JPH08297883A - Magneto-optical disk device - Google Patents

Magneto-optical disk device

Info

Publication number
JPH08297883A
JPH08297883A JP10254595A JP10254595A JPH08297883A JP H08297883 A JPH08297883 A JP H08297883A JP 10254595 A JP10254595 A JP 10254595A JP 10254595 A JP10254595 A JP 10254595A JP H08297883 A JPH08297883 A JP H08297883A
Authority
JP
Japan
Prior art keywords
magneto
optical
phase difference
optical system
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10254595A
Other languages
Japanese (ja)
Inventor
Kaoru Ohashi
薫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Gunma Ltd
Original Assignee
NEC Gunma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Gunma Ltd filed Critical NEC Gunma Ltd
Priority to JP10254595A priority Critical patent/JPH08297883A/en
Publication of JPH08297883A publication Critical patent/JPH08297883A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a magneto-optical disk device with an excellent read/white charac teristic performing optimum phase difference compensation according to then even when a phase difference occurring optical parts such as a reflection mirror, a beam splitter, etc., constituting an optical system of an optical head of an optical disk device is changed according to an ambient change, and the phase difference occurring in a magneto-optical disk substrate is different according to a medium and a generated phase difference amount in the medium substrate is changed according to the ambient change. CONSTITUTION: This device is the optical system for the magneto-optical disk provided with a convergence optical system for irradiating a magneto-optical recording medium with a minute spot of linear polarized light and a reproducing optical system reproducing information from reflection light reflected by the magneto-optical recording medium. A Soleil/Babinet phase plate 30 compensating the phase difference occurring between orthogonally intersecting two linear polarization is provided in an optical path from the magneto-optical recording medium of the reproducing optical system to reproducing detectors 22, and the phase difference of the Soleil/Babinet phase plate 30 is set in optionally by a command from a microcomputer 40, and the phase difference compensation is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気ディスク装置に
関し、特に、再生信号品質を改善することを可能にする
光磁気ディスク装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical disk device, and more particularly to a magneto-optical disk device which enables improvement of reproduction signal quality.

【0002】[0002]

【従来の技術】従来の光磁気ディスク用光学ヘッドとし
ては、特公平1−229445号公報が知られている。
2. Description of the Related Art As a conventional optical head for a magneto-optical disk, Japanese Patent Publication No. 1-229445 is known.

【0003】この従来の光磁気ディスク用光学ヘッドに
ついて図面を参照して説明する。
This conventional optical head for a magneto-optical disk will be described with reference to the drawings.

【0004】図4は信号検出用反射光(位相差無し)を
説明するための図、図5は信号検出用反射光(位相差有
り)を説明するための図、図6は従来の光磁気ディスク
用光学ヘッドの一実施例を示す図である。
FIG. 4 is a diagram for explaining the reflected light for signal detection (without phase difference), FIG. 5 is a diagram for explaining the reflected light for signal detection (with phase difference), and FIG. 6 is a conventional magneto-optical system. It is a figure which shows one Example of the optical head for discs.

【0005】図6において、レーザダイオード11を出
射した光は、コリメータレンズ12で平行光に変換さ
れ、真円補正プリズム13で強度分布が真円となる。第
1ビームスプリッタ14の接合面に対して、レーザ光は
P偏光で入射する(以後、P偏光成分、S偏光成分の区
別は第1ビームスプリッタの接合面を基準とする)。第
1ビームスプリッタ通過後レーザ光は反射ミラー15で
反射され、対物レンズ16で絞り込まれ、光磁気ディス
ク面(図示せず)に達する(ここまでの光路は、図6に
て実線で示した)。
In FIG. 6, the light emitted from the laser diode 11 is converted into parallel light by the collimator lens 12, and the intensity distribution becomes a perfect circle by the perfect circle correction prism 13. The laser light is incident on the joint surface of the first beam splitter 14 as P-polarized light (hereinafter, the P-polarized component and the S-polarized component are distinguished based on the joint surface of the first beam splitter). After passing through the first beam splitter, the laser light is reflected by the reflection mirror 15, narrowed down by the objective lens 16, and reaches the magneto-optical disk surface (not shown) (the optical path up to this point is shown by the solid line in FIG. 6). .

【0006】次に、図4を参照すると、P偏光成分のみ
からなる直線偏光であるレーザ光L1 はディスク面で反
射するときに、Keer効果により偏光面がKeer回
転角θk だけ回転して反射光L2 もしくはL3 になる。
回転する方向は媒体の磁化の向きにより異なる。
Next, referring to FIG. 4, when the laser light L 1 which is linearly polarized light composed of only P-polarized light component is reflected by the disk surface, the polarization plane is rotated by the Keer rotation angle θ k due to the Keer effect. It becomes the reflected light L 2 or L 3 .
The direction of rotation depends on the direction of magnetization of the medium.

【0007】ディスク面で反射後、レーザ光は対物レン
ズ16,反射ミラー15,第1ビームスプリッタ14,
第2ビームスプリッタ17を通過し、第2ビームスプリ
ッタ17で分割された一方の光はレンズ18を通過して
サーボ信号用のディテクタ19へ、またもう一方の光は
1/2波長板20、偏光ビームスプリッタ21を介して
再生信号用のディテクタ22へと向かう(図6にて破線
で示した光路)。1/2波長板20は、主方向(光学
軸)がP偏光成分の方向に対して22.5゜傾いてい
る。従って、1/2波長板20通過後、P偏光成分(S
偏光成分)は45゜傾く。偏光ビームスプリッタ21
は、垂直方向の偏光成分を反射し、水平方向の偏光成分
を透過する。従って、ディスクからの反射光がP偏光成
分のみ、即ち図4上でθK =0であるとすると、2つの
ディテクタ22の出力は等しくなり、θK ≠0であれば
片方の出力が大きくなる。出力が大きくなるディテクタ
はKeer回転の方向により変わる。再生信号は2つの
ディテクタ22の出力の差をとって得られる。
After being reflected by the disk surface, the laser light is reflected by the objective lens 16, the reflection mirror 15, the first beam splitter 14,
One of the light beams passing through the second beam splitter 17 and split by the second beam splitter 17 passes through the lens 18 to the servo signal detector 19, and the other light beam is polarized by the half-wave plate 20 and polarized. The beam goes through the beam splitter 21 to the detector 22 for the reproduction signal (the optical path shown by the broken line in FIG. 6). The half-wave plate 20 has its main direction (optical axis) tilted by 22.5 ° with respect to the direction of the P-polarized component. Therefore, after passing through the half-wave plate 20, the P-polarized component (S
The polarization component) is inclined at 45 °. Polarization beam splitter 21
Reflects vertical polarization components and transmits horizontal polarization components. Therefore, assuming that the reflected light from the disk is only the P-polarized component, that is, θ K = 0 in FIG. 4, the outputs of the two detectors 22 become equal, and if θ K ≠ 0, one output becomes large. . The detector that increases the output changes depending on the direction of Keer rotation. The reproduced signal is obtained by taking the difference between the outputs of the two detectors 22.

【0008】理想的には、光磁気ディスクからの反射光
は直線偏光のまま1/2波長板20に入射すべきである
が、途中の光学系(反射ミラー、ビームスプリッタ等)
でP偏光成分とS偏光成分に位相差が発生してしまうた
め、実際には図5にみられる如く楕円偏光となってしま
う。楕円偏光になると、P偏光成分に対して45゜の方
向への射影の振幅l2 が小さくなってしまい再生信号の
レベルも低下してしまう。
Ideally, the reflected light from the magneto-optical disk should be incident on the half-wave plate 20 as it is as linearly polarized light, but an optical system in the middle (reflection mirror, beam splitter, etc.).
Therefore, a phase difference occurs between the P-polarized component and the S-polarized component, so that elliptically polarized light is actually obtained as seen in FIG. When it becomes elliptically polarized light, the amplitude l 2 of the projection in the direction of 45 ° with respect to the P-polarized component becomes small, and the level of the reproduction signal also decreases.

【0009】そこで、第2ビームスプリッタ17と1/
2波長板20との間に位相補償手段として波長板31を
挿入する。この位相補償用波長板31は水晶板からなり
主方向(光学軸)がP偏光成分(またはS偏光成分)に
平行である(1/2波長板20の主方向はP偏光成分
(S偏光成分)から22.5゜傾いている)。この位相
補償波長板は、途中の光学系(反射ミラー,ビームスプ
リッタ,光磁気ディスク等)で発生する位相差と逆の位
相差を発生するものを挿入しており途中の光学系で発生
する位相差を打ち消している。
Therefore, the second beam splitter 17 and 1 /
A wave plate 31 is inserted between the two wave plates 20 as a phase compensating means. The phase compensating wave plate 31 is made of a quartz plate and has a main direction (optical axis) parallel to the P-polarized component (or S-polarized component) (the half-wave plate 20 has a P-polarized component (S-polarized component). 22.5 ° from)). This phase compensation wavelength plate has a phase difference that is opposite to the phase difference generated in the optical system (reflection mirror, beam splitter, magneto-optical disk, etc.) in the middle and is inserted in the optical system in the middle. The phase difference is canceled.

【0010】[0010]

【発明が解決しようとする課題】光ディスク装置光学ヘ
ッドの光学系に使用する反射ミラー,ビームスプリッタ
等光学部品で発生する位相差は、理想的には環境(特に
温度)に対して変化の無いものが望ましいが、実際には
多少変化してしまう。また、光磁気ディスク基盤にて発
生する位相差は、各々の媒体によってそれぞれ異なり、
更に同一媒体でも位相差の発生量は面内でバラツキがあ
る。更に温度変化によって発生する光磁気ディスク媒体
基盤での発生位相差量の変化は無視できないほど大き
い。従って、上述した従来の方法にによる位相差補正で
は、ある環境の時の、しかもある特定の媒体の特定の場
所における位相差のみしか補償していないことになる。
The phase difference generated in optical parts such as a reflection mirror and a beam splitter used in the optical system of an optical head of an optical disk device ideally does not change with respect to the environment (particularly temperature). Is desirable, but it actually changes slightly. In addition, the phase difference generated in the magneto-optical disk substrate is different for each medium,
Furthermore, even with the same medium, the amount of phase difference generated varies within the plane. Furthermore, the change in the amount of generated phase difference in the magneto-optical disk medium substrate caused by the temperature change is so large that it cannot be ignored. Therefore, in the phase difference correction according to the above-mentioned conventional method, only the phase difference in a certain environment and at a specific place of a specific medium is compensated.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、この光
磁気ディスクからの反射光に生ずる位相差を、媒体の種
類や環境条件によらず安定に補償することにある。
SUMMARY OF THE INVENTION An object of the present invention is to stably compensate the phase difference generated in the reflected light from the magneto-optical disk regardless of the type of medium and environmental conditions.

【0012】そのため、本発明の光磁気ディスク装置
は、光磁気記録媒体に直線偏光を微少スポットで照射す
る集光光学系と、光磁気記録媒体にて反射した反射光か
ら情報を再生する再生光学系と、集光光学系もしくは再
生光学系の光路中にあって再生光学系の光路中で発生す
る直交する2つの直線偏光間の位相差を補償する位相補
償手段とを有する光磁気ディスク装置において、位相補
償手段が、補償位相差をマイクロコピュータからの命令
により任意に設定する機能を有することを特徴としてい
る。
Therefore, the magneto-optical disk device of the present invention comprises a condensing optical system for irradiating the magneto-optical recording medium with linearly polarized light in a minute spot and a reproducing optical system for reproducing information from the reflected light reflected by the magneto-optical recording medium. In a magneto-optical disk device having a system and a phase compensating means for compensating a phase difference between two orthogonal linearly polarized lights generated in the optical path of the reproducing optical system in the optical path of the condensing optical system or the reproducing optical system. The phase compensating means has a function of arbitrarily setting the compensating phase difference by a command from the micro computer.

【0013】本発明の光磁気ディスク装置は、上記の位
相補償手段により、再生光学系の光路中で発生するP偏
光成分とS偏光成分間の位相差を補償することを特徴と
している。
The magneto-optical disk apparatus of the present invention is characterized in that the phase compensating means compensates the phase difference between the P-polarized component and the S-polarized component generated in the optical path of the reproducing optical system.

【0014】本発明の光磁気ディスク装置は、上記の位
相補償手段がソレイユ・バビネ位相板で構成されること
を特徴としている。
The magneto-optical disk apparatus of the present invention is characterized in that the phase compensating means is composed of a Soleil-Babinet phase plate.

【0015】[0015]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0016】図1は本発明の光磁気ディスク装置の光学
系の一実施例を説明するための図、図2は図1の光磁気
ディスク装置のソレイユ・バビネ位相板を説明するため
の図、図3は図1の光磁気ディスク装置の位相差補正値
設定方法を説明するためのフローチャートである。
FIG. 1 is a diagram for explaining an embodiment of an optical system of a magneto-optical disk device of the present invention, and FIG. 2 is a diagram for explaining a Soleil-Babinet phase plate of the magneto-optical disk device of FIG. FIG. 3 is a flow chart for explaining the phase difference correction value setting method of the magneto-optical disk device of FIG.

【0017】図1において、レーザダイオード11を出
射した光はコリメートレンズ12で平行光に変換され、
真円補正プリズム13で強度分布が真円となる。第1ビ
ームスプリッタ14の接合面に対して、レーザ光はP偏
光で入射する(以後、P偏光成分、S偏光成分の区別は
第1ビームスプリッタの接合面を基準とする)。第1ビ
ームスプリッタ通過後レーザ光は反射ミラー15で反射
され、対物レンズ16で絞り込まれ、光磁気ディスク面
(図示せず)に達する(ここまでの光路は、第1図にて
実線で示した)。
In FIG. 1, the light emitted from the laser diode 11 is converted into parallel light by the collimator lens 12,
The intensity distribution becomes a perfect circle by the perfect circle correction prism 13. The laser light is incident on the joint surface of the first beam splitter 14 as P-polarized light (hereinafter, the P-polarized component and the S-polarized component are distinguished based on the joint surface of the first beam splitter). After passing through the first beam splitter, the laser light is reflected by the reflection mirror 15, narrowed down by the objective lens 16, and reaches the magneto-optical disk surface (not shown) (the optical path up to this point is shown by the solid line in FIG. 1). ).

【0018】次に、図4を参照すると、P偏光成分のみ
からなる直線偏光であるレーザ光L1 はディスク面で反
射するときに、Keer効果により偏光面がKeer回
転角θk だけ回転して反射光L2 もしくはL3 になる。
回転する方向は媒体の磁化の向きにより異なる。
Next, referring to FIG. 4, when the laser light L 1 which is linearly polarized light composed of only P-polarized light component is reflected by the disk surface, the polarization plane is rotated by the Keer rotation angle θ k due to the Keer effect. It becomes the reflected light L 2 or L 3 .
The direction of rotation depends on the direction of magnetization of the medium.

【0019】ディスク面で反射後、レーザ光は対物レン
ズ16,反射ミラー15,第1ビームスプリッタ14,
第2ビームスプリッタ17を通過し、第2ビームスプリ
ッタ17で分割された一方の光はレンズ18を通過して
サーボ信号用のディテクタ19へ、またもう一方の光は
1/2波長板20,偏光ビームスプリッタ21を介して
再生信号用のディテクタ22へと向かう(図1にて破線
で示した光路)。1/2波長板20は、主方向(光学
軸)がP偏光成分の方向に対して22.5゜傾いてい
る。従って、1/2波長板20通過後、P偏光成分(S
偏光成分)は45゜傾く。偏光ビームスプリッタ21
は、垂直方向の偏光成分を反射し、水平方向の偏光成分
を透過する。従ってディスクからの反射光がP偏光成分
のみ、即ち図4上でθK =0であるとすると、2つのデ
ィテクタ22の出力は等しくなり、θK≠0であれば片
方の出力が大きくなる。出力が大きくなるディテクタは
Keer回転の方向により変わる。再生信号は2つのデ
ィテクタ22の出力の差をとって得られる。
After being reflected by the disk surface, the laser light is reflected by the objective lens 16, the reflecting mirror 15, the first beam splitter 14,
One of the light beams passing through the second beam splitter 17 and split by the second beam splitter 17 passes through the lens 18 to the servo signal detector 19, and the other light beam is polarized by the half-wave plate 20 and polarized. The beam goes through the beam splitter 21 to the detector 22 for the reproduction signal (the optical path shown by the broken line in FIG. 1). The half-wave plate 20 has its main direction (optical axis) tilted by 22.5 ° with respect to the direction of the P-polarized component. Therefore, after passing through the half-wave plate 20, the P-polarized component (S
The polarization component) is inclined at 45 °. Polarization beam splitter 21
Reflects vertical polarization components and transmits horizontal polarization components. Therefore, assuming that the reflected light from the disk is only the P-polarized component, that is, θ K = 0 in FIG. 4, the outputs of the two detectors 22 become equal, and if θ K ≠ 0, one output becomes large. The detector that increases the output changes depending on the direction of Keer rotation. The reproduced signal is obtained by taking the difference between the outputs of the two detectors 22.

【0020】理想的には、光磁気ディスクからの反射光
は直線偏光のまま1/2波長板20に入射すべきである
が、途中の光学系(反射ミラー、ビームスプリッタ等)
でP偏光成分とS偏光成分に位相差が発生してしまうた
め、実際には図5にみられる如く楕円偏光となってしま
う。楕円偏光になると、P偏光成分に対して45゜の方
向への射影の振幅l2 が小さくなってしまい再生信号の
レベルも低下してしまう。
Ideally, the reflected light from the magneto-optical disk should be incident on the half-wave plate 20 as it is as linearly polarized light, but the optical system in the middle (reflection mirror, beam splitter, etc.).
Therefore, a phase difference occurs between the P-polarized component and the S-polarized component, so that elliptically polarized light is actually obtained as seen in FIG. When it becomes elliptically polarized light, the amplitude l 2 of the projection in the direction of 45 ° with respect to the P-polarized component becomes small, and the level of the reproduction signal also decreases.

【0021】そこで、第2ビームスプリッタ17と1/
2波長板20との間に位相補償手段としてソレイユ・バ
ビネ位相板30を挿入する。
Therefore, the second beam splitter 17 and 1 /
A Soleil-Babinet phase plate 30 is inserted between the two wave plates 20 as a phase compensating means.

【0022】ここで、本実施例の光磁気ディスク装置に
使用するソレイユ・バビネ位相板30の動作について図
面を参照して説明する。
The operation of the Soleil-Babinet phase plate 30 used in the magneto-optical disk apparatus of this embodiment will be described with reference to the drawings.

【0023】図2(a),図2(b)に示すように、ソ
レイユ・バビネ位相板は2つのウェッジ状の水晶板から
構成され、一方の水晶板をマイクロメータで移動させる
ことによりその厚さxが連続的に変えられるようになっ
ており、図2(a)は厚さの薄い場合、図2(b)は厚
さの厚い場合を示している。そして、ソレイユ・バビネ
位相板はその厚さxに比例してそこで発生する位相差y
も連続的に変化するような位相板である。このソレイユ
・バビネ位相板の厚さxとそこで発生する位相差yの関
係を図2(c)に示す。
As shown in FIGS. 2 (a) and 2 (b), the Soleil-Babinet phase plate is composed of two wedge-shaped crystal plates, and one of the crystal plates is moved by a micrometer to increase its thickness. The thickness x can be continuously changed, and FIG. 2A shows a case where the thickness is thin, and FIG. 2B shows a case where the thickness is thick. The Soleil-Babinet phase plate has a phase difference y that occurs in proportion to its thickness x.
Is a phase plate that continuously changes. The relationship between the thickness x of this Soleil-Babinet phase plate and the phase difference y generated there is shown in FIG. 2 (c).

【0024】本実施例においては、ソレイユ・バビネ位
相板30をP偏光成分の位相を遅らせたり進めたりする
ようにした。そして、途中の光学系(反射ミラー,ビー
ムスプリッタ,光磁気ディスク基板等)で発生するP偏
光成分とS偏光成分間の位相差を打ち消すようソレイユ
・バビネ位相板30の厚さx(補償位相差)をマイコン
40からの命令により随時設定し途中の光学系で発生す
る位相差を打ち消すことを目的としている。
In this embodiment, the Soleil-Babinet phase plate 30 is adapted to delay or advance the phase of the P-polarized component. Then, the thickness x (compensation phase difference) of the Soleil-Babinet phase plate 30 is set so as to cancel the phase difference between the P-polarized component and the S-polarized component generated in the optical system (reflection mirror, beam splitter, magneto-optical disk substrate, etc.) on the way. ) Is set at any time by a command from the microcomputer 40 to cancel the phase difference generated in the optical system on the way.

【0025】本実施例においては、上記マイコン40に
よるトレーニングは記録媒体(光磁気ディスク)ロード
時、また、温度が0℃,15℃,30℃,45℃,60
℃の時に実施するように設定した。
In the present embodiment, the training by the microcomputer 40 is carried out when the recording medium (magneto-optical disk) is loaded and the temperature is 0 ° C., 15 ° C., 30 ° C., 45 ° C., 60.
It was set to be carried out at 0 ° C.

【0026】マイコン40は、図3のフローチャートに
示すようなトレーニングを実施する。
The microcomputer 40 carries out training as shown in the flowchart of FIG.

【0027】図3(a)はフローチャート、図3(b)
は設定するループカウント位相差、図3(c)は結果テ
ーブルを示している。
FIG. 3 (a) is a flow chart, and FIG. 3 (b).
Indicates a loop count phase difference to be set, and FIG. 3C shows a result table.

【0028】まず、ループカウント,結果テーブルを初
期化する(ステップ301)。図3(b)に示すよう
に、ループカウントの設定値は、k=0がソレイユ・バ
ビネ位相板の発生位相差−20deg、k=1がソレイ
ユ・バビネ位相板の発生位相差−15degといった具
合にソレイユ・バビネ位相板の発生位相差と1対1に対
応している。そして、本実施例においては、図1のソレ
イユ・バビネ位相板30の発生位相差を−20deg
(k=0)から20deg(k=8)まで5deg刻み
で設定するようにした。
First, the loop count and result table are initialized (step 301). As shown in FIG. 3B, the set value of the loop count is such that k = 0 is the phase difference generated by the Soleil-Babinet phase plate −20 deg, and k = 1 is the phase difference generated by the Soleil-Babinet phase plate −15 deg. It has a one-to-one correspondence with the phase difference generated by the Soleil-Babinet phase plate. Then, in the present embodiment, the generated phase difference of the Soleil-Babinet phase plate 30 of FIG. 1 is set to −20 deg.
The setting is made from (k = 0) to 20 deg (k = 8) in steps of 5 deg.

【0029】最初にループカウントはk=0(ソレイユ
・バビネ位相板の発生位相差−20deg)に設定され
る(ステップ302)。続いて、1トラック,ライトベ
リファイを行い(ステップ303)、その時のエラー数
をチェックし結果テーブルのl=0へ設定する(ステッ
プ304)。次に、k=k+1,l=l+1とし(ステ
ップ305)、k=8(ソレイユ・バビネ位相板の発生
位相差20deg)になるまでステップ303,ステッ
プ304,ステップ305を繰り返し、k=8になった
ら次のステップ307へ進む(ステップ306)。ステ
ップ307においては、結果テーブルの中から最もエラ
ー数の少ない結果lを選択し、その結果によりそのlに
対応するkの値(ソレイユ・バビネ位相板の位相差)が
選択される。
First, the loop count is set to k = 0 (the phase difference generated by the Soleil-Babinet phase plate-20 deg) (step 302). Then, write verification is performed for one track (step 303), the number of errors at that time is checked, and l = 0 in the result table is set (step 304). Next, k = k + 1 and l = l + 1 are set (step 305), and steps 303, 304 and 305 are repeated until k = 8 (the phase difference generated by the Soleil-Babinet phase plate is 20 deg), and k = 8. Then, the process proceeds to the next step 307 (step 306). In step 307, the result l having the smallest number of errors is selected from the result table, and the value of k (phase difference of the Soleil-Babinet phase plate) corresponding to the l is selected from the result.

【0030】従って、使用条件が変化してもその時々に
応じて最適の位相補償が行える。
Therefore, even if the use condition changes, optimum phase compensation can be performed depending on the situation.

【0031】[0031]

【発明の効果】以上説明したように、本発明の光ディス
ク装置は、光学系に使用する反射ミラー,ビームスプリ
ッタ等光学部品で発生する位相差が環境変化に伴い変化
したり、また、光磁気ディスク基盤にて発生する位相差
が媒体により異なり且つ温度変化によって媒体基盤での
発生位相差量が変化しても、その時々に応じ最適の位相
補償を行うことができ、優れたリードライト特性の光デ
ィスク装置を提供することができるという効果がある。
As described above, in the optical disk device of the present invention, the phase difference generated in the optical components such as the reflection mirror and the beam splitter used in the optical system changes due to the environmental change, and the magneto-optical disk. Even if the phase difference generated on the substrate differs depending on the medium and the amount of the phase difference generated on the medium substrate changes due to temperature change, optimum phase compensation can be performed depending on the occasion, and an optical disc with excellent read / write characteristics. There is an effect that a device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁気ディスク装置の光学系の一実施
例を説明するための図である。
FIG. 1 is a diagram for explaining an embodiment of an optical system of a magneto-optical disk device of the present invention.

【図2】図1の光磁気ディスク装置のソレイユ・バビネ
位相板を説明するための図である。
FIG. 2 is a diagram for explaining a Soleil-Babinet phase plate of the magneto-optical disk device of FIG.

【図3】図1の光磁気ディスク装置の位相差補正値設定
方法を説明するためのフローチャートである。
3 is a flow chart for explaining a phase difference correction value setting method of the magneto-optical disk device of FIG.

【図4】信号検出用反射光(位相差無し)を説明するた
めの図である。
FIG. 4 is a diagram for explaining reflected light for signal detection (no phase difference).

【図5】信号検出用反射光(位相差有り)を説明するた
めの図である。
FIG. 5 is a diagram for explaining reflected light for signal detection (with a phase difference).

【図6】従来の光磁気ディスク用光学ヘッドの一実施例
を示す図である。
FIG. 6 is a diagram showing an example of a conventional optical head for a magneto-optical disk.

【符号の説明】[Explanation of symbols]

11 レーザダイオード 12 コリメータレンズ 13 真円補正プリズム 14 第1ビームスプリッタ 15 反射ミラー 16 対物レンズ 17 第2ビームスプリッタ 18 レンズ 19 4分割ディテクタ 20 1/2波長板 21 偏光ビームスプリッタ 22 再生信号用ディテクタ 30 ソレイユ・バビネ位相板 31 位相補償用波長板 40 マイコン Reference Signs List 11 laser diode 12 collimator lens 13 perfect circle correction prism 14 first beam splitter 15 reflecting mirror 16 objective lens 17 second beam splitter 18 lens 19 four-division detector 20 1/2 wavelength plate 21 polarization beam splitter 22 playback signal detector 30 soleil・ Babinet phase plate 31 Phase compensation wavelength plate 40 Microcomputer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光磁気記録媒体に直線偏光を微少スポッ
トで照射する集光光学系と、前記光磁気記録媒体にて反
射した反射光から情報を再生する再生光学系と、前記集
光光学系もしくは前記再生光学系の光路中にあって前記
再生光学系の光路中で発生する直交する2つの直線偏光
間の位相差を補償する位相補償手段とを有する光磁気デ
ィスク装置において、前記位相補償手段が、前記補償位
相差をマイクロコピュータからの命令により任意に設定
する機能を有することを特徴とする光磁気ディスク装
置。
1. A condensing optical system for irradiating a magneto-optical recording medium with linearly polarized light in a minute spot, a reproducing optical system for reproducing information from reflected light reflected by the magneto-optical recording medium, and the condensing optical system. Alternatively, in a magneto-optical disk device having a phase compensating means for compensating for a phase difference between two linearly polarized light beams orthogonal to each other which are in the optical path of the reproducing optical system and occur in the optical path of the reproducing optical system, the phase compensating means However, the magneto-optical disk device has a function of arbitrarily setting the compensation phase difference by a command from a micro computer.
【請求項2】 前記位相補償手段により、前記再生光学
系の光路中で発生するP偏光成分とS偏光成分間の位相
差を補償することを特徴とする請求項1記載の光磁気デ
ィスク装置。
2. The magneto-optical disk device according to claim 1, wherein the phase compensating means compensates a phase difference between the P-polarized component and the S-polarized component generated in the optical path of the reproducing optical system.
【請求項3】 前記位相補償手段がソレイユ・バビネ位
相板で構成されることを特徴とする請求項1または請求
項2記載の光磁気ディスク装置。
3. The magneto-optical disk device according to claim 1, wherein the phase compensating means is composed of a Soleil-Babinet phase plate.
JP10254595A 1995-04-26 1995-04-26 Magneto-optical disk device Pending JPH08297883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254595A JPH08297883A (en) 1995-04-26 1995-04-26 Magneto-optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254595A JPH08297883A (en) 1995-04-26 1995-04-26 Magneto-optical disk device

Publications (1)

Publication Number Publication Date
JPH08297883A true JPH08297883A (en) 1996-11-12

Family

ID=14330227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254595A Pending JPH08297883A (en) 1995-04-26 1995-04-26 Magneto-optical disk device

Country Status (1)

Country Link
JP (1) JPH08297883A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009286A1 (en) * 1996-08-27 1998-03-05 Quinta Corporation Optical system and method using optical fibers for storage and retrieval of information
US6472651B1 (en) 1999-06-18 2002-10-29 Fujitsu Limited Optical information storage device having phase compensating mechanism and polarization plane rotating mechanism
US7397752B2 (en) 2003-05-14 2008-07-08 Sharp Kabushiki Kaisha Pickup for magneto-optical recording medium
JP2020160422A (en) * 2019-03-22 2020-10-01 住友化学株式会社 Inspection method and inspection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260255A (en) * 1989-03-31 1990-10-23 Sony Corp Magneto-optical reproducing device
JPH0340252A (en) * 1989-04-19 1991-02-21 Olympus Optical Co Ltd Phase difference measuring device for magneto-optical recording medium
JPH06230222A (en) * 1993-02-05 1994-08-19 Digital Stream:Kk Phase compensation plate and optical pickup for magneto-optical disk system using the phase compensation plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260255A (en) * 1989-03-31 1990-10-23 Sony Corp Magneto-optical reproducing device
JPH0340252A (en) * 1989-04-19 1991-02-21 Olympus Optical Co Ltd Phase difference measuring device for magneto-optical recording medium
JPH06230222A (en) * 1993-02-05 1994-08-19 Digital Stream:Kk Phase compensation plate and optical pickup for magneto-optical disk system using the phase compensation plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009286A1 (en) * 1996-08-27 1998-03-05 Quinta Corporation Optical system and method using optical fibers for storage and retrieval of information
US6472651B1 (en) 1999-06-18 2002-10-29 Fujitsu Limited Optical information storage device having phase compensating mechanism and polarization plane rotating mechanism
US7397752B2 (en) 2003-05-14 2008-07-08 Sharp Kabushiki Kaisha Pickup for magneto-optical recording medium
JP2020160422A (en) * 2019-03-22 2020-10-01 住友化学株式会社 Inspection method and inspection apparatus

Similar Documents

Publication Publication Date Title
US4771414A (en) Optical pick-up apparatus
JPH08297883A (en) Magneto-optical disk device
JPH1083560A (en) Optical head device
JPH0556584B2 (en)
JP3255306B2 (en) Magneto-optical detector and magneto-optical disk device
US7280459B2 (en) Device for correcting signal modulations
JP3104367B2 (en) Disk recording and playback device
JP2002319160A (en) Signal recording device and signal recording method, signal reproducing device and signal reproducing method
JPH01229445A (en) Optical head for magneto-optical recording medium
JPS5877048A (en) Reader for photomagnetic recording and reproducing system
JPS61199252A (en) Photomagnetic recording and reproducing device
JPS6120245A (en) Photomagnetic disk reproducing device
JPS6254857A (en) Photo-magnetic information recorder
JPH0386953A (en) Magneto-optical recording and reproducing device
JP2865822B2 (en) Light head
JPH117650A (en) Optical pickup
JPS59146458A (en) Optical recording and reproducing device
JPS62204436A (en) Optical pickup
JPH11250485A (en) Optical pickup device
JPS6190337A (en) Optical information recording/reproducing device
JPS61180949A (en) Optical disk reproducer
JPS61198458A (en) Method for reproducing magnetooptic information
JPS60129953A (en) Photomagnetic recording and reproducing device
JPH03116546A (en) Information recording and reproducing device
JPS60211643A (en) Optical information recording and reproducing system and its device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980106