JPH08298429A - Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device - Google Patents

Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device

Info

Publication number
JPH08298429A
JPH08298429A JP10094495A JP10094495A JPH08298429A JP H08298429 A JPH08298429 A JP H08298429A JP 10094495 A JP10094495 A JP 10094495A JP 10094495 A JP10094495 A JP 10094495A JP H08298429 A JPH08298429 A JP H08298429A
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
acoustic wave
surface acoustic
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10094495A
Other languages
Japanese (ja)
Inventor
Yuji Inoue
雄二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10094495A priority Critical patent/JPH08298429A/en
Publication of JPH08298429A publication Critical patent/JPH08298429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE: To eliminate a fault due to a bulk wave by providing plural holes or grooves or projections having a depth of a specific percentage of the thickness of a piezoelectric single crystal substrate at a position of a side opposite to an electrode forming side in crossing a propagation direction of the surface acoustic wave. CONSTITUTION: A photo resist film is formed on the side of a piezoelectric single crystal substrate made of a lithium tantalate or a lithium niobate and opposite to its electrode forming side. Then exposure and development processing by an ultraviolet ray, for example, is applied to the photo resist film to form a resist pattern having holes, grooves or projections matching a hole, groove, projection forming pattern. Then horning processing is applied via the resist pattern to form plural holes and/or grooves or projections having a depth or a height of 5 to 70% of the thickness of the substrate. Thus, noise due to a bulk wave is sufficiently reduced and the processing yield and manufacture yield are remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波装置用単結
晶圧電基板、その製造方法および弾性表面波装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal piezoelectric substrate for a surface acoustic wave device, a method for manufacturing the same and a surface acoustic wave device.

【0002】[0002]

【従来の技術】近年、電波を利用する電子機器のフイル
タ、遅延線、発振器等の素子として、多くの弾性表面波
装置が用いられている。とくに、小型・軽量でかつフイ
ルタとしての急峻遮断性能が高い弾性表面波フィルタ装
置は、テレビ受信機分野や移動体通信分野における携帯
端末装置の RF 段および IF 段のフイルタとして多用さ
れるようになってきており、特性の向上とともに生産性
の改善などが要求されている。
2. Description of the Related Art In recent years, many surface acoustic wave devices have been used as elements such as filters, delay lines, and oscillators of electronic equipment that uses radio waves. In particular, surface acoustic wave filter devices that are small and lightweight and have high sharp cutoff performance as filters have become widely used as filters for RF and IF stages of mobile terminal devices in the field of television receivers and mobile communications. Therefore, it is required to improve productivity as well as characteristics.

【0003】従来の弾性表面波装置は、圧電性を呈する
リチウムタンタル酸( LiTaO3 )単結晶ウエハやリチウ
ムニオブ酸( LiNbO3 )単結晶ウエハ等を基板とし、こ
のような基板の一主面にインターデジタル形状(櫛形形
状)のトランスジューサを設けることによって構成され
ている。このような構成においては、トランスジューサ
で弾性表面波を励受信する形となっているが、同時にバ
ルク波等の不要波(障害波)も励受信してしまう。
In a conventional surface acoustic wave device, a lithium tantalate (LiTaO 3 ) single crystal wafer or a lithium niobate (LiNbO 3 ) single crystal wafer exhibiting piezoelectricity is used as a substrate, and a main surface of such a substrate is formed. It is configured by providing an interdigital transducer (comb-shaped transducer). In such a configuration, the surface acoustic wave is excited and received by the transducer, but at the same time, an unnecessary wave (obstacle wave) such as a bulk wave is also excited and received.

【0004】そのようなバルク波等は、周波数特性にお
けるスプリアス妨害を引き起こす。そこで、スプリアス
妨害を除去するために、弾性表面波装置に用いられる圧
電単結晶基板の裏面全面を、粗い研摩材による研摩やホ
ーニング加工により粗面化したり、あるいはダイサーカ
ットやマスクホーニングによって、単結晶基板の裏面に
溝を形成する等のバルク波対策が実施されている。
Such bulk waves cause spurious interference in frequency characteristics. Therefore, in order to remove spurious interference, the entire back surface of the piezoelectric single crystal substrate used in the surface acoustic wave device is roughened by polishing with a rough abrasive or by honing, or by dicer cutting or mask honing. Bulk wave countermeasures such as forming a groove on the back surface of the substrate have been implemented.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たようなバルク波対策では、弾性表面波装置を小型化す
る場合に、ある程度の効果は得られるものの、厳密な特
性が要求される場合においては、バルク波による障害を
十分には解消し得ないという問題があった。
However, the above-described bulk wave countermeasure has some effects when downsizing the surface acoustic wave device, but when strict characteristics are required, There is a problem that the obstacle due to the bulk wave cannot be sufficiently eliminated.

【0006】また、製造プロセスのステッパー化に伴う
自動化や、高度の精度および小型化が最近要求されてい
るが、それらと共に、加工歩留りや製造歩留りが低下す
るという問題があった。
Further, there has recently been a demand for automation accompanying the stepperization of the manufacturing process, and high precision and miniaturization, but there has been a problem that the processing yield and the manufacturing yield are reduced together with them.

【0007】本発明は、このような課題に対処するため
になされたもので、バルク波による障害を十分に解消し
た上で、良好な製造歩留りを有する弾性表面波装置用単
結晶基板、その製造方法および弾性表面波装置を提供す
ることを目的としている。
The present invention has been made in order to solve such a problem, and is a single crystal substrate for a surface acoustic wave device having a good manufacturing yield after sufficiently eliminating the obstacles caused by bulk waves, and the manufacturing thereof. It is an object to provide a method and a surface acoustic wave device.

【0008】[0008]

【課題を解決するための手段】請求項1記載の弾性表面
波装置用単結晶基板は、圧電単結晶基板の電極形成面と
反対側の面であって、表面波の伝幡方向を横切る位置に
圧電単結晶基板厚さの5%〜70%の深さを有する複数の
穴および/または溝が形成されてなることを特徴とす
る。
A single crystal substrate for a surface acoustic wave device according to claim 1 is a surface opposite to an electrode formation surface of a piezoelectric single crystal substrate, and a position crossing a surface wave propagation direction. Is formed with a plurality of holes and / or grooves having a depth of 5% to 70% of the thickness of the piezoelectric single crystal substrate.

【0009】請求項2記載の弾性表面波装置用単結晶基
板は、圧電単結晶基板の電極形成面と反対側の面であっ
て、表面波の伝幡方向を横切る位置に圧電単結晶基板厚
さの5%〜70%の高さを有する複数の突起が形成されて
なることを特徴とする。
A single crystal substrate for a surface acoustic wave device according to a second aspect of the present invention is a piezoelectric single crystal substrate having a piezoelectric single crystal substrate thickness which is a surface opposite to an electrode formation surface of the piezoelectric single crystal substrate and which crosses a surface wave propagation direction. A plurality of protrusions having a height of 5% to 70% of the height is formed.

【0010】請求項3記載の弾性表面波装置用単結晶基
板は、請求項1または請求項2記載の弾性表面波装置用
単結晶基板において、圧電単結晶基板がリチウムタンタ
ル酸またはリチウムニオブ酸からなることを特徴とす
る。
A single crystal substrate for a surface acoustic wave device according to claim 3 is the single crystal substrate for a surface acoustic wave device according to claim 1 or 2, wherein the piezoelectric single crystal substrate is made of lithium tantalate or lithium niobate. It is characterized by

【0011】請求項4記載の弾性表面波装置用単結晶基
板の製造方法は、圧電単結晶基板の電極形成面と反対側
の面に、フォトレジスト膜を形成する工程と、このフォ
トレジスト膜に露光、現像処理を施し、表面波の伝幡方
向を横切る位置に複数の穴および/または溝、または複
数の突起を有するレジストパターンを形成する工程と、
圧電単結晶基板に、レジストパターンを介してホーニン
グ処理を施し、複数の穴および/または溝、または複数
の突起を圧電単結晶基板厚さの 5%〜70%の深さ、また
は高さに形成する工程とを有することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a single crystal substrate for a surface acoustic wave device, wherein a step of forming a photoresist film on a surface of the piezoelectric single crystal substrate opposite to an electrode forming surface and a step of forming the photoresist film on the photoresist film. Exposing and developing to form a resist pattern having a plurality of holes and / or grooves, or a plurality of protrusions at positions crossing the propagation direction of surface waves;
Honing treatment is applied to the piezoelectric single crystal substrate through a resist pattern to form multiple holes and / or grooves or multiple protrusions at a depth or height of 5% to 70% of the thickness of the piezoelectric single crystal substrate. And a step of performing.

【0012】請求項4記載の弾性表面波装置は、圧電単
結晶基板と、この圧電単結晶基板の一主面に形成された
櫛形電極からなる弾性表面波装置において、圧電単結晶
基板は請求項1ないし請求項3のいずれか1項記載の弾
性表面波装置用単結晶基板であることを特徴とする。
A surface acoustic wave device according to a fourth aspect of the present invention is a surface acoustic wave device comprising a piezoelectric single crystal substrate and a comb-shaped electrode formed on one main surface of the piezoelectric single crystal substrate. The single crystal substrate for a surface acoustic wave device according to any one of claims 1 to 3.

【0013】請求項1記載の弾性表面波装置用単結晶基
板において、圧電単結晶基板の電極形成面と反対側の面
に形成される複数の穴および/または溝は、表面波の伝
幡方向と同方向のバルク波等の不要波(障害波)の伝幡
を効率的に防止し得るような形状であればよく、穴の具
体的な形状としては円形や多角形を、溝の断面形状とし
ては方形やU字型、V字型などを挙げることができる。
また、穴と溝とを共存させて形成することもできる。
In the single crystal substrate for a surface acoustic wave device according to claim 1, the plurality of holes and / or grooves formed on the surface of the piezoelectric single crystal substrate opposite to the surface on which the electrodes are formed are in the propagation direction of the surface wave. Any shape can be used as long as it can effectively prevent the propagation of unwanted waves (disturbance waves) such as bulk waves in the same direction as the circular shape or polygonal shape of the hole. Examples thereof include a square shape, a U-shape, and a V-shape.
Alternatively, the holes and the grooves can be formed together.

【0014】複数の穴および/または溝の深さは圧電単
結晶基板厚さの 5%〜70%の深さとすることが好まし
い。この範囲とすることにより、バルク波等の不要波
(障害波)の伝幡を効率的に防止し得るとともに基板の
機械的強度を維持し得ることができる。
The depth of the plurality of holes and / or grooves is preferably 5% to 70% of the thickness of the piezoelectric single crystal substrate. By setting it in this range, it is possible to efficiently prevent the propagation of unnecessary waves (obstacle waves) such as bulk waves and to maintain the mechanical strength of the substrate.

【0015】請求項2記載の弾性表面波装置用単結晶基
板においては、上述の複数の穴および/または溝に相当
する部分が突起状に変化したものである。なお、本発明
において、リチウムタンタル酸またはリチウムニオブ酸
を圧電単結晶基板として使用することが好ましい。
In the single crystal substrate for a surface acoustic wave device according to a second aspect of the invention, the portions corresponding to the above-mentioned plurality of holes and / or grooves are changed into protrusions. In the present invention, it is preferable to use lithium tantalate or lithium niobate as the piezoelectric single crystal substrate.

【0016】上述したような穴や溝、突起は、例えば以
下のようにして形成する。すなわち、まず圧電単結晶基
板の電極形成面と反対側の面に、フォトレジスト膜を形
成する。フォトレジスト膜としては紫外線硬化型レジス
ト膜を使用することが好ましい。次いで、このフォトレ
ジスト膜に例えば紫外線による露光、現像処理を施し
て、上述の穴や溝、突起の形成パターンに応じた穴や
溝、突起を有するレジストパターンを形成する。この
後、圧電単結晶基板に、穴や溝、突起を有するレジスト
パターンを介してホーニング処理を施し、所定の深さで
微細な穴や溝、または突起を形成する。
The holes, grooves and protrusions as described above are formed, for example, as follows. That is, first, a photoresist film is formed on the surface of the piezoelectric single crystal substrate opposite to the surface on which the electrodes are formed. It is preferable to use an ultraviolet curable resist film as the photoresist film. Next, this photoresist film is exposed to, for example, ultraviolet rays and developed to form a resist pattern having holes, grooves, and protrusions corresponding to the above-described formation pattern of holes, grooves, and protrusions. Then, the piezoelectric single crystal substrate is subjected to a honing process through a resist pattern having holes, grooves and protrusions to form fine holes, grooves or protrusions with a predetermined depth.

【0017】[0017]

【作用】圧電単結晶基板の電極形成面と反対側の面に、
基板厚さの 5%〜70%の深さを有する複数の穴および/
または溝を形成することにより、加工歩留りおよび製造
歩留りを向上させることができると共に、バルク波によ
る障害を十分に解消することができる。
[Operation] On the surface of the piezoelectric single crystal substrate opposite to the electrode formation surface,
A plurality of holes with a depth of 5% to 70% of the substrate thickness and /
Alternatively, by forming the groove, the processing yield and the manufacturing yield can be improved, and the obstacle due to the bulk wave can be sufficiently eliminated.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。 実施例1 まず、両面ラッピング加工した、外径76mm、厚さ0.52mm
の 126°Y LiNbO3 単結晶ウエハを用意した。次に、 L
iNbO3 単結晶ウエハの裏面(電極形成面の反対側の面)
に、紫外線硬化型ウレタン樹脂フィルム(フォトレジス
ト膜)を熱圧着で密着させて接着し、このフォトレジス
ト膜に所定の遮光パターンを有するフォトマスクを介し
て、 35 mjのエネルギー量の紫外線を数秒間照射して露
光した。この後、フォトレジスト膜を炭酸ナトリウムな
どの弱アルカリ溶液で現像処理して、表面波の伝幡方向
を横切る位置に所望の穴パターンを形成した。次に、予
め一端側が接地された静電除去ブラシをマスク面に付け
ホーニングノズルからアランダム(No.240)を吹き付け
てホーニング加工を行った。
Embodiments of the present invention will be described below. Example 1 First, double-sided lapping, outer diameter 76 mm, thickness 0.52 mm
A 126 ° Y LiNbO 3 single crystal wafer was prepared. Then L
Back surface of iNbO 3 single crystal wafer (surface opposite to electrode formation surface)
Then, a UV-curable urethane resin film (photoresist film) is adhered by thermocompression bonding, and 35 mj of energy of ultraviolet light is applied to this photoresist film for several seconds through a photomask having a predetermined light-shielding pattern. It was irradiated and exposed. After that, the photoresist film was developed with a weak alkaline solution such as sodium carbonate to form a desired hole pattern at a position crossing the propagation direction of the surface wave. Next, an electrostatic removal brush whose one end side was grounded in advance was attached to the mask surface, and alundum (No. 240) was sprayed from the honing nozzle to perform honing processing.

【0019】ホーニング加工後、フォトレジスト膜を溶
解除去してホーニング加工面を観察したところ、外径 2
70μm 、深さがウェーハ厚さに対し約 5%の穴パターン
が形成されていた。このパターンはパターン崩れやムラ
もなかった。
After the honing process, the photoresist film was dissolved and removed, and the honing surface was observed.
The hole pattern was 70 μm and the depth was about 5% of the wafer thickness. This pattern had neither pattern collapse nor unevenness.

【0020】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ± 5μm の範囲内に、穴深さは 25
μm ± 3μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製し、特性を評価した
ところバルク波のノイズが -50dBまで低下しており、フ
ィルターの製造歩留りも97%と良好であった。
When the above 100 wafers were examined, the hole diameter was within the range of 270 μm ± 5 μm, and the hole depth was 25.
Within the range of μm ± 3 μm, there was little variation. In addition, we fabricated an IF filter for TV (shape: 1.8 mm × 1.8 mm) using these wafers and evaluated the characteristics. The bulk wave noise was reduced to -50 dB, and the filter manufacturing yield was 97%. It was good.

【0021】実施例2 実施例1と同一の LiNbO3 単結晶ウエハおよびフォトレ
ジスト膜を用いて実施例1と同一の条件で現像および露
光処理をした。なお、紫外線の露光時間は実施例1より
も長時間とした。実施例1と同様のホーニング加工を行
った後、フォトレジスト膜を溶解除去してホーニング加
工面を観察したところ、外径 270μm 、深さがウェーハ
厚さに対し約 30 %の穴パターンが形成されていた。こ
のパターンはパターン崩れやムラもなかった。
Example 2 Using the same LiNbO 3 single crystal wafer and photoresist film as in Example 1, development and exposure were performed under the same conditions as in Example 1. The exposure time of ultraviolet rays was longer than that in Example 1. After performing the same honing processing as in Example 1, the photoresist film was dissolved and removed, and the honing surface was observed. As a result, a hole pattern with an outer diameter of 270 μm and a depth of about 30% of the wafer thickness was formed. Was there. This pattern had neither pattern collapse nor unevenness.

【0022】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ± 6μm の範囲内に、穴深さは 150
μm ± 6μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製し、特性を評価した
ところバルク波のノイズが -50dBまで低下しており、フ
ィルターの製造歩留りも98%と良好であった。
When 100 wafers were examined, the hole diameter was 270 μm ± 6 μm and the hole depth was 150.
Within the range of μm ± 6 μm, there was little variation. In addition, we fabricated an IF filter for TV (shape: 1.8 mm × 1.8 mm) using these wafers and evaluated the characteristics. As a result, the bulk wave noise was reduced to -50 dB, and the filter manufacturing yield was 98%. It was good.

【0023】実施例3 実施例1と同一の LiNbO3 単結晶ウエハおよびフォトレ
ジスト膜を用いて実施例1と同一の条件で現像および露
光処理をした。なお、紫外線の露光時間は実施例1より
も長時間とした。実施例1と同様のホーニング加工を行
った後、フォトレジスト膜を溶解除去してホーニング加
工面を観察したところ、外径 270μm 、深さがウェーハ
厚さに対し約 50 %の穴パターンが形成されていた。こ
のパターンはパターン崩れやムラもなかった。
Example 3 Using the same LiNbO 3 single crystal wafer and photoresist film as in Example 1, development and exposure were performed under the same conditions as in Example 1. The exposure time of ultraviolet rays was longer than that in Example 1. After performing the same honing processing as in Example 1, the photoresist film was dissolved and removed, and the honing surface was observed. As a result, a hole pattern with an outer diameter of 270 μm and a depth of about 50% of the wafer thickness was formed. Was there. This pattern had neither pattern collapse nor unevenness.

【0024】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ±10μm の範囲内に、穴深さは 260
μm ± 7μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製し、特性を評価した
ところバルク波のノイズが -50dBまで低下しており、フ
ィルターの製造歩留りも97%と良好であった。
When 100 wafers described above were investigated, the hole diameter was within the range of 270 μm ± 10 μm and the hole depth was 260.
Within the range of μm ± 7 μm, there was little variation. In addition, we fabricated an IF filter for TV (shape: 1.8 mm × 1.8 mm) using these wafers and evaluated the characteristics. The bulk wave noise was reduced to -50 dB, and the filter manufacturing yield was 97%. It was good.

【0025】実施例4 実施例1と同一の LiNbO3 単結晶ウエハおよびフォトレ
ジスト膜を用いて実施例1と同一の条件で現像および露
光処理をした。なお、紫外線の露光時間は実施例1より
も長時間とした。実施例1と同様のホーニング加工を行
った後、フォトレジスト膜を溶解除去してホーニング加
工面を観察したところ、外径 270μm 、深さがウェーハ
厚さに対し約 70 %の穴パターンが形成されていた。こ
のパターンはパターン崩れやムラもなかった。
Example 4 Using the same LiNbO 3 single crystal wafer and photoresist film as in Example 1, development and exposure were performed under the same conditions as in Example 1. The exposure time of ultraviolet rays was longer than that in Example 1. After performing the same honing processing as in Example 1, the photoresist film was dissolved and removed, and the honing surface was observed. As a result, a hole pattern having an outer diameter of 270 μm and a depth of about 70% of the wafer thickness was formed. Was there. This pattern had neither pattern collapse nor unevenness.

【0026】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ±12μm の範囲内に、穴深さは 364
μm ± 8μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製し、特性を評価した
ところバルク波のノイズが -50dBまで低下しており、フ
ィルターの製造歩留りも96%と良好であった。
When the above 100 wafers were investigated, the hole diameter was within the range of 270 μm ± 12 μm, and the hole depth was 364.
Within the range of μm ± 8 μm, there was little variation. Also, using these wafers, an IF filter for TV (shape: 1.8 mm × 1.8 mm) was manufactured and the characteristics were evaluated. The noise of the bulk wave was reduced to -50 dB, and the manufacturing yield of the filter was 96%. It was good.

【0027】実施例5 両面ラッピング加工した、外径76mm、厚さ0.52mmの 126
°Y LiNbO3 単結晶ウエハを用意した。次に、 LiNbO3
単結晶ウエハの裏面(電極形成面の反対側の面)に、紫
外線硬化型ウレタン樹脂フィルム(フォトレジスト膜)
を熱圧着で密着させて接着し、このフォトレジスト膜に
所定の遮光パターンを有するフォトマスクを介して、 3
5 mjのエネルギー量の紫外線を数秒間照射して露光し
た。この後、フォトレジスト膜を炭酸ナトリウムなどの
弱アルカリ溶液で現像処理して、表面波の伝幡方向を横
切る位置に所望の溝パターンを形成した。次に、予め一
端側が接地された静電除去ブラシをマスク面に付けホー
ニングノズルからアランダム(No.240)を吹き付けてホ
ーニング加工を行った。ホーニング加工後、フォトレジ
スト膜を溶解除去してホーニング加工面を観察したとこ
ろ、深さがウェーハ厚さに対し約 30 %の溝パターンで
形成されていた。このパターンはパターン崩れやムラも
なかった。
Example 5 126 having an outer diameter of 76 mm and a thickness of 0.52 mm, which was subjected to double-sided lapping.
A Y LiNbO 3 single crystal wafer was prepared. Next, LiNbO 3
UV-curable urethane resin film (photoresist film) on the back surface of the single crystal wafer (the surface opposite to the electrode formation surface)
Are adhered to each other by thermocompression bonding, and the photoresist film is covered with a photomask having a predetermined light-shielding pattern.
Exposure was performed by irradiating ultraviolet rays with an energy amount of 5 mj for several seconds. After that, the photoresist film was developed with a weak alkaline solution such as sodium carbonate to form a desired groove pattern at a position crossing the propagation direction of the surface wave. Next, an electrostatic removal brush whose one end side was grounded in advance was attached to the mask surface, and alundum (No. 240) was sprayed from the honing nozzle to perform honing processing. After the honing process, the photoresist film was dissolved and removed, and the honing process surface was observed. As a result, it was found that the groove pattern had a depth of about 30% of the wafer thickness. This pattern had neither pattern collapse nor unevenness.

【0028】上述のウエハ 100個につき調査したとこ
ろ、溝の深さのバラツキが少なかった。また、これらの
ウエハを用いテレビ用 IF フィルター(形状:1.8mm ×
1.8mm)を作製し、特性を評価したところバルク波のノ
イズおよびフィルターの製造歩留りとも実施例1と同様
良好であった。
When the above 100 wafers were examined, the variation in the groove depth was small. In addition, using these wafers, an IF filter for TV (shape: 1.8 mm ×
When 1.8 mm) was produced and the characteristics were evaluated, the noise of the bulk wave and the manufacturing yield of the filter were as good as in Example 1.

【0029】実施例6 両面ラッピング加工した、外径76mm、厚さ0.52mmの 126
°Y LiNbO3 単結晶ウエハを用意した。次に、 LiNbO3
単結晶ウエハの裏面(電極形成面の反対側の面)に、紫
外線硬化型ウレタン樹脂フィルム(フォトレジスト膜)
を熱圧着で密着させて接着し、このフォトレジスト膜に
所定の遮光パターンを有するフォトマスクを介して、 3
5 mjのエネルギー量の紫外線を数秒間照射して露光し
た。この後、フォトレジスト膜を炭酸ナトリウムなどの
弱アルカリ溶液で現像処理して、表面波の伝幡方向を横
切る位置に所望の突起状パターンを形成した。次に、予
め一端側が接地された静電除去ブラシをマスク面に付け
ホーニングノズルからアランダム(No.240)を吹き付け
てホーニング加工を行った。
Example 6 126 having an outer diameter of 76 mm and a thickness of 0.52 mm, which was subjected to double-sided lapping.
A Y LiNbO 3 single crystal wafer was prepared. Next, LiNbO 3
UV-curable urethane resin film (photoresist film) on the back surface of the single crystal wafer (the surface opposite to the electrode formation surface)
Are adhered to each other by thermocompression bonding, and the photoresist film is covered with a photomask having a predetermined light-shielding pattern.
Exposure was performed by irradiating ultraviolet rays with an energy amount of 5 mj for several seconds. Then, the photoresist film was developed with a weak alkaline solution such as sodium carbonate to form a desired protruding pattern at a position crossing the propagation direction of the surface wave. Next, an electrostatic removal brush whose one end side was grounded in advance was attached to the mask surface, and alundum (No. 240) was sprayed from the honing nozzle to perform honing processing.

【0030】ホーニング加工後、フォトレジスト膜を溶
解除去してホーニング加工面を観察したところ、外径 2
70μm 、高さがウェーハ厚さに対し約 30 %の突起状パ
ターンが形成されていた。このパターンはパターン崩れ
やムラもなかった。
After the honing process, the photoresist film was dissolved and removed, and the honing surface was observed.
The protrusion pattern was 70 μm and the height was about 30% of the wafer thickness. This pattern had neither pattern collapse nor unevenness.

【0031】上述のウエハ 100個につき調査したとこ
ろ、溝の深さのバラツキが少なかった。また、これらの
ウエハを用いテレビ用 IF フィルター(形状:1.8mm ×
1.8mm)を作製し、特性を評価したところバルク波のノ
イズおよびフィルターの製造歩留りとも実施例1と同様
良好であった。なお、 LiNbO3 単結晶ウエハの代わりに
LiTaO3 単結晶ウエハを使用して実施例6と同様にテレ
ビ用 IF フィルターを作製したところ、実施例1と同様
良好であった。
When the above 100 wafers were investigated, the variation in groove depth was small. In addition, using these wafers, an IF filter for TV (shape: 1.8 mm ×
When 1.8 mm) was produced and the characteristics were evaluated, the noise of the bulk wave and the manufacturing yield of the filter were as good as in Example 1. In addition, instead of the LiNbO 3 single crystal wafer
When an IF filter for television was produced in the same manner as in Example 6 using a LiTaO 3 single crystal wafer, it was as good as in Example 1.

【0032】比較例1 実施例1と同一の LiNbO3 単結晶ウエハおよびフォトレ
ジスト膜を用いて実施例1と同一の条件で現像および露
光処理をした。なお、紫外線の露光時間は実施例1より
も短時間とした。実施例1と同様のホーニング加工を行
った後、フォトレジスト膜を溶解除去してホーニング加
工面を観察したところ、外径 270μm 、深さがウェーハ
厚さに対し約 2%の穴パターンが形成されていた。この
パターンはパターン崩れやムラもなかった。
Comparative Example 1 Using the same LiNbO 3 single crystal wafer and photoresist film as in Example 1, development and exposure were performed under the same conditions as in Example 1. The exposure time of ultraviolet rays was shorter than that in Example 1. After performing the same honing as in Example 1, the photoresist film was dissolved and removed, and the honing surface was observed. As a result, a hole pattern with an outer diameter of 270 μm and a depth of about 2% of the wafer thickness was formed. Was there. This pattern had neither pattern collapse nor unevenness.

【0033】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ± 3μm の範囲内に、穴深さは 10
μm ± 2μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製したところフィルタ
ーの製造歩留りは68%であった。
When the above 100 wafers were investigated, the hole diameter was within the range of 270 μm ± 3 μm and the hole depth was 10 mm.
Within the range of μm ± 2 μm, there was little variation. Moreover, when an IF filter for TV (shape: 1.8 mm × 1.8 mm) was manufactured using these wafers, the manufacturing yield of the filter was 68%.

【0034】比較例2 実施例1と同一の LiNbO3 単結晶ウエハおよびフォトレ
ジスト膜を用いて実施例1と同一の条件で現像および露
光処理をした。なお、紫外線の露光時間は実施例1より
も長時間とした。実施例1と同様のホーニング加工を行
った後、フォトレジスト膜を溶解除去してホーニング加
工面を観察したところ、外径 270μm 、深さがウェーハ
厚さに対し約 80 %の穴パターンが形成されていた。こ
のパターンはパターン崩れやムラもなかった。
Comparative Example 2 Using the same LiNbO 3 single crystal wafer and photoresist film as in Example 1, development and exposure were performed under the same conditions as in Example 1. The exposure time of ultraviolet rays was longer than that in Example 1. After performing the same honing processing as in Example 1, the photoresist film was dissolved and removed, and the honing surface was observed. As a result, a hole pattern with an outer diameter of 270 μm and a depth of about 80% of the wafer thickness was formed. Was there. This pattern had neither pattern collapse nor unevenness.

【0035】上述のウエハ 100個につき調査したとこ
ろ、穴径は 270μm ±15μm の範囲内に、穴深さは 416
μm ±10μm の範囲内に入っておりバラツキが少なかっ
た。また、これらのウエハを用いテレビ用 IF フィルタ
ー(形状:1.8mm ×1.8mm )を作製したところ、フィル
ターの製造歩留りは42%であった。実施例1〜4および
比較例1〜2における、弾性表面波装置の製造歩留りと
穴深さの割合との関係を図1に示す。
When the above 100 wafers were investigated, the hole diameter was within the range of 270 μm ± 15 μm and the hole depth was 416.
Within the range of μm ± 10 μm, there was little variation. Moreover, when an IF filter for TV (shape: 1.8 mm × 1.8 mm) was produced using these wafers, the production yield of the filter was 42%. FIG. 1 shows the relationship between the manufacturing yield of the surface acoustic wave devices and the ratio of the hole depth in Examples 1 to 4 and Comparative Examples 1 and 2.

【0036】[0036]

【発明の効果】請求項1から請求項3の弾性表面波装置
用単結晶基板は、圧電単結晶基板厚さの 5%〜70%の深
さを有する複数の穴および/または溝が形成されてなる
ので、この基板を用いた弾性表面波装置はバルク波ノイ
ズを大幅に低下させることができる。
The single crystal substrate for a surface acoustic wave device according to any one of claims 1 to 3 has a plurality of holes and / or grooves having a depth of 5% to 70% of the thickness of the piezoelectric single crystal substrate. Therefore, the surface acoustic wave device using this substrate can significantly reduce the bulk wave noise.

【0037】請求項4の弾性表面波装置用単結晶基板の
製造方法は、とくに紫外線露光フィルムを用いてホーニ
ング加工を行うことで任意の穴深さが歩留り良くでき、
弾性表面波装置の製造歩留りと特性とを大幅に向上させ
ることができる。
In the method for manufacturing a single crystal substrate for a surface acoustic wave device according to a fourth aspect of the present invention, a desired hole depth can be improved with good yield by performing honing using an ultraviolet exposure film.
The manufacturing yield and characteristics of the surface acoustic wave device can be significantly improved.

【0038】請求項5の弾性表面波装置は、請求項1か
ら請求項3の単結晶基板を用いるので、バルク波ノイズ
を下げることによる特性の向上と、製造歩留りとをあげ
ることができる。
Since the surface acoustic wave device according to the fifth aspect uses the single crystal substrate according to the first to third aspects, it is possible to improve the characteristics by lowering the bulk wave noise and increase the manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】弾性表面波装置の製造歩留りと穴深さの割合と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the manufacturing yield of surface acoustic wave devices and the ratio of hole depth.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 弾性表面波装置用の圧電単結晶基板にお
いて、 前記圧電単結晶基板の電極形成面と反対側の面には、表
面波の伝幡方向を横切る位置に前記圧電単結晶基板厚さ
の 5%〜70%の深さを有する複数の穴および/または溝
が形成されてなることを特徴とする弾性表面波装置用単
結晶基板。
1. A piezoelectric single crystal substrate for a surface acoustic wave device, wherein the piezoelectric single crystal substrate has a thickness on the surface opposite to the electrode formation surface of the piezoelectric single crystal substrate at a position crossing the propagation direction of surface waves. A single crystal substrate for a surface acoustic wave device, comprising a plurality of holes and / or grooves having a depth of 5% to 70%.
【請求項2】 弾性表面波装置用の圧電単結晶基板にお
いて、 前記圧電単結晶基板の電極形成面と反対側の面には、表
面波の伝幡方向を横切る位置に前記圧電単結晶基板厚さ
の 5%〜70%の高さを有する複数の突起が形成されてな
ることを特徴とする弾性表面波装置用単結晶基板。
2. A piezoelectric single crystal substrate for a surface acoustic wave device, wherein the piezoelectric single crystal substrate has a thickness on the surface opposite to the electrode formation surface of the piezoelectric single crystal substrate at a position crossing the propagation direction of surface waves. A single crystal substrate for a surface acoustic wave device, comprising a plurality of protrusions having a height of 5% to 70%.
【請求項3】 請求項1または請求項2記載の弾性表面
波装置用単結晶基板において、前記圧電単結晶基板がリ
チウムタンタル酸またはリチウムニオブ酸からなること
を特徴とする弾性表面波装置用単結晶基板。
3. The single crystal substrate for a surface acoustic wave device according to claim 1 or 2, wherein the piezoelectric single crystal substrate is made of lithium tantalate or lithium niobate. Crystal substrate.
【請求項4】 圧電単結晶基板の電極形成面と反対側の
面に、フォトレジスト膜を形成する工程と、 前記フォトレジスト膜に露光、現像処理を施し、表面波
の伝幡方向を横切る位置に複数の穴および/または溝、
または複数の突起を有するレジストパターンを形成する
工程と、 前記圧電単結晶基板に、前記レジストパターンを介して
ホーニング処理を施し、前記複数の穴および/または
溝、または複数の突起を前記圧電単結晶基板厚さの 5%
〜70%の深さ、または高さに形成する工程とを有するこ
とを特徴とする弾性表面波装置用単結晶基板の製造方
法。
4. A step of forming a photoresist film on the surface of the piezoelectric single crystal substrate opposite to the surface on which the electrode is formed, and a position where the photoresist film is exposed and developed to cross the surface wave propagation direction. Multiple holes and / or grooves,
Or a step of forming a resist pattern having a plurality of protrusions, and a honing process is performed on the piezoelectric single crystal substrate through the resist pattern to form the plurality of holes and / or grooves, or a plurality of protrusions in the piezoelectric single crystal. 5% of board thickness
And a step of forming the single crystal substrate for a surface acoustic wave device at a depth of 70% or a height of 70%.
【請求項5】 圧電単結晶基板と、この圧電単結晶基板
の一主面に形成された櫛形電極からなる弾性表面波装置
において、前記圧電単結晶基板は請求項1ないし請求項
3のいずれか1項記載の弾性表面波装置用単結晶基板で
あることを特徴とする弾性表面波装置。
5. A surface acoustic wave device comprising a piezoelectric single crystal substrate and a comb-shaped electrode formed on one main surface of the piezoelectric single crystal substrate, wherein the piezoelectric single crystal substrate is any one of claims 1 to 3. A surface acoustic wave device, which is the single crystal substrate for a surface acoustic wave device according to item 1.
JP10094495A 1995-04-25 1995-04-25 Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device Pending JPH08298429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10094495A JPH08298429A (en) 1995-04-25 1995-04-25 Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10094495A JPH08298429A (en) 1995-04-25 1995-04-25 Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH08298429A true JPH08298429A (en) 1996-11-12

Family

ID=14287470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10094495A Pending JPH08298429A (en) 1995-04-25 1995-04-25 Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH08298429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026886A1 (en) * 1999-10-13 2001-04-19 Crystal Technology, Inc. Electromagnetic radiation absorbant crystals of lithium niobate and lithium tantalate and methods of preparing the same
KR20030025204A (en) * 2001-09-19 2003-03-28 가부시키가이샤 무라타 세이사쿠쇼 Method of forming electrode pattern of surface acoustic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026886A1 (en) * 1999-10-13 2001-04-19 Crystal Technology, Inc. Electromagnetic radiation absorbant crystals of lithium niobate and lithium tantalate and methods of preparing the same
KR20030025204A (en) * 2001-09-19 2003-03-28 가부시키가이샤 무라타 세이사쿠쇼 Method of forming electrode pattern of surface acoustic wave device

Similar Documents

Publication Publication Date Title
JPS6192011A (en) Manufacture of surface acoustic wave element
JP2001267868A (en) Method for manufacturing surface acoustic wave device
JPH01129517A (en) Manufacture of surface wave resonance element
JP2007336417A (en) Surface acoustic wave element and manufacturing method thereof
JPH11340775A (en) Piezoelectric oscillator
JPH08298429A (en) Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device
JP2009071640A (en) Method for beveling piezoelectric vibrating raw substrate, piezoelectric vibrating reed, and piezoelectric vibrator
JP2007097046A (en) Processing method of crystal blank and crystal resonance chip
JPH0897673A (en) Surface acoustic wave element and its manufacture
JP4671820B2 (en) Surface acoustic wave device
JPH09181556A (en) Piezoelectric vibrator
KR100289780B1 (en) Surface acoustic wave filter
JPH10190404A (en) Surface acoustic wave device
JP2002314162A (en) Crystal substrate and its manufacturing method
JP2007306493A (en) Surface acoustic wave filter apparatus
JPH04196809A (en) Surface acoustic wave device, and communicating equipment and bulk wave device using same
JPH11195947A (en) Manufacture of surface acoustic wave device
JPH03114310A (en) Substrate for surface acoustic wave filter and manufacture thereof
JPH07193450A (en) Surface acoustic wave element and manufacture of the same
KR100568302B1 (en) Method of fabricating saw device
JPH06232685A (en) Single crystal substrate for surface wave device and its manufacture
CN118041281A (en) Acoustic wave resonator structure, acoustic wave device and preparation method thereof
JPH0878988A (en) Manufacture of surface acoustic wave device
JP2002353762A (en) Manufacturing method for surface acoustic wave element
KR100298893B1 (en) A electode devision type piezo-electric filter