JPH08298319A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH08298319A JPH08298319A JP10211995A JP10211995A JPH08298319A JP H08298319 A JPH08298319 A JP H08298319A JP 10211995 A JP10211995 A JP 10211995A JP 10211995 A JP10211995 A JP 10211995A JP H08298319 A JPH08298319 A JP H08298319A
- Authority
- JP
- Japan
- Prior art keywords
- region
- concentration
- channel
- low
- channel region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 35
- 239000012535 impurity Substances 0.000 claims abstract description 28
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 25
- 238000002513 implantation Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 239000010703 silicon Substances 0.000 claims abstract description 13
- 238000009792 diffusion process Methods 0.000 claims description 31
- 238000005468 ion implantation Methods 0.000 abstract description 16
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 229910052796 boron Inorganic materials 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 10
- 125000004429 atom Chemical group 0.000 abstract description 7
- 230000005669 field effect Effects 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000004913 activation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、MOS型電界効果トラ
ンジスタの構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a MOS field effect transistor.
【0002】[0002]
【従来の技術】高性能かつ高集積化された半導体装置に
はゲート長の短いMOS型電界効果トランジスタが必要
となるが、例えばゲート長0.15μmレベルのMOS
型トランジスタを動作電圧1.5〜2.0Vで高速に動
作させるためには、トランジスタのしきい値電圧が、
0.4〜0.6V程度である必要がある。微細化のスケ
ーリング則のもとでは、前記のような高電界下でトラン
ジスタを動作させるためにはチャネル領域のキャリア濃
度を高くしパンチスルー耐性に強くすればいいが、かか
るチャネル領域の高濃度化はMOS型半導体素子のしき
い値電圧を高くし、上記MOS型トランジスタにおいて
はしきい値電圧が1V程度になってしまう。2. Description of the Related Art A high performance and highly integrated semiconductor device requires a MOS field effect transistor having a short gate length. For example, a MOS having a gate length of 0.15 .mu.m level is used.
In order to operate the type transistor at an operating voltage of 1.5 to 2.0 V at high speed, the threshold voltage of the transistor is
It is necessary to be about 0.4 to 0.6V. Under the scaling rule of miniaturization, in order to operate a transistor under a high electric field as described above, it is necessary to increase the carrier concentration in the channel region and strengthen the punch-through resistance. Raises the threshold voltage of the MOS type semiconductor element, and the threshold voltage of the MOS type transistor becomes about 1V.
【0003】そこでパンチスルー耐性に強くかつ低しき
い値電圧を実現するための方法として、チャネル領域の
不純物プロフィールを不均一にすることが行なわれてい
る。即ち、チャネル濃度を、チャネル表面で低く、ソー
ス、ドレイン拡散層の接合深さ位置近傍で高くすればよ
い。Therefore, as a method for realizing a high punch-through resistance and a low threshold voltage, the impurity profile of the channel region is made nonuniform. That is, the channel concentration may be low on the channel surface and high near the junction depth position of the source / drain diffusion layers.
【0004】かかるチャネル構造を作製する方法の1つ
に選択エピタキシャル成長を用いる方法がある。例えば
堀らによる報告(IEDM’93講演番号LN.6.
8)では、図7に示すようにパンチスルーストッパとし
て働く高濃度に不純物がドープされた領域上に0.1μ
m程度、同じ導電型の不純物が低濃度にドープされた領
域を成長させ、この低濃度シリコン層を実質的なチャネ
ルとして用いている。図中、1はシリコン基板、2は高
濃度チャネル領域、3はエピタキシャル成長した低濃度
または真性シリコン層、4はゲート酸化膜、5はポリシ
リコンゲート電極、6はサイドウォール、7は高濃度拡
散層(ソースまたはドレイン)を示す。かかる構造を用
いることにより、短ゲートMOS型半導体装置において
も低しきい値電圧化を実現し、かつパンチスルー耐性を
強くすることが可能となった。One of the methods for producing such a channel structure is a method using selective epitaxial growth. For example, a report by Hori et al. (IEDM '93 lecture number LN.6.
In 8), as shown in FIG. 7, 0.1 μm is formed on the heavily-doped region that acts as a punch-through stopper.
A region in which impurities of the same conductivity type are lightly doped by about m is grown, and this low-concentration silicon layer is used as a substantial channel. In the figure, 1 is a silicon substrate, 2 is a high-concentration channel region, 3 is an epitaxially grown low-concentration or intrinsic silicon layer, 4 is a gate oxide film, 5 is a polysilicon gate electrode, 6 is a sidewall, and 7 is a high-concentration diffusion layer. (Source or drain) is shown. By using such a structure, it is possible to realize a low threshold voltage even in a short gate MOS type semiconductor device and to enhance punch-through resistance.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記MOS型
トランジスタは、エピタキシャル成長を用いて上記チャ
ネル構造を形成しているため、かかる素子作製には高真
空単結晶作製装置が必要となり、コスト的に見ても不利
であり、またエピタキシャル成長では同一基板上にp型
及びn型領域を選択的に成長させることが難かしく、C
MOS型トランジスタ構造を作製することが困難であっ
た。そこで、本発明は、特別な高真空単結晶作製装置を
用いず、低コストに、しかもCMOS型トランジスタ構
造にも適応可能な、上記チャネル領域のキャリア濃度が
チャネル表面近傍で低くソース、ドレイン拡散層の接合
深さ位置近傍で高い、パンチスルー耐性に強くかつしき
い値電圧の低いMOS型電界効果トランジスタの構造を
提供することを目的とする。However, since the above-mentioned MOS type transistor uses epitaxial growth to form the above-mentioned channel structure, a high-vacuum single crystal manufacturing apparatus is required for manufacturing such an element, which is costly. However, it is difficult to selectively grow p-type and n-type regions on the same substrate by epitaxial growth.
It was difficult to fabricate a MOS type transistor structure. Therefore, the present invention has a low carrier concentration in the channel region near the channel surface, which can be applied to a CMOS transistor structure at low cost without using a special high-vacuum single crystal manufacturing apparatus, and a source / drain diffusion layer. It is an object of the present invention to provide a structure of a MOS field effect transistor which is high in the vicinity of the junction depth position, has a high punch-through resistance, and has a low threshold voltage.
【0006】[0006]
【課題を解決するための手段】そこで、発明者らは鋭意
研究の結果、MOS型電界効果トランジスタのチャネル
領域の表面近傍領域に窒素注入領域を設けることによ
り、イオン注入後に不純物活性化等の熱処理を行って
も、かかる窒素注入領域内のキャリア濃度を低く抑える
ことができ、上記目的を達成できることを見出し、本発
明を完成した。Therefore, as a result of intensive studies, the present inventors have found that a nitrogen implantation region is provided in a region near the surface of a channel region of a MOS field effect transistor, so that heat treatment such as impurity activation is performed after ion implantation. The inventors have found that the carrier concentration in the nitrogen-implanted region can be suppressed to a low level even by carrying out, and the above object can be achieved, and the present invention has been completed.
【0007】即ち、本発明は第1の導電型のシリコン基
板上に作製されたMOS型半導体装置において、第2の
導電型のドレイン領域及びソース領域にはさまれた第1
の導電型のチャネル領域が、窒素原子注入領域を設けた
低濃度チャネル領域と、該低濃度チャネル領域の下部に
設けられた高濃度チャネル領域からなるMOS型半導体
装置の構造にある。ここに第1の導電型とはn型あるい
はp型のいずれか一方の導電型を、第2の導電型とは他
方の導電型を指すものとする。That is, according to the present invention, in a MOS semiconductor device manufactured on a silicon substrate of the first conductivity type, a first semiconductor device sandwiched between a drain region and a source region of the second conductivity type is provided.
The conductivity type channel region has a structure of a MOS semiconductor device including a low concentration channel region provided with a nitrogen atom implantation region and a high concentration channel region provided below the low concentration channel region. Here, the first conductivity type refers to either the n-type or p-type conductivity type, and the second conductivity type refers to the other conductivity type.
【0008】また本発明は、上記MOS型半導体装置に
おいて、第2の導電型のドレイン領域及びソース領域に
はさまれた第1の導電型のチャネル領域が、高濃度チャ
ネル領域と、該高濃度チャネル領域の下部に設けられ、
窒素原子注入領域を設けた低濃度チャネル領域からなる
MOS型半導体装置の構造にある。According to the present invention, in the MOS type semiconductor device, the first conductivity type channel region sandwiched between the second conductivity type drain region and the source region is a high concentration channel region and the high concentration channel region. Provided below the channel region,
This is a structure of a MOS type semiconductor device including a low concentration channel region provided with a nitrogen atom implantation region.
【0009】更に本発明は、上記窒素注入領域をチャネ
ル領域以外に形成するものでもあり、第1の導電型のチ
ャネル領域をはさんで設けられた第2の導電型のドレイ
ン領域及びソース領域が、チャネル領域近傍に設けられ
た不純物濃度の低い低濃度拡散層とその両側に設けられ
た不純物濃度の高い高濃度拡散層から構成されている上
記MOS型半導体装置において、該低濃度拡散層下部ま
たは高濃度拡散層下部の少なくとも一方に窒素原子注入
領域を形成したMOS型半導体装置の構造でもある。Further, according to the present invention, the nitrogen-implanted region is formed in a region other than the channel region, and the drain region and the source region of the second conductivity type sandwiching the channel region of the first conductivity type are provided. A low-concentration diffusion layer provided in the vicinity of the channel region and a high-concentration diffusion layer having a high impurity concentration provided on both sides of the low-concentration diffusion layer. It is also a structure of a MOS type semiconductor device in which a nitrogen atom implantation region is formed in at least one of lower parts of the high concentration diffusion layer.
【0010】[0010]
【作用】本発明によれば、イオン注入により不純物を注
入したチャネル領域の一部に、同じくイオン注入法で窒
素原子注入領域を形成することにより、該窒素原子注入
領域内では窒素原子が熱処理時における不純物原子の拡
散及び活性化を抑制し、熱処理後においてもかかる窒素
原子注入領域内ではキャリア濃度を低く抑えることがで
き、実質的に不純物濃度そのものを低く形成した場合と
同様の効果が得られ、低濃度チャネル領域を形成するこ
とができる。即ち、第1の導電型のシリコン基板上に作
製されたMOS型半導体装置において、第1の導電型不
純物を注入したチャネル領域の基板表面近傍領域に、窒
素原子注入領域を設けることにより(図1、2)、熱処
理後におけるかかる窒素原子注入領域内のキャリア濃度
を低く抑え、基板表面近傍領域に低濃度チャネル領域を
形成する一方、該低濃度チャネル領域の下部領域は、窒
素原子の注入がないため本来のキャリア濃度を有する高
濃度チャネル領域となり(図3)、従来技術でエピタキ
シャル成長を用いて不純物濃度を変化させて作製したチ
ャネル構造が、イオン注入技術だけで容易に形成するこ
とが可能となる。According to the present invention, a nitrogen atom-implanted region is also formed by ion implantation in a part of the channel region in which impurities have been implanted by ion implantation, so that the nitrogen atom in the nitrogen atom-implanted region is subjected to heat treatment during the heat treatment. It is possible to suppress the diffusion and activation of the impurity atoms in, and to keep the carrier concentration low in the nitrogen atom-implanted region even after the heat treatment, and substantially the same effect as when the impurity concentration itself is formed to be low can be obtained. A low concentration channel region can be formed. That is, in a MOS semiconductor device manufactured on a silicon substrate of the first conductivity type, a nitrogen atom implantation region is provided in the region near the substrate surface of the channel region where the impurities of the first conductivity type are implanted (see FIG. 2), the carrier concentration in the nitrogen atom-implanted region after heat treatment is kept low, and a low-concentration channel region is formed in the region near the substrate surface, while the lower region of the low-concentration channel region has no nitrogen atoms implanted. Therefore, it becomes a high-concentration channel region having an original carrier concentration (FIG. 3), and a channel structure manufactured by changing the impurity concentration by using the conventional technique can be easily formed only by the ion implantation technique. .
【0011】また、本発明によれば、不純物を注入した
チャネル領域の基板側に上記窒素原子注入領域を形成
(図5)した後に熱処理を行うことにより、上記MOS
型トランジスタのチャネル領域の、高濃度チャネル領域
の下部に低濃度チャネル領域を形成することができ、チ
ャネル領域のキャリア濃度分布が深さ方向に急峻にな
り、従来チャネル領域の基板側のキャリア濃度が必要以
上に高濃度になることにより発生していたバックバイア
ス印加時のしきい値の上昇(バックバイアス効果)を抑
制することが可能となる。Further, according to the present invention, the heat treatment is performed after the nitrogen atom-implanted region is formed on the substrate side of the impurity-implanted channel region (FIG. 5).
A low-concentration channel region can be formed below the high-concentration channel region in the channel region of the n-type transistor, the carrier concentration distribution in the channel region becomes steep in the depth direction, and the carrier concentration on the substrate side of the conventional channel region is It is possible to suppress the increase in the threshold value (back bias effect) at the time of applying the back bias, which has occurred due to the concentration higher than necessary.
【0012】更に、本発明によれば、ソース、ドレイン
領域下部に窒素注入領域を形成することによっても、上
記チャネル領域に形成した場合と同様の作用を得ること
ができる。即ち、第1の導電型のチャネル領域をはさん
で設けられた第2の導電型のソース、ドレイン領域が、
チャネル領域近傍に設けられた不純物濃度の低い低濃度
拡散層と該低濃度拡散層に隣接してチャネル領域と反対
側に設けられた不純物濃度の高い高濃度拡散層とから構
成されるMOS型トランジスタにおいて、該低濃度拡散
層下部または高濃度拡散層下部の少なくとも一方に窒素
原子注入領域を形成することによっても熱処理後のソー
ス、ドレイン領域下部のキャリア濃度分布を急峻にする
ことができ、ソース、ドレイン領域が深く形成されるこ
とに起因する短チャネル効果を抑制することが可能とな
る。Further, according to the present invention, by forming the nitrogen-implanted region under the source and drain regions, the same effect as in the case of forming the channel region can be obtained. That is, the source / drain regions of the second conductivity type which are provided so as to sandwich the channel region of the first conductivity type,
A MOS transistor including a low-concentration diffusion layer having a low impurity concentration provided in the vicinity of the channel region and a high-concentration diffusion layer having a high impurity concentration provided adjacent to the low-concentration diffusion layer and on the opposite side of the channel region. In, the formation of a nitrogen atom-implanted region in at least one of the lower portion of the low-concentration diffusion layer and the lower portion of the high-concentration diffusion layer can also make the carrier concentration distribution under the source and drain regions after the heat treatment steep. It is possible to suppress the short channel effect due to the deep formation of the drain region.
【0013】[0013]
(実施例1)図1〜4に本発明の一の実施例を示す。図
1〜4中、図7と同一符号は、同一あるいは同等部分を
示す。図1において、シリコン基板1上に通常のMOS
型素子作製プロセスを用い、素子分離領域を形成する。
次に活性領域に犠牲酸化膜を形成し、ウェル、チャネル
カット領域をイオン注入により形成する。次にチャネル
不純物となるボロン(B)をイオン注入してチャネルド
ープ領域8を形成した後、窒素原子のイオン注入をB原
子とほぼ同程度またはそれ以下の射影飛程距離(Rp)
で行い窒素原子注入領域9を形成する。窒素ドーズ量
は、1×1016/cm2以下である。図2にチャネル中
央部での深さ方向の不純物プロフィールを示す。10は
ボロン濃度、11は窒素濃度の注入直後のプロフィール
である。ウェル、チャネルカット領域のプロフィールに
ついては省略してある。最後に犠牲酸化膜を除去した後
にゲート酸化膜4、ゲート電極5を形成し、ソースドレ
イン注入、熱処理、アルミニウム配線を行い素子が作製
される。(Embodiment 1) FIGS. 1 to 4 show an embodiment of the present invention. 1-4, the same reference numerals as those in FIG. 7 indicate the same or equivalent portions. In FIG. 1, a normal MOS is formed on the silicon substrate 1.
An element isolation region is formed by using a mold element manufacturing process.
Next, a sacrificial oxide film is formed in the active region, and wells and channel cut regions are formed by ion implantation. Next, after ion implantation of boron (B), which is a channel impurity, to form the channel dope region 8, ion implantation of nitrogen atoms is performed, and the projective range (Rp) is approximately the same as or less than that of B atoms.
Then, the nitrogen atom implantation region 9 is formed. The nitrogen dose amount is 1 × 10 16 / cm 2 or less. FIG. 2 shows the impurity profile in the depth direction at the center of the channel. 10 is a boron concentration and 11 is a profile of nitrogen concentration immediately after injection. The profile of the well and channel cut region is omitted. Finally, after removing the sacrificial oxide film, the gate oxide film 4 and the gate electrode 5 are formed, and source / drain implantation, heat treatment, and aluminum wiring are performed to complete the device.
【0014】また、犠牲酸化膜を除去した後に窒素原子
の注入により、シリコン基板表面に発生した欠陥等を除
去するために熱処理又は、再度犠牲酸化、前記酸化膜除
去の行程を行っても良い。尚、チャネルイオン注入、窒
素原子注入行程は、どの行程の後で行うかについては問
わない。Further, after removing the sacrificial oxide film, nitrogen atoms may be implanted to perform heat treatment or sacrificial oxidation again to remove defects and the like generated on the surface of the silicon substrate, and the steps of removing the oxide film. The channel ion implantation and the nitrogen atom implantation steps do not matter which step is performed later.
【0015】MOS型トランジスタにおいて低しきい値
電圧化を実現するためには、チャネル濃度を低くすれば
いい。一方、ドレイン、ソース間でドレイン電圧印加時
に、ゲート電圧に依存せずドレイン・ソース間で電流が
流れてしまうパンチスルー現象を抑制するためには、逆
にチャネル濃度を高くしなければならない。これがトレ
ードオフの関係をもつため、低しきい値電圧化とパンチ
スルー耐性の強化の両立は困難である。しかし、しきい
値電圧に特に反映されるのは基板表面近傍のチャネル濃
度であるため、かかる基板表面近傍を低濃度化し、一方
パンチスルー現象を抑制するのは、ドレイン・ソース拡
散層下の近傍(だいたい拡散層深さがサブミクロン領域
では、0.15μm程度である)の濃度であるため、こ
の領域を高濃度化すれば上記問題は解決できる。In order to realize a low threshold voltage in the MOS type transistor, the channel concentration may be lowered. On the other hand, in order to suppress the punch-through phenomenon in which a current flows between the drain and the source independently of the gate voltage when the drain voltage is applied between the drain and the source, the channel concentration must be increased. Since this has a trade-off relationship, it is difficult to achieve both lower threshold voltage and enhanced punch-through resistance. However, since the channel concentration near the substrate surface is particularly reflected in the threshold voltage, the concentration near the substrate surface is lowered, while the punch-through phenomenon is suppressed near the drain / source diffusion layer. Since the diffusion layer has a concentration of about 0.15 μm in the submicron region, the above problem can be solved by increasing the concentration in this region.
【0016】この構造を達成するために、イオン注入法
を用いると、深さ0.1μm程度のところに注入イオン
の高濃度ピークをもってこられるが、不純物活性化、層
間膜平坦化のリフロー工程等の熱処理により注入後のプ
ロフィールがなだらかになり、特にボロン原子は酸化の
工程でシリコン表面近傍に偏析し、上記表面近傍領域が
低濃度化したチャネルプロフィールが得られない。そこ
で、本実施例では熱処理後においても注入直後のプロフ
ィールを保ち、表面近傍領域が低濃度化したチャネルプ
ロフィールを得るために、上記基板表面近傍領域に窒素
原子注入領域を形成することとしている。即ち、窒素原
子注入領域を形成することにより、窒素はボロンよりも
拡散係数が大きいため、熱処理時にボロン原子が拡散し
て空きサイトへ移動するよりも先に窒素原子が拡散して
空きサイトを埋めるためかかる領域内においてはボロン
原子は拡散しにくくなる。また、拡散してもサイトに収
まらないために活性化しないことになる。従って、上記
基板表面近傍領域においては、窒素原子の存在によりボ
ロンの拡散及び活性化が抑制され、ボロンの注入プロフ
ィールはある程度保たれることにより、基板表面近傍の
実効的キャリア濃度を低く抑えることができる一方、拡
散層下部近傍のボロン濃度を高くでき、しきい値電圧に
特に反映される基板表面近傍のチャネル濃度を低濃度化
し、一方でパンチスルー現象を抑制するためにドレイン
・ソース拡散層下の近傍の濃度を高濃度化することがで
きる。When an ion implantation method is used to achieve this structure, a high concentration peak of implanted ions is obtained at a depth of about 0.1 μm, but a reflow process for impurity activation, interlayer film flattening, etc. The heat treatment (1) makes the profile smooth after implantation, and in particular, boron atoms segregate near the silicon surface in the oxidation step, and a channel profile having a low concentration in the above surface near-field region cannot be obtained. Therefore, in this embodiment, a nitrogen atom-implanted region is formed in the region near the surface of the substrate in order to maintain the profile immediately after implantation even after the heat treatment and obtain a channel profile in which the region near the surface has a low concentration. That is, by forming the nitrogen atom-implanted region, since nitrogen has a larger diffusion coefficient than boron, the nitrogen atoms diffuse and fill the empty sites before the boron atoms diffuse and move to the empty sites during heat treatment. Therefore, it becomes difficult for boron atoms to diffuse in such a region. In addition, even if it spreads, it will not fit on the site, so it will not be activated. Therefore, in the region near the substrate surface, the diffusion and activation of boron are suppressed by the presence of nitrogen atoms, and the boron injection profile is maintained to some extent, so that the effective carrier concentration near the substrate surface can be kept low. On the other hand, the boron concentration near the bottom of the diffusion layer can be increased, and the channel concentration near the substrate surface, which is particularly reflected in the threshold voltage, can be lowered. The concentration in the vicinity of can be increased.
【0017】図4に窒素原子注入なしの場合(a)及
び、ありの場合(b)におけるゲート長0.3μmのN
MOS型トランジスタのVg/Id特性を示す。本結果
はチャネル不純物のボロンを、表面近傍に8×1012/
cm2でイオン注入し、同じく窒素を表面近傍にイオン
注入した場合のもので、トランジスタのゲート幅は10
μm、ドレイン電圧は0.1V及び2.5Vである。
(a)の窒素イオン注入なしの場合はしきい値電圧は、
0.9V程度であるが、(b)の注入ありの場合はボロ
ンの活性化が抑えられ、しきい値電圧は、0.3V程度
にまで抑えられていることがわかる。ただパンチスルー
耐性は(b)のほうが若干悪くなっており、今後注入エ
ネルギー、注入量の最適化により(a)と同程度にでき
ると考えられる。またボロン以外の他のチャネル不純物
原子についても窒素原子は拡散係数が大きいために、同
様の効果が得られると考えられ、CMOS作製も可能で
ある。FIG. 4 shows N with a gate length of 0.3 μm in the case without nitrogen atom implantation (a) and with nitrogen atom implantation (b).
The Vg / Id characteristic of a MOS transistor is shown. This result shows that the channel impurity boron is 8 × 10 12 /
This is a case where ion implantation is performed at a cm 2 and nitrogen is also implanted near the surface, and the gate width of the transistor is 10
μm, drain voltages are 0.1 V and 2.5 V.
Without nitrogen ion implantation in (a), the threshold voltage is
Although it is about 0.9 V, it can be seen that with the implantation of (b), the activation of boron is suppressed and the threshold voltage is suppressed to about 0.3 V. However, the punch-through resistance is slightly worse in (b), and it is considered that the punch-through resistance can be made similar to that in (a) by optimizing the implantation energy and the implantation amount in the future. It is considered that the same effect can be obtained because nitrogen atoms have a large diffusion coefficient for channel impurity atoms other than boron, and CMOS fabrication is also possible.
【0018】(実施例2)図5に本発明の他の一の実施
例を示す。図5はMOSトランジスタのチャネル中央部
での深さ方向の不純物プロフィールを示す。チャネル不
純物となるボロンをイオン注入するところまでは上記実
施例1と同じである。この後、窒素原子のイオン注入を
ドレイン、ソース拡散層の接合深さ位置近傍がピークと
なるようにして行い、かかる位置に窒素原子注入領域を
形成する。(Embodiment 2) FIG. 5 shows another embodiment of the present invention. FIG. 5 shows the impurity profile in the depth direction at the center of the channel of the MOS transistor. The process is the same as that of the first embodiment up to the point of ion-implanting boron as a channel impurity. After that, ion implantation of nitrogen atoms is performed so that peaks are formed in the vicinity of the junction depth positions of the drain and source diffusion layers, and nitrogen atom implantation regions are formed at these positions.
【0019】本実施例では、図5に示すようにチャネル
不純物原子ピーク位置より深い位置に窒素原子を注入す
るため、かかる領域において不純物原子は、拡散、活性
化が抑制され、この領域での実効的なチャネル濃度が低
下する。これによりバックバイアス印加時のしきい値電
圧の上昇を抑制でき、バックバイアス効果を小さくする
ことができる。尚、本実施例は他のチャネル不純物を用
いた場合に対しても同様の効果が期待される。In this embodiment, as shown in FIG. 5, since nitrogen atoms are implanted at a position deeper than the peak position of the channel impurity atom peak, the impurity atom is suppressed from diffusing and activating in such a region, and the effect in this region is reduced. Channel concentration decreases. As a result, it is possible to suppress an increase in the threshold voltage when the back bias is applied and reduce the back bias effect. It should be noted that this embodiment is expected to have the same effect even when other channel impurities are used.
【0020】(実施例3)図6に本発明の他の一の実施
例を示す。図6は本実施例にかかるMOS半導体素子の
要部を示す構成図である。本実施例では、ソース・ドレ
インの低濃度拡散層(LDD)、高濃度拡散層注入後
(注入前でも可)に窒素原子のイオン注入を各拡散層の
接合深さ位置近傍に濃度ピークがくるようにして行う。
これにより、実施例1、2と同様に窒素原子によりソー
ス・ドレインの拡散層下部において不純物の実効的濃度
プロフィールを急峻にすることができ、短チャネル効果
を抑制することができる。(Embodiment 3) FIG. 6 shows another embodiment of the present invention. FIG. 6 is a configuration diagram showing a main part of the MOS semiconductor device according to the present embodiment. In the present embodiment, after the implantation of the low-concentration diffusion layer (LDD) of the source / drain and the high-concentration diffusion layer (or even before the implantation), ion implantation of nitrogen atoms has a concentration peak near the junction depth position of each diffusion layer. To do so.
As a result, similar to the first and second embodiments, the effective concentration profile of the impurities can be made steep in the lower part of the source / drain diffusion layer by the nitrogen atom, and the short channel effect can be suppressed.
【0021】[0021]
【発明の効果】以上の説明で明らかなように、本発明に
よれば、MOS型トランジスタのチャネル領域の表面近
傍に窒素原子注入領域を形成することにより、イオン注
入技術により容易にかつ安価にしきい値電圧が低く、パ
ンチスルー耐性に強い素子構造を得ることができる。As is apparent from the above description, according to the present invention, by forming the nitrogen atom-implanted region near the surface of the channel region of the MOS transistor, the threshold value can be easily and inexpensively obtained by the ion implantation technique. It is possible to obtain an element structure having a low value voltage and a high punch-through resistance.
【0022】また、上記窒素原子注入領域をチャネル領
域下部に形成することにより、チャネル領域下部のキャ
リアプロファイルの急峻化が可能となり、容易に素子特
性の向上を図ることができる。Further, by forming the nitrogen atom-implanted region under the channel region, the carrier profile under the channel region can be made steep, and the device characteristics can be easily improved.
【0023】また、上記窒素原子注入領域をソース、ド
レイン領域下部に形成することにより、ソース、ドレイ
ン領域下部のキャリアプロファイルの急峻化が可能とな
り、容易に素子特製の向上を図ることができる。Further, by forming the nitrogen atom-implanted region under the source and drain regions, the carrier profile under the source and drain regions can be made steep, and the device special feature can be easily improved.
【図1】 本発明の一の実施例に係るMOS型半導体素
子要部を示す構成図である。FIG. 1 is a configuration diagram showing a main part of a MOS type semiconductor device according to an embodiment of the present invention.
【図2】 本発明の一の実施例に係るMOS型半導体素
子チャネル中央部での深さ方向の不純物プロフィールを
示す図である。FIG. 2 is a diagram showing an impurity profile in a depth direction at a central portion of a channel of a MOS type semiconductor device according to an embodiment of the present invention.
【図3】 本発明の一の1実施例に係るチャネル不純物
を疑似的に矩形で与えた構成図である。FIG. 3 is a configuration diagram in which a channel impurity according to an embodiment of the present invention is pseudo-rectangularly provided.
【図4】 本発明の一の実施例に係るNMOS型半導体
素子の動作特性図である。FIG. 4 is an operating characteristic diagram of an NMOS semiconductor device according to an embodiment of the present invention.
【図5】 本発明の他の実施例に係るMOS型半導体素
子要部を示す構成図である。FIG. 5 is a configuration diagram showing a main part of a MOS type semiconductor device according to another embodiment of the present invention.
【図6】 本発明の他の実施例に係るMOS型半導体素
子要部を示す構成図である。FIG. 6 is a configuration diagram showing a main part of a MOS type semiconductor device according to another embodiment of the present invention.
【図7】 従来例にかかるMOS型半導体素子要部を示
す構成図である。FIG. 7 is a configuration diagram showing a main part of a MOS type semiconductor device according to a conventional example.
1 シリコン基板、2 高濃度チャネル領域、3 エピ
タキシャル成長した低濃度または真性シリコン層、4
ゲート酸化膜、5 ポリシリコンゲート電極、6 サイ
ドウォール、7 高濃度拡散層(ソースまたはドレイ
ン)、8 チャネルドープ領域、9 窒素原子注入領
域、10 チャネル不純物原子の深さ濃度プロフィー
ル、11 窒素原子の深さ濃度プロフィール、12 ド
レイン・ソース低濃度拡散層。1 silicon substrate, 2 high concentration channel region, 3 epitaxially grown low concentration or intrinsic silicon layer, 4
Gate oxide film, 5 polysilicon gate electrode, 6 sidewall, 7 high concentration diffusion layer (source or drain), 8 channel doped region, 9 nitrogen atom implantation region, 10 channel impurity atom depth concentration profile, 11 nitrogen atom Depth concentration profile, 12 Drain-source low concentration diffusion layer.
Claims (3)
れたMOS型半導体装置において、 第2の導電型のドレイン領域及びソース領域にはさまれ
た第1の導電型のチャネル領域が、窒素原子注入領域を
設けたシリコン基板表面にある低濃度チャネル領域と、
該低濃度チャネル領域の下部に設けられた高濃度チャネ
ル領域よりなることを特徴とする半導体装置。1. A MOS semiconductor device manufactured on a silicon substrate of a first conductivity type, wherein a channel region of the first conductivity type sandwiched between a drain region and a source region of the second conductivity type is formed. A low concentration channel region on the surface of the silicon substrate provided with a nitrogen atom implantation region,
A semiconductor device comprising a high-concentration channel region provided below the low-concentration channel region.
原子注入領域を設けた低濃度チャネル領域が設けられて
いることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein a low-concentration channel region provided with a nitrogen atom implantation region is provided below the high-concentration channel region.
ース領域が、夫々チャネル領域近傍に設けられた不純物
濃度の低い低濃度拡散層と該低濃度拡散層に隣接してチ
ャネル領域と反対側に設けられた不純物濃度の高い高濃
度拡散層とから構成され、該低濃度拡散層下部または高
濃度拡散層下部の少なくとも一方に窒素原子注入領域を
有することを特徴とする請求項1または2のいずれかに
記載の半導体装置。3. The low-concentration diffusion layer having a low impurity concentration provided in the vicinity of the channel region, and the drain region and the source region of the second conductivity type are adjacent to the low-concentration diffusion layer and opposite to the channel region. 3. A high-concentration diffusion layer having a high impurity concentration, which is provided in, and has a nitrogen atom-implanted region in at least one of the lower part of the low-concentration diffusion layer and the lower part of the high-concentration diffusion layer. The semiconductor device according to any one of claims.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211995A JP3274038B2 (en) | 1995-04-26 | 1995-04-26 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211995A JP3274038B2 (en) | 1995-04-26 | 1995-04-26 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08298319A true JPH08298319A (en) | 1996-11-12 |
JP3274038B2 JP3274038B2 (en) | 2002-04-15 |
Family
ID=14318917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10211995A Expired - Fee Related JP3274038B2 (en) | 1995-04-26 | 1995-04-26 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3274038B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100353402B1 (en) * | 1999-04-19 | 2002-09-18 | 주식회사 하이닉스반도체 | Method of fabricating a semiconductor device |
KR100505618B1 (en) * | 1998-09-21 | 2006-04-21 | 삼성전자주식회사 | High performance MOS transistor and method for fabricating the same |
CN112908854A (en) * | 2021-01-28 | 2021-06-04 | 上海华力集成电路制造有限公司 | Method for reducing punch-through effect and component variation of N-tube short-channel component |
-
1995
- 1995-04-26 JP JP10211995A patent/JP3274038B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100505618B1 (en) * | 1998-09-21 | 2006-04-21 | 삼성전자주식회사 | High performance MOS transistor and method for fabricating the same |
KR100353402B1 (en) * | 1999-04-19 | 2002-09-18 | 주식회사 하이닉스반도체 | Method of fabricating a semiconductor device |
CN112908854A (en) * | 2021-01-28 | 2021-06-04 | 上海华力集成电路制造有限公司 | Method for reducing punch-through effect and component variation of N-tube short-channel component |
Also Published As
Publication number | Publication date |
---|---|
JP3274038B2 (en) | 2002-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5885886A (en) | Method for manufacturing semiconductor device | |
US6359310B1 (en) | Shallow doped junctions with a variable profile gradation of dopants | |
US6372559B1 (en) | Method for self-aligned vertical double-gate MOSFET | |
US6475887B1 (en) | Method of manufacturing semiconductor device | |
JP3489871B2 (en) | MOS transistor and manufacturing method thereof | |
US5359219A (en) | Silicon on insulator device comprising improved substrate doping | |
US7195987B2 (en) | Methods of forming CMOS integrated circuit devices and substrates having buried silicon germanium layers therein | |
JP3205361B2 (en) | Method for manufacturing power MOS transistor with longitudinal current | |
US8318571B2 (en) | Method for forming P-type lightly doped drain region using germanium pre-amorphous treatment | |
US6437406B1 (en) | Super-halo formation in FETs | |
KR100941742B1 (en) | A method of forming differential spacers for individual optimization of n-channel and p-channel transistors | |
JPH0459774B2 (en) | ||
JPH08153873A (en) | Semiconductor device and fabrication thereof | |
JPH08288508A (en) | Epitaxial channel mos transistor and manufacturing method thereof | |
EP0905789A1 (en) | Semiconductor device having soi structure and method for manufacturing the device | |
US6576521B1 (en) | Method of forming semiconductor device with LDD structure | |
JPH0878674A (en) | Semiconductor device and its manufacture and bipolar transistor | |
JP3423161B2 (en) | Method for manufacturing semiconductor device | |
JP3274038B2 (en) | Semiconductor device | |
US6541341B1 (en) | Method for fabricating MOS field effect transistor | |
WO1997011497A1 (en) | Fabrication method of vertical field effect transistor | |
JPH09191106A (en) | Semiconductor device and its manufacture | |
JP2924016B2 (en) | Manufacturing method of MIS type semiconductor device | |
JP3194805B2 (en) | Semiconductor device | |
JPH04255233A (en) | Semiconductor device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080201 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100201 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |