by a twin roll type continuous casting machine and having a thickness of 2 to 4 mm. The strip was cast into a strip and subsequently rolled and heat-treated. The obtained slabs were pickled and then cold-rolled at a reduction rate of 50% to 85%,
After that, final annealing, pickling, and temper rolling were performed. The roping of the obtained thin plate product was evaluated. The roping height within the permissible range (0.2 μm or less) was evaluated as good, and the one outside the permissible range was evaluated as poor.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】上記結果から、本発明に従って、δ−F
e,ΔT,凝固時の平均冷却速度を適正にした場合は、
γ粒径が細粒化されることがわかる。また、鋳造に引き
続いて、圧延・熱処理を行った。この場合における本発
明例では、ローピング高さは許容範囲内(0.2μm以
下)であるのに対し、本発明の範囲から外れた条件をも
つ比較例ではローピング高さが許容範囲を越え、製品の
表面品質は不良であった。
From the above results, according to the present invention, δ-F
If e, ΔT, and the average cooling rate during solidification are set appropriately,
It can be seen that the γ grain size is reduced. After casting, rolling and heat treatment were performed. In the case of the present invention in this case, the roping height is within the allowable range (0.2 μm or less), whereas in the comparative example having a condition outside the range of the present invention, the roping height exceeds the allowable range and the product Had a poor surface quality.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
オーステナイト系ステンレス鋼の薄板鋳片製造におい
て、鋳片組織を微細化することにより製品薄板のローピ
ングを防止することができる。
As described above, according to the present invention,
In the production of an austenitic stainless steel sheet slab, by refining the slab structure, roping of the product sheet can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】双ロール式連続鋳造装置の概略側断面である。FIG. 1 is a schematic side section of a twin roll type continuous casting apparatus.

【図2】溶鋼のδ−Fe(%)と鋳片の平均粒径(μ
m)との関係を示す図である。
[Fig. 2] δ-Fe (%) of molten steel and average particle size (μ
It is a figure which shows the relationship with m).

【図3】鋳造時の過熱温度ΔT(℃)と鋳片の平均粒径
(μm)との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a superheating temperature ΔT (° C.) during casting and an average particle diameter (μm) of a slab.

【図4】凝固時の平均冷却速度(℃/sec )と鋳片の平
均粒径(μm)との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the average cooling rate (° C./sec) during solidification and the average particle size (μm) of the slab.

【符号の説明】[Explanation of symbols]

1…双ロール式連続鋳造装置 2,3…冷却ロール 4…両サイド堰 5…湯溜り部 6…溶鋼 7…薄板鋳片 1 ... Twin roll type continuous casting device 2, 3 ... Cooling roll 4 ... Both side dams 5 ... Hot water pool part 6 ... Molten steel 7 ... Thin plate slab

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/16 B22D 11/16 Z C21D 6/00 102 C21D 6/00 102A 8/02 9270−4K 8/02 D 9/52 101 9/52 101 C22C 38/00 302 C22C 38/00 302Z 38/44 38/44 (72)発明者 上島 良之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B22D 11/16 B22D 11/16 Z C21D 6/00 102 C21D 6/00 102A 8/02 9270-4K 8/02 D 9/52 101 9/52 101 C22C 38/00 302 C22C 38/00 302Z 38/44 38/44 (72) Inventor Yoshiyuki Uejima 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Within the development headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト系ステンレス鋼薄板鋳片
の製造において、鋳造前の溶鋼成分を(1)式で定義さ
れるδ−Feの値が7.5以上となるように調整し、か
つ(2)式で定義される鋳造時の過熱度ΔTを40℃以
下に制御し、さらに凝固時の平均冷却速度を100℃/
sec 以上として鋳造することを特徴とするオーステナイ
ト系ステンレス鋼薄板鋳片の製造方法。 δ−Fe=3.0(Cr+1.5Si+Mo) −2.8(Ni+0.5Mn+0.5Cu) −84(C+N)−19.8 ……………………………(1) (各成分は重量%) ΔT =鋳造温度Tc(℃)−凝固開始温度Tl(℃)…………(2)
1. In the production of an austenitic stainless steel sheet slab, the molten steel composition before casting is adjusted so that the value of δ-Fe defined by the formula (1) is 7.5 or more, and (2) The superheat ΔT at the time of casting defined by the formula) is controlled to 40 ° C or less, and the average cooling rate at the time of solidification is 100 ° C /
A method for producing an austenitic stainless steel sheet slab, characterized by casting as sec or more. δ-Fe = 3.0 (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn + 0.5Cu) -84 (C + N) -19.8 ………………………… (1) (Each component is %) ΔT = casting temperature Tc (° C.)-Solidification start temperature Tl (° C.) (2)
【請求項2】 前記請求項1に記載の鋳造に続いて、9
00〜1200℃の範囲で圧下率が20%以上の圧延を
行い、引き続いて900〜1150℃の温度で熱処理す
ることを特徴とするオーステナイト系ステンレス鋼薄板
鋳片の製造方法。
2. Following the casting of claim 1, 9
A method for producing an austenitic stainless steel thin sheet slab, which comprises rolling at a rolling reduction of 20% or more in a range of 00 to 1200 ° C, and subsequently heat treating at a temperature of 900 to 1150 ° C.
JP10387795A 1995-04-27 1995-04-27 Method for producing austenitic stainless steel sheet slab Expired - Fee Related JP3423818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10387795A JP3423818B2 (en) 1995-04-27 1995-04-27 Method for producing austenitic stainless steel sheet slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10387795A JP3423818B2 (en) 1995-04-27 1995-04-27 Method for producing austenitic stainless steel sheet slab

Publications (2)

Publication Number Publication Date
JPH08300124A true JPH08300124A (en) 1996-11-19
JP3423818B2 JP3423818B2 (en) 2003-07-07

Family

ID=14365675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10387795A Expired - Fee Related JP3423818B2 (en) 1995-04-27 1995-04-27 Method for producing austenitic stainless steel sheet slab

Country Status (1)

Country Link
JP (1) JP3423818B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181554A (en) * 1997-12-22 1999-07-06 Nippon Steel Corp Chrome-nickel base stainless steel thin sheet excellent in surface quality and workability and its production
KR100450612B1 (en) * 1999-08-19 2004-09-30 주식회사 포스코 A continuous casting method of austenitic stainless steel containing high si content
KR100579389B1 (en) * 2001-12-24 2006-05-12 주식회사 포스코 continuous casting method of 310S austenite stainless steel
JP2012502186A (en) * 2008-09-11 2012-01-26 ティッセンクルップ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stainless steel, cold rolled strip made from this steel, and method for producing flat steel products from this steel
JP2015062948A (en) * 2013-09-26 2015-04-09 新日鐵住金株式会社 Scum weir and method and apparatus for production of thin slab
WO2018117480A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenitic stainless steel processed product having excellent surface characteristics, and manufacturing method therefor
EP3561127A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181554A (en) * 1997-12-22 1999-07-06 Nippon Steel Corp Chrome-nickel base stainless steel thin sheet excellent in surface quality and workability and its production
KR100450612B1 (en) * 1999-08-19 2004-09-30 주식회사 포스코 A continuous casting method of austenitic stainless steel containing high si content
KR100579389B1 (en) * 2001-12-24 2006-05-12 주식회사 포스코 continuous casting method of 310S austenite stainless steel
JP2012502186A (en) * 2008-09-11 2012-01-26 ティッセンクルップ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stainless steel, cold rolled strip made from this steel, and method for producing flat steel products from this steel
JP2015062948A (en) * 2013-09-26 2015-04-09 新日鐵住金株式会社 Scum weir and method and apparatus for production of thin slab
WO2018117480A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenitic stainless steel processed product having excellent surface characteristics, and manufacturing method therefor
KR20180073877A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenitic stainless steel product having excellent surface properties and manufacturing method of the same
EP3561127A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
EP3561125A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel processed product having excellent surface characteristics, and manufacturing method therefor
JP2020509210A (en) * 2016-12-23 2020-03-26 ポスコPosco Austenitic stainless steel workpiece with excellent surface properties and method for producing the same
US11299799B2 (en) 2016-12-23 2022-04-12 Posco Austenitic stainless steel product having excellent surface properties and manufacturing method of the same
US11542569B2 (en) 2016-12-23 2023-01-03 Posco Co., Ltd. Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor

Also Published As

Publication number Publication date
JP3423818B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JP3423818B2 (en) Method for producing austenitic stainless steel sheet slab
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
JPS61189845A (en) Manufacture of sheet-shaped slab
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH0219426A (en) Manufacture of cr-ni stainless steel sheet having excellent quality and surface property
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0371902A (en) Manufacture of austenitic stainless thin steel strip of good surface property and excellent in ductility
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JP2820298B2 (en) Austenitic stainless steel sheet manufacturing equipment
JPH03204102A (en) Manufacture of sheet
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH07195103A (en) Manufacture of steel sheet from thin cast billet
JP2784026B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality
JPH0670253B2 (en) Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material
JPH02267225A (en) Production of cr-ni stainless steel sheet excellent in surface quality
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JPH04232208A (en) Manufacture of cr-ni based stainless steel strip excellent in workability
JPS6352089B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees