JPH1083560A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH1083560A
JPH1083560A JP8237468A JP23746896A JPH1083560A JP H1083560 A JPH1083560 A JP H1083560A JP 8237468 A JP8237468 A JP 8237468A JP 23746896 A JP23746896 A JP 23746896A JP H1083560 A JPH1083560 A JP H1083560A
Authority
JP
Japan
Prior art keywords
light source
polarization direction
optical
head device
optical head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8237468A
Other languages
Japanese (ja)
Other versions
JP3399751B2 (en
Inventor
Kenji Nagashima
賢治 長島
Seiji Nishino
清治 西野
Hiroaki Yamamoto
▲ひろ▼昭 山本
Tetsuo Hosomi
哲雄 細美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23746896A priority Critical patent/JP3399751B2/en
Publication of JPH1083560A publication Critical patent/JPH1083560A/en
Application granted granted Critical
Publication of JP3399751B2 publication Critical patent/JP3399751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical head device small in size, small in number of components and capable of recording/reproducing plural recording media different in substrate thickness in an optical head device used for an optical information recording/reproducing device, etc. SOLUTION: A liquid crystal optical rotator element 41 and a hologram element 5 are provided in an optical system. A condenser lens 61 is designed so as to optimally converge a light beam for the thickness of the substrate of a disk 7 and the polarizing hologram element 5 acts as a transparent plate without applying a voltage on the liquid crystal optical rotator element 41 for the disk having this substrate thickness. By applying a voltage on the liquid crystal optical rotator element 41 for a disk 7 having a different substrate thickness, the polarizing hologram element 51 acts as a hologram plate for compensating aberration caused by the difference of the substrate thickness. Consequently, plural recording media having different substrate thickness are recorded/reproduced by one condenser lens.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光情報記録再生装置
などに用いられる光ヘッド装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device used for an optical information recording / reproducing apparatus and the like.

【0002】[0002]

【従来の技術】近年、コンパクトディスクや光ディスク
等の光学的記録媒体に対して、情報の記録再生を行なう
光学的情報記録再生装置の光ヘッドの性能向上や小型・
軽量化などを目的に光ヘッドが研究・開発されている。
近年、半導体レーザの短波長技術、対物レンズの高NA
化技術が進歩し、光ディスクの高密度化が可能となっ
た。
2. Description of the Related Art In recent years, the performance of an optical head of an optical information recording / reproducing apparatus for recording / reproducing information on / from an optical recording medium such as a compact disk and an optical disk has been improved, and the size and size of the optical head have been reduced.
Optical heads are being researched and developed for the purpose of weight reduction and the like.
Recently, short wavelength technology of semiconductor laser, high NA of objective lens
Advances in optical disc technology have made it possible to increase the density of optical discs.

【0003】しかし、コンパクトディスク等にみられる
現在のディスクの基材厚のままでは、半導体レーザの短
波長化や対物レンズの高NA化によってディスクのチル
トにより発生する収差は増大してしまうので、基材厚を
薄くしたディスクが提案されている。
[0003] However, if the current thickness of the base material of a disk, such as a compact disk, remains unchanged, the aberration generated due to the tilt of the disk increases due to the shorter wavelength of the semiconductor laser and the higher NA of the objective lens. Discs with a reduced base material thickness have been proposed.

【0004】このような基材厚の薄いディスクと現在普
及しているコンパクトディスクや光ディスクと互換を取
るためには、それぞれのディスクにあった集光レンズを
備えた光ヘッド装置が必要である。
[0004] In order to make such a thin disk having a thin base material compatible with a compact disk or an optical disk which is currently in wide use, an optical head device having a condenser lens suitable for each disk is required.

【0005】以下に従来の光ヘッド装置について説明す
る。図6は従来の光ヘッドの光学系の一例を示す模式図
である。
A conventional optical head device will be described below. FIG. 6 is a schematic diagram showing an example of an optical system of a conventional optical head.

【0006】通常TE00モードで発振するレーザ光源1
から出射する光ビーム(水平偏波)をコリメートレンズ
2で平行ビームとし、ビームスプリッタ3(例えば透過
と反射の比率が7:3のビームスプリッタ)を通過して
集光レンズ系4にビームの一部が選択入射する。ビーム
は集光レンズ系6で大略1μm程度のスポットに絞ら
れ、光記憶媒体面7上に到達し、ピット上パターン8を
照射する。媒体面7で反射・回折された光束は、再び集
光レンズ系6を逆に進んでビームスプリッタ3で一部が
選択通過してプリズムハーフミラー9で2方向に分割す
る。一方の反射光は非点収差を付与した検出レンズ10
を通って4分割フォトディテクタ11に入射し、焦点制
御信号に変換する。他方の透過光は、ファーフィールド
パターンのまま、トラッキング制御検出用の2分割フォ
トディテクタ12に入りトラッキング制御信号に変換す
る。
[0006] The laser light source 1 that oscillates at a normal TE 00 mode
A light beam (horizontally polarized light) emitted from the light beam is converted into a parallel beam by a collimating lens 2, passes through a beam splitter 3 (for example, a beam splitter having a transmission / reflection ratio of 7: 3), and is transmitted to a condenser lens system 4. The part is selectively incident. The beam is converged to a spot of approximately 1 μm by the condenser lens system 6, reaches the optical storage medium surface 7, and irradiates the pit pattern 8. The light beam reflected and diffracted by the medium surface 7 travels again through the condensing lens system 6, partially passes through the beam splitter 3 selectively, and is split into two directions by the prism half mirror 9. One reflected light is a detection lens 10 having astigmatism.
Through the photodetector 11 and converted into a focus control signal. The other transmitted light enters the two-part photodetector 12 for tracking control detection as it is in the far field pattern, and is converted into a tracking control signal.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記の従
来の光ヘッド装置の光学系では、複数の基材厚の異なる
記録媒体(例えばCDディスクの基材厚は1.2mm、
DVDディスクの基材厚は0.6mm)の記録再生を単
一の光ヘッド光学系で行うと、設計厚さと異なる記録媒
体の基材厚による球面収差が大きくなり、また記録媒体
のそりや面振れ等に対するスポットのひずみが増大し、
正常に記録再生できなくなる。そのため複数の基材厚の
異なる記録媒体の記録再生を行うには、光ヘッド光学系
もしくは焦点光学系が複数必要となる。例えば2つのレ
ンズを機械的に切り替える方式の光ヘッド装置が提案さ
れているが、小型化、低価格化、量産性、高信頼性の面
で問題があった。
However, in the optical system of the above-mentioned conventional optical head device, a plurality of recording media having different substrate thicknesses (for example, the substrate thickness of a CD disk is 1.2 mm,
When a single optical head optical system is used for recording / reproducing a DVD disc with a base material thickness of 0.6 mm, the spherical aberration due to the base material thickness of the recording medium different from the designed thickness increases, and the warpage and surface of the recording medium are increased. Spot distortion due to run-out etc. increases,
Recording and playback cannot be performed normally. Therefore, in order to perform recording / reproduction on a plurality of recording media having different substrate thicknesses, a plurality of optical head optical systems or focus optical systems are required. For example, an optical head device of a type in which two lenses are mechanically switched has been proposed, but has problems in terms of miniaturization, low cost, mass productivity, and high reliability.

【0008】これらの問題が生じる共通の理由として、
第1に多数の部品を組み合わせ、しかも記憶媒体の基材
厚によって光学系を機械的に切り替えるのは、組立・調
整にも多くの時間と複雑な検査・測定装置を要するこ
と、第2に部品の小型化に限界があることから全光学系
の小型化にも大きな制約があった。
[0008] Common reasons for these problems are:
First, combining a large number of parts and mechanically switching the optical system according to the thickness of the base material of the storage medium requires a lot of time and complicated inspection and measurement equipment for assembly and adjustment. Since there is a limit to miniaturization of the optical system, there is also a great restriction on miniaturization of all optical systems.

【0009】本発明は上記従来の問題点を解決するもの
で、小型で部品点数が少なく、複数の基材厚の異なる記
録媒体を記録再生できる光ヘッド装置を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems, and to provide an optical head device which is small in size, has a small number of components, and can record and reproduce a plurality of recording media having different thicknesses.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明は、放射光源と、光記憶媒体の光路間に、前記
放射光源のビームの偏光方向を変化させる素子と、ビー
ムの偏光方向によって回折効率が変化するホログラム素
子を配置したものであり、複数の基材厚の異なる記録媒
体を記録再生するときに生じる収差を、光学系の偏光方
向を記録媒体に応じて変化させることによって、偏光ホ
ログラム素子で前記焦点光学系で生じた収差を補正する
光学ヘッド装置である。
In order to achieve this object, the present invention provides a radiation source, an element for changing the polarization direction of a beam of the radiation source between optical paths of an optical storage medium, and a polarization direction of the beam. A hologram element whose diffraction efficiency changes due to the arrangement of the hologram element, the aberration that occurs when recording and reproducing a plurality of recording media having different substrate thicknesses, by changing the polarization direction of the optical system according to the recording medium, An optical head device for correcting an aberration generated in the focusing optical system by a polarization hologram element.

【0011】この本発明によれば、小型化、低価格化、
量産化、高信頼性が得られる。さらに対物レンズと放射
光源もしくは反射光受光面との距離は記録媒体の基材厚
が異なる場合でも変化しないため、光学部品の配置や設
計の自由度を増すことができる。
According to the present invention, downsizing, cost reduction,
Mass production and high reliability can be obtained. Further, since the distance between the objective lens and the radiation light source or the reflected light receiving surface does not change even when the substrate thickness of the recording medium is different, the degree of freedom in the arrangement and design of optical components can be increased.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、放射光源と、放射光源を微小スポットに収束する集
光光学系と、その光路中に配置された放射光源の偏光方
向を変化させる素子と、放射光源の偏光方向によって回
折効率が変化するホログラム素子を配置した光ヘッド装
置である。この構成により複数の基材厚の異なる記録媒
体を単一焦点系で記録再生するときに生じる収差を、光
学系の偏光方向を変化させることによって、偏光ホログ
ラム素子で焦点光学系で生じた収差を補正する作用を有
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention provides a radiation light source, a condensing optical system for converging the radiation light source to a minute spot, and a polarization direction of the radiation light source disposed in the optical path. This is an optical head device in which an element to be changed and a hologram element whose diffraction efficiency changes according to the polarization direction of the radiation light source are arranged. With this configuration, aberrations that occur when recording and reproducing a plurality of recording media having different substrate thicknesses with a single focus system can be reduced by changing the polarization direction of the optical system to reduce aberrations that occur in the focus optical system with the polarization hologram element. It has the effect of correcting.

【0013】請求項2に記載の発明は、放射光源から出
射する光源の偏光方向を変化させる素子が液晶旋光素子
で、液晶旋光素子の偏光方向を電気信号によって制御す
る特許請求の範囲第1項記載の光ヘッド装置であり、液
晶旋光素子に記録媒体に応じて電気信号を与えることで
偏光方向を変化させ、記録媒体の基材厚に応じた収差補
正を偏光ホログラム素子によって行うという作用を有す
る。
According to a second aspect of the present invention, the element for changing the polarization direction of the light source emitted from the radiation light source is a liquid crystal rotation element, and the polarization direction of the liquid crystal rotation element is controlled by an electric signal. The optical head device according to the above, having a function of changing the polarization direction by giving an electric signal to the liquid crystal rotation element according to the recording medium, and performing the aberration correction according to the substrate thickness of the recording medium by the polarization hologram element. .

【0014】請求項3に記載の発明は、放射光源から出
射する光源の偏光方向を変化させる素子がファラデー回
転素子で、素子の偏光方向を素子中の磁気量で制御する
特許請求の範囲第1項記載の光ヘッド装置であり、ファ
ラデー回転素子に記録媒体に応じて磁気を与えることで
偏光方向を変化させ、記録媒体の基材厚に応じた収差補
正を偏光ホログラム素子によって行うという作用を有す
る。
According to a third aspect of the present invention, the element for changing the polarization direction of the light source emitted from the radiation light source is a Faraday rotator, and the polarization direction of the element is controlled by the amount of magnetism in the element. The optical head device according to the item, having a function of changing the polarization direction by applying magnetism to the Faraday rotation element according to the recording medium, and performing the aberration correction according to the substrate thickness of the recording medium by the polarization hologram element. .

【0015】請求項4に記載の発明は、放射光源から出
射する光源の偏光方向を変化させる素子が複屈折を有す
る波長板で、波長板の偏光方向を波長板の挿入する量で
制御する特許請求の範囲第1項記載の光ヘッド装置であ
り、波長板を記録媒体に応じて光路中に挿入または取り
出すことで偏光方向を変化させ、記録媒体の基材厚に応
じた収差補正を偏光ホログラム素子によって行うという
作用を有する。
According to a fourth aspect of the present invention, the element for changing the polarization direction of the light source emitted from the radiation light source is a wavelength plate having birefringence, and the polarization direction of the wavelength plate is controlled by the amount of insertion of the wavelength plate. 2. The optical head device according to claim 1, wherein the polarization direction is changed by inserting or removing a wave plate into or from an optical path according to the recording medium, and the polarization hologram performs aberration correction according to the substrate thickness of the recording medium. It has the effect of performing by the element.

【0016】請求項5に記載の発明は、放射光源から出
射する光源の偏光方向によって回折効率が変化するホロ
グラム素子が集光レンズ上に形成された特許請求の範囲
第1項記載の光ヘッド装置であり、記録媒体の基材厚に
応じた収差補正を集光系光学系と同一素子で構成するこ
とにより小型化、部品点数削減の作用を有する。
According to a fifth aspect of the present invention, there is provided an optical head device according to the first aspect, wherein a hologram element whose diffraction efficiency changes according to the polarization direction of the light source emitted from the radiation light source is formed on the condenser lens. Since the aberration correction according to the thickness of the base material of the recording medium is constituted by the same element as the light-collecting optical system, it has the effect of reducing the size and the number of parts.

【0017】以下、本発明の実施の形態について、図1
から図5を用いて説明する。 (実施の形態1)図1は、本発明の一実施の形態による
光ヘッド装置の光学系の概略構成を示す。図1におい
て、1はTE00モードの水平偏波を発するレーザ(例え
ば650nmの波長で発振する半導体レーザ)、2はコリ
メートレンズ、3はビームスプリッタ(例えば透過率と
反射率の比率が7:3の割合)、41は両面に張られた
透明電極に電圧を加えると偏波方向の旋光回転角度が0
度から90度に変化する性質を持つ液晶旋光素子であ
る。5は水平偏波のビームで最大透過し垂直偏波のビー
ムで最大回折するように設計した偏光ホログラム素子で
ある。この偏光ホログラム素子の基板には例えば異方性
結晶であるLiNO3が使用でき、ホログラム部分はプロ
トン交換で屈折率を変換し、プロトン交換部分をわずか
に除去して位相整合を行う。また、集光に寄与する透過
光量を向上させるためにホログラムの溝はブレーズ化す
ることが好ましい。その具体例は図5に示すように30
μm間隔でnステップ上のTa2O5マスクを用いてド
ライエッチングを行い、プロトン交換を行い、逆位相で
できたブレーズ化ホログラムを形成する。ホログラム素
子6のレンズは、例えば基材厚1.2mmの光ディスクを基
材厚0.6mmのディスクに対して最適化したレンズを用い
て集光したとき生じる収差を最小にするようにビーム補
正が行なえ、開口が適切な大きさに変化させるよう設計
したものである。具体的には例えば曲率半径15.83
8mmで非球面係数をk=−4.34839×10-3
した凸レンズの効果を持つホログラムを設計する。6は
集光用レンズで例えば基材厚0.6mmのディスク上に集光
するときに収差が最小になるように設計されたレン
ズ)、7は記憶媒体(光ディスク)で、例えば基材厚が
0.6mmの光ディスクと1.2mmの光ディスクを用いる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 shows a schematic configuration of an optical system of an optical head device according to an embodiment of the present invention. In Figure 1, 1 is a laser which emits a horizontal polarization of the TE 00 mode (for example, a semiconductor laser that oscillates at a wavelength of 650 nm), 2 is a collimating lens, 3 is the ratio of reflectance and the beam splitter (e.g. transmittance 7: 3 And 41 indicates that when a voltage is applied to the transparent electrodes stretched on both surfaces, the optical rotation angle in the polarization direction becomes 0.
This is a liquid crystal optical rotation element having the property of changing from 90 degrees to 90 degrees. Reference numeral 5 denotes a polarization hologram element designed so as to transmit the maximum with a horizontally polarized beam and to diffract the maximum with a vertically polarized beam. For the substrate of the polarization hologram element, for example, LiNO 3 which is an anisotropic crystal can be used. The refractive index of the hologram portion is converted by proton exchange, and the proton exchange portion is slightly removed to perform phase matching. It is preferable that the hologram groove is blazed in order to improve the amount of transmitted light contributing to light collection. The specific example is 30 as shown in FIG.
Dry etching is performed at intervals of μm using a Ta2O5 mask on n steps, proton exchange is performed, and a blazed hologram formed in the opposite phase is formed. The lens of the hologram element 6 can perform beam correction so as to minimize aberration that occurs when, for example, an optical disk having a base material thickness of 1.2 mm is focused using a lens optimized for a disk having a base material thickness of 0.6 mm, The opening is designed to change to an appropriate size. Specifically, for example, the radius of curvature is 15.83.
A hologram having the effect of a convex lens with an aspheric coefficient of 8 mm and an aspheric coefficient of k = -4.34839 × 10 −3 is designed. Reference numeral 6 denotes a condensing lens, for example, a lens designed to minimize aberration when condensing light on a disc having a base material thickness of 0.6 mm. Reference numeral 7 denotes a storage medium (optical disc) having a base material thickness of, for example.
Use 0.6mm optical disk and 1.2mm optical disk.

【0018】記憶媒体7の基材厚が0.6mmのときは液晶
フィルム41には電圧を加えないようにすれば、光源1
から発した水平偏波のビームはコリメートレンズ2で平
行ビームとなり、ビームスプリッタ3でその光量の7割
が液晶旋光素子41を水平偏波面のまま透過し、偏光ホ
ログラム素子5に入射される。偏光ホログラム5は水平
偏波の入射に対しては最大透過するため、平行ビームは
そのまま集光レンズ6に入射し大略1μm程度のスポッ
トに絞られ、光記憶媒体面7上に到達し、ピット上パタ
ーン8を照射する。媒体面7で反射・回折された光束
は、再び集光レンズ系6を逆に進んで偏光ホログラム素
子5に入射されるが、反射・回折された光束はほぼ水平
偏波のままであるため往路と同様にほとんどが平行ビー
ムのまま透過し液晶旋光素子41を介してビームスプリ
ッタ3に入射される。そしてビームスプリッタ3でビー
ムの3割が選択通過してプリズムハーフミラー9で2方
向に分割される。一方の反射光は非点収差を付与した検
出レンズ10を通って4分割ディテクタ11に入射し、
焦点制御信号に変換される。他方の透過光は、ファーフ
ィールドパターンのまま、トラッキング制御検出用の2
分割フォトディテクタ12に入りトラッキング制御信号
に変換される。
When the substrate thickness of the storage medium 7 is 0.6 mm, if no voltage is applied to the liquid crystal film 41, the light source 1
The collimated lens 2 converts the horizontally polarized beam into a parallel beam, and 70% of the amount of the light passes through the liquid crystal rotation element 41 as a horizontal polarization plane at the beam splitter 3 and enters the polarization hologram element 5. Since the polarization hologram 5 transmits the maximum with respect to the incidence of the horizontally polarized wave, the parallel beam is directly incident on the condenser lens 6 and narrowed down to a spot of about 1 μm, reaches the optical storage medium surface 7 and reaches the pit. The pattern 8 is irradiated. The light beam reflected and diffracted by the medium surface 7 travels again through the condensing lens system 6 and enters the polarization hologram element 5, but the reflected and diffracted light beam remains almost horizontally polarized and thus travels in the forward direction. As in the case of (1), almost all of the light is transmitted as a parallel beam, and is incident on the beam splitter 3 via the liquid crystal rotation element 41. Then, 30% of the beam is selectively passed by the beam splitter 3 and split by the prism half mirror 9 in two directions. One reflected light passes through the detection lens 10 provided with astigmatism and is incident on the four-divided detector 11.
It is converted into a focus control signal. The other transmitted light remains in the far-field pattern and is used for tracking control detection.
The light enters the divided photodetector 12 and is converted into a tracking control signal.

【0019】つぎに記憶媒体7の基材厚が1.2mmのとき
は液晶旋光素子41に電圧を加えるようにすれば、光源
1から発した水平偏波のビームはコリメートレンズ2で
平行ビームとなり、ビームスプリッタ3でその光量の7
割が液晶旋光素子41を透過する。平行ビームは液晶旋
光素子41を透過する際に90度偏波面が回転して垂直
偏波となり、偏光ホログラム素子5に入射される。偏光
ホログラム5は垂直偏波の入射に対しては最大回折する
ため、平行ビームはホログラム素子の効果と次に透過す
る集光レンズ6の2枚のレンズにより大略1μm程度の
スポットに絞られ、光記憶媒体面7上に到達し、ピット
上パターン8を照射する。媒体面7で反射・回折された
光束は、再び集光レンズ系6を逆に進んで偏光ホログラ
ム素子5に入射されるが、反射・回折された光束はほぼ
水直偏波のままであるため往路と同様にほとんどが最大
回折され平行光の歪みを補正されて平行ビームとなり液
晶旋光素子41を介して水平偏波となった後ビームスプ
リッタ3に入射される。そしてビームスプリッタ3でビ
ームの3割が選択通過してプリズムハーフミラー9で2
方向に分割される。一方の反射光は非点収差を付与した
検出レンズ10を通って4分割ディテクタ11に入射
し、焦点制御信号に変換される。他方の透過光は、ファ
ーフィールドパターンのまま、トラッキング制御検出用
の2分割フォトディテクタ12に入りトラッキング制御
信号に変換される。
Next, when the substrate thickness of the storage medium 7 is 1.2 mm, by applying a voltage to the liquid crystal rotation element 41, the horizontally polarized beam emitted from the light source 1 becomes a parallel beam by the collimating lens 2, The beam splitter 3 uses
A portion transmits through the liquid crystal optical rotation element 41. When the parallel beam is transmitted through the liquid crystal rotation element 41, the plane of polarization is rotated by 90 degrees to be vertically polarized, and is incident on the polarization hologram element 5. Since the polarization hologram 5 is maximally diffracted with respect to the incidence of the vertically polarized light, the parallel beam is narrowed down to a spot of approximately 1 μm by the effect of the hologram element and the two lenses of the condensing lens 6 which is transmitted next. The light reaches the storage medium surface 7 and irradiates the pit pattern 8. The light beam reflected / diffracted by the medium surface 7 travels again through the condenser lens system 6 and enters the polarization hologram element 5, but the reflected / diffracted light beam remains almost in the horizontal polarization. As in the case of the outward path, most of the light is diffracted to the maximum and the distortion of the parallel light is corrected to be a parallel beam. The light is horizontally polarized through the liquid crystal rotation element 41 and then enters the beam splitter 3. Then, 30% of the beam is selectively passed by the beam splitter 3 and passed by the prism half mirror 9 to 2%.
Divided into directions. One of the reflected lights enters the four-divided detector 11 through the detection lens 10 provided with astigmatism, and is converted into a focus control signal. The other transmitted light enters the two-part photodetector 12 for tracking control detection while being in the far-field pattern, and is converted into a tracking control signal.

【0020】(実施の形態2)第2図は本発明の別の実
施の形態を示す概念図である。実施の形態1では、光ヘ
ッド装置の光路中のビームの偏光方向を変化させる素子
として液晶旋光素子を用いたのに対し、本実施の形態2
では、磁界発生手段(図示せず)により磁界を加えると
偏波方向の旋光回転角度が0度から90度に変化する性
質を持つファラデー回転素子42を用いたものであり、
作用は実施の形態1と同じである。
(Embodiment 2) FIG. 2 is a conceptual diagram showing another embodiment of the present invention. In the first embodiment, the liquid crystal rotation element is used as an element for changing the polarization direction of the beam in the optical path of the optical head device.
Uses a Faraday rotator 42 having the property that when a magnetic field is applied by a magnetic field generator (not shown), the optical rotation angle in the polarization direction changes from 0 degree to 90 degrees.
The operation is the same as in the first embodiment.

【0021】(実施の形態3)第3図は本発明の別の実
施の形態を示す概念図である。実施の形態1では、光ヘ
ッド装置の光路中のビームの偏光方向を変化させる素子
として液晶旋光素子を用いたのに対し、本実施の形態で
は記録媒体7に応じて光学系への挿入、取り出しができ
る機構(図示せず)を有する二分の一波長板(1/2λ
板)43を用いたものであり、作用は実施の形態1と同
じである。
(Embodiment 3) FIG. 3 is a conceptual diagram showing another embodiment of the present invention. In the first embodiment, a liquid crystal optical rotation element is used as an element for changing the polarization direction of a beam in the optical path of the optical head device. On the other hand, in the present embodiment, insertion and removal from the optical system according to the recording medium 7 are performed. Half-wave plate (1 / 2λ) having a mechanism (not shown) capable of
Plate 43 is used, and the operation is the same as that of the first embodiment.

【0022】(実施の形態4)第4図は本発明の別の実
施の形態を示す概念図である。実施の形態1では集光光
学系を集光レンズと偏光ホログラムで構成したのに対
し、本実施の形態では、集光レンズ62上に偏光ホログ
ラムを構成したもので、作用は実施の形態1と同じであ
る。
(Embodiment 4) FIG. 4 is a conceptual diagram showing another embodiment of the present invention. In the first embodiment, the condensing optical system is constituted by the condensing lens and the polarization hologram, whereas in the present embodiment, the condensing lens is constituted by the polarization hologram on the condensing lens 62. Is the same.

【0023】なお、上述した各実施の形態では、放射光
源の偏光方向を変化させる素子として、液晶旋光素子、
ファラデー回転素子、複屈折を有する波長板の場合を説
明したが、必ずしもこれに限るものではない。
In each of the above-described embodiments, a liquid crystal optical rotation element, a liquid crystal rotation element,
Although the case of the Faraday rotator and the wave plate having birefringence have been described, the present invention is not limited to this.

【0024】[0024]

【発明の効果】以上のように本発明によれば、複数の基
材厚の異なる記憶媒体を一つの光ヘッド装置で記録再生
でき、小型化・簡素化することができるという有利な効
果が得られる。
As described above, according to the present invention, a plurality of storage media having different substrate thicknesses can be recorded / reproduced by one optical head device, and the advantageous effects of miniaturization and simplification can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ヘッド装置の一実施の形態を示す概
略構成図
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical head device according to the present invention.

【図2】同、別の実施の形態を示す概略構成図FIG. 2 is a schematic configuration diagram showing another embodiment of the invention.

【図3】同、別の実施の形態を示す概略構成図FIG. 3 is a schematic configuration diagram showing another embodiment of the present invention.

【図4】同、別の実施の形態を示す概略構成図FIG. 4 is a schematic configuration diagram showing another embodiment of the present invention.

【図5】偏光ホログラムにおけるブレーズ化の一実施例
を示す概略図
FIG. 5 is a schematic view showing an embodiment of blazing in a polarization hologram;

【図6】従来の光ヘッド装置の光学系の構成例を示す概
略構成図
FIG. 6 is a schematic configuration diagram showing a configuration example of an optical system of a conventional optical head device.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 コリメートレンズ 3 ビームスプリッタ 5 偏光ホログラム素子 7 記録媒体 8 ピット 9 プリズムハーフミラー 10 検出レンズ 11 4分割ディテクタ 12 2分割ディテクタ 41 液晶旋光素子 42 ファラデー回転素子 43 1/2λ波長版 61 集光レンズ 62 偏光ホログラム素子を有する集光レンズ DESCRIPTION OF SYMBOLS 1 Laser light source 2 Collimating lens 3 Beam splitter 5 Polarization hologram element 7 Recording medium 8 Pit 9 Prism half mirror 10 Detection lens 11 Four division detector 12 Two division detector 41 Liquid crystal rotation element 42 Faraday rotation element 43 1 / 2λ wavelength plate 61 Condensing Lens 62 Condensing lens having polarization hologram element

フロントページの続き (72)発明者 細美 哲雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuation of front page (72) Inventor Tetsuo Hosomi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放射光源と、前記放射光源から出射され
たビームを微小スポットに収束する集光光学系と、前記
放射光源と前記集光光学系の間に配置された前記放射光
源の偏光方向を変化させる素子と、前記偏光方向を変化
させる素子を通過したビームの偏光方向によって回折効
率が変化するホログラム素子を配置した光ヘッド装置。
1. A radiation light source, a condensing optical system for converging a beam emitted from the radiation light source to a minute spot, and a polarization direction of the radiation light source disposed between the radiation light source and the condensing optical system And an hologram element having a diffraction efficiency that changes according to the polarization direction of the beam passing through the polarization direction changing element.
【請求項2】 放射光源から出射する光源の偏光方向を
変化させる素子が液晶旋光素子で、前記液晶旋光素子の
偏光方向を電気信号によって制御することを特徴とする
請求項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein the element for changing the polarization direction of the light source emitted from the radiation light source is a liquid crystal rotation element, and the polarization direction of the liquid crystal rotation element is controlled by an electric signal. .
【請求項3】 放射光源から出射する光源の偏光方向を
変化させる素子がファラデー回転素子で、前記ファラデ
ー回転素子の偏光方向を前記ファラデー回転素子中の磁
気量で制御することを特徴とする請求項1記載の光ヘッ
ド装置。
3. The Faraday rotation element is an element for changing the polarization direction of the light source emitted from the radiation light source, and the polarization direction of the Faraday rotation element is controlled by a magnetic quantity in the Faraday rotation element. 2. The optical head device according to 1.
【請求項4】 放射光源から出射する光源の偏光方向を
変化させる素子が複屈折を有する波長板で、前記波長板
の偏光方向を前記波長板の挿入と取り出しで制御するこ
とを特徴とする請求項1記載の光ヘッド装置。
4. An element for changing the polarization direction of a light source emitted from a radiation light source is a wave plate having birefringence, and the polarization direction of the wave plate is controlled by inserting and removing the wave plate. Item 2. The optical head device according to item 1.
【請求項5】 放射光源から出射する光源の偏光方向に
よって回折効率が変化するホログラム素子が前記集光レ
ンズ上に形成されたことを特徴とする請求項1記載の光
ヘッド装置。
5. The optical head device according to claim 1, wherein a hologram element whose diffraction efficiency changes according to the polarization direction of the light source emitted from the radiation light source is formed on the condenser lens.
JP23746896A 1996-09-09 1996-09-09 Optical head device Expired - Fee Related JP3399751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23746896A JP3399751B2 (en) 1996-09-09 1996-09-09 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23746896A JP3399751B2 (en) 1996-09-09 1996-09-09 Optical head device

Publications (2)

Publication Number Publication Date
JPH1083560A true JPH1083560A (en) 1998-03-31
JP3399751B2 JP3399751B2 (en) 2003-04-21

Family

ID=17015784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23746896A Expired - Fee Related JP3399751B2 (en) 1996-09-09 1996-09-09 Optical head device

Country Status (1)

Country Link
JP (1) JP3399751B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049024A1 (en) * 2000-12-11 2002-06-20 Koninklijke Philips Electronics N.V. Device for reading and/or writing a record carrier
US6819646B1 (en) 1999-01-19 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical pickup, optical information recording/reproducing apparatus using the same, and phase variable wave plate used in the pickup and the apparatus
JP2006252616A (en) * 2005-03-08 2006-09-21 Ricoh Co Ltd Optical pickup device and optical disk driving device using the same
JP2006252615A (en) * 2005-03-08 2006-09-21 Ricoh Co Ltd Optical pickup device and optical disk driving device using the same
JP2006309807A (en) * 2005-04-26 2006-11-09 Ricoh Co Ltd Optical pickup device, optical drive device and information processor
JP2007026615A (en) * 2005-07-21 2007-02-01 Ricoh Co Ltd Optical pickup and optical information processor
JP2007035125A (en) * 2005-07-25 2007-02-08 Ricoh Co Ltd Optical pickup apparatus and optical disk drive
JP2007073173A (en) * 2005-09-03 2007-03-22 Samsung Electronics Co Ltd Compatible optical pickup and optical recording and/or reproducing device employing the same
CN100403420C (en) * 2005-03-17 2008-07-16 夏普株式会社 Aberration detection device and optical pickup device provided with same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215476B2 (en) 1999-01-19 2007-05-08 Matsushita Electric Industrial Co., Ltd. Optical pickup, optical information recording/reproducing apparatus using the same, and phase variable wave plate used in the pickup and the apparatus
US6819646B1 (en) 1999-01-19 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical pickup, optical information recording/reproducing apparatus using the same, and phase variable wave plate used in the pickup and the apparatus
US7035192B2 (en) 1999-01-19 2006-04-25 Matsushita Electric Industrial Co., Ltd. Optical pickup, optical information recording/reproducing apparatus using the same, and phase variable wave plate used in the pickup and the apparatus
US7079470B2 (en) * 2000-12-11 2006-07-18 Koninklijke Philips Electronics N.V. Diffraction device for reading and/or writing a record carrier
WO2002049024A1 (en) * 2000-12-11 2002-06-20 Koninklijke Philips Electronics N.V. Device for reading and/or writing a record carrier
JP2006252616A (en) * 2005-03-08 2006-09-21 Ricoh Co Ltd Optical pickup device and optical disk driving device using the same
JP2006252615A (en) * 2005-03-08 2006-09-21 Ricoh Co Ltd Optical pickup device and optical disk driving device using the same
JP4530884B2 (en) * 2005-03-08 2010-08-25 株式会社リコー Optical pickup device and optical disk drive device using the same
CN100403420C (en) * 2005-03-17 2008-07-16 夏普株式会社 Aberration detection device and optical pickup device provided with same
JP2006309807A (en) * 2005-04-26 2006-11-09 Ricoh Co Ltd Optical pickup device, optical drive device and information processor
JP2007026615A (en) * 2005-07-21 2007-02-01 Ricoh Co Ltd Optical pickup and optical information processor
JP2007035125A (en) * 2005-07-25 2007-02-08 Ricoh Co Ltd Optical pickup apparatus and optical disk drive
JP2007073173A (en) * 2005-09-03 2007-03-22 Samsung Electronics Co Ltd Compatible optical pickup and optical recording and/or reproducing device employing the same

Also Published As

Publication number Publication date
JP3399751B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US6819647B2 (en) Optical information processor and optical element
JP3304053B2 (en) Optical head and optical disk device
EP1560209B1 (en) Liquid crystal optical element and optical device
JP2950500B2 (en) Optical pickup for recording and reproduction for compatibility of discs with different thickness
JP3399751B2 (en) Optical head device
EP1760705B1 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
US6888786B2 (en) Optical device and optical storage device
JPH09161307A (en) Optical head and optical information reproducing device
JPH10222856A (en) Optical information recording/reproducing device
US6343059B1 (en) Reading-writing pickup head
KR0176898B1 (en) Optic-pick-up device using cd/dvd
JPH09265639A (en) Optical pickup
JPH08153336A (en) Optical head device
JP3987259B2 (en) Optical pickup device
JPH09161306A (en) Optical disk device
JPH10149560A (en) Optical pickup and optical disk device
JPH0352145A (en) Optical pickup
KR100214591B1 (en) Apparatus for optic pickup double using cd and dvd
KR100196923B1 (en) Disc compatible optical pickup for hologram with coincident optical axes of two optical source
US5532477A (en) Optical pickup apparatus having lens group for determining paths of an incident beam and a reflected & beam
JPH11250485A (en) Optical pickup device
JP2006202423A (en) Multiwavelength compatible optical pickup device and optical information recording/reproducing device
JPH10199006A (en) Optical pickup
KR20000000655A (en) Compatible optical pick up apparatus
JPH09180237A (en) Optical disk device and optical head therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees