JPH08296910A - Cooling method of cooling water by compressed gas refrigerant - Google Patents
Cooling method of cooling water by compressed gas refrigerantInfo
- Publication number
- JPH08296910A JPH08296910A JP12295395A JP12295395A JPH08296910A JP H08296910 A JPH08296910 A JP H08296910A JP 12295395 A JP12295395 A JP 12295395A JP 12295395 A JP12295395 A JP 12295395A JP H08296910 A JPH08296910 A JP H08296910A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- compressed gas
- cooling water
- welding
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水冷銅当金を用いた溶
接全般における冷却水の冷却方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method for cooling water in general welding using a water-cooled copper alloy.
【0002】[0002]
【従来の技術】水冷銅当金は一般に溶接金属をある一定
の形状に形成し、溶接箇所を外部に露出させる必要があ
るとき等に用いられる。水冷銅当金の内部には、冷却水
を通水させるための冷却配管が内蔵してあり、銅の優れ
た熱伝導度の効果で銅当金を焼損させることなく溶接金
属と接する箇所の冷却を行い、良好なビード外観を得る
とともに水冷銅当金と溶接金属との溶着を防止してい
る。銅当金を水冷しないと銅当金と溶接部分が溶着して
しまい、銅当金がはずせなくなる。2. Description of the Related Art A water-cooled copper alloy is generally used when it is necessary to form a weld metal in a certain shape and expose the welded portion to the outside. Inside the water-cooled copper alloy, cooling pipes for passing cooling water are built-in, and due to the excellent thermal conductivity of copper, cooling of the portion that contacts the weld metal without burning the copper alloy To obtain a good bead appearance and prevent welding of the water-cooled copper metal and the weld metal. If the copper dope is not cooled with water, the copper dowel and the welded part will be welded together, and the copper dowel cannot be removed.
【0003】冷却水の供給方式は、おおむね次の二つに
分けられる。一つはタンクに溜めた冷却用の水を送風機
で冷却し、その冷却水をポンプで圧送して銅当金の冷却
を行った後、再び冷却水をタンクに戻す循環方式と、も
う一つは水道水または工業用水の蛇口から冷却通水配管
を直接銅当金に取り付け、銅当金を冷却した後冷却水を
そのまま排水口に流す方式とがある。The cooling water supply system is roughly divided into the following two types. One is a cooling method in which the cooling water stored in the tank is cooled by a blower, the cooling water is pumped by a pump to cool the copper metal, and then the cooling water is returned to the tank again. There is a method in which a cooling water pipe is directly attached to a copper plate from a tap water or industrial water faucet, and after cooling the copper plate, the cooling water is directly supplied to the drain port.
【0004】溶接方法や溶接時間、冷却面積および銅当
金の個数によっても冷却後の水温は変わるが、通常、溶
接後の冷却水温度は溶接前の水温に比べて高い。特に大
入熱溶接では、50℃以上の水温となり循環方式では冷
却効果が得られないこともある。そのため、冷却に適し
た水温に戻るまで冷却させることが必要である。循環方
式はほとんど空冷で冷却を行っているため、冷却するま
でにかなり時間がかかる。Although the water temperature after cooling varies depending on the welding method, welding time, cooling area and the number of copper alloys, the cooling water temperature after welding is usually higher than the water temperature before welding. Particularly in high heat input welding, the water temperature may be 50 ° C. or higher and the cooling effect may not be obtained by the circulation method. Therefore, it is necessary to cool the water until it returns to a water temperature suitable for cooling. Since the circulation method is almost air-cooled, it takes a long time to cool.
【0005】また、排水方式は季節によって水温が異な
り、特に夏場の水温は高いため冷却に時間がかかる。場
合によっては冷却水に適さないこともある。さらに、溶
接中に冷却水が沸騰し、溶接を中断しなければならない
こともある。このように、溶接中および溶接後の冷却水
温度が冷却に適した水温に戻るまでに非常に時間がかか
るため、溶接箇所が長い場合や溶接を連続して行いたい
とき等には大きな障害となっている。In the drainage system, the water temperature varies depending on the season, and especially in the summer, the water temperature is high, so that it takes time to cool. In some cases, it may not be suitable for cooling water. In addition, the cooling water may boil during welding and the welding may have to be interrupted. In this way, it takes a very long time for the cooling water temperature during and after welding to return to the water temperature suitable for cooling.Therefore, this is a major obstacle when the welding location is long or when continuous welding is desired. Has become.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記のような
従来の問題を解決して、溶接中から冷却に適した水温を
維持させることで、溶接後の冷却水温度を溶接開始時な
いしはそれ以下の水温に保ち、溶接中の沸騰を防止して
溶接待ち時間の解消を図り、連続での溶接を可能とする
冷却水を供給することにある。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and maintains a water temperature suitable for cooling during welding, so that the cooling water temperature after welding can be set at the start of welding or at the start of welding. The purpose is to maintain the following water temperature, prevent boiling during welding, eliminate welding waiting time, and supply cooling water that enables continuous welding.
【0007】[0007]
【課題を解決するための手段】本発明は前記課題を解決
するものであって、圧縮気体を膨張させて低温圧縮気体
に変換し、前記低温圧縮気体により冷却水を冷却し、溶
接用の冷却水を冷却することを特徴とする圧縮気体冷媒
による冷却水冷却方法である。また、ここにおいて圧縮
気体を円筒の円周に沿って吹き込んで超高速渦を発生さ
せ、円筒中心部に低温圧縮気体を生成させること、低温
圧縮気体により冷却水を冷却するにあたり、低温圧縮気
体と冷却水とを混合し、その後に冷却水から気体を分離
することも特徴とする。Means for Solving the Problems The present invention is to solve the above problems, in which a compressed gas is expanded and converted into a low temperature compressed gas, and cooling water is cooled by the low temperature compressed gas to cool for welding. A cooling water cooling method using a compressed gas refrigerant, characterized by cooling water. In addition, here, a compressed gas is blown along the circumference of the cylinder to generate an ultra-high-speed vortex, a low-temperature compressed gas is generated in the center of the cylinder, and when cooling the cooling water with the low-temperature compressed gas, It is also characterized by mixing with cooling water and then separating the gas from the cooling water.
【0008】[0008]
【作用】本発明の圧縮気体冷媒による冷却水冷却方法を
図1に基づいて詳細に説明する。図1は本発明の圧縮気
体冷媒による冷却水冷却方法を実施するための装置の例
を示す説明図である。まず、装置の詳細な構造は、冷却
水冷却装置本体1の略中央部に冷却器2が設置してあ
る。圧縮気体Eの供給接続口6から冷却器2を結ぶ配管
系統に手動開閉弁7、フィルター8、圧力計付減圧弁
9、圧縮気体用流量計10を取り付けている。また、低
温圧縮気体吐出口5から自動開閉弁11、気体用逆止弁
16と液体用逆止弁17を設置した供給配管15を通
し、液体用逆止弁26とバッファータンク入口18との
間に接続している。The cooling water cooling method using the compressed gas refrigerant of the present invention will be described in detail with reference to FIG. FIG. 1 is an explanatory view showing an example of an apparatus for carrying out a cooling water cooling method using a compressed gas refrigerant of the present invention. First, regarding the detailed structure of the apparatus, the cooler 2 is installed in the substantially central portion of the cooling water cooling apparatus main body 1. A manual opening / closing valve 7, a filter 8, a pressure reducing valve 9 with a pressure gauge, and a flow meter 10 for compressed gas are attached to a piping system that connects the supply connection port 6 of the compressed gas E to the cooler 2. Further, the low-temperature compressed gas discharge port 5 is passed through the supply pipe 15 in which the automatic opening / closing valve 11, the gas check valve 16 and the liquid check valve 17 are installed, and between the liquid check valve 26 and the buffer tank inlet 18. Connected to.
【0009】さらに、冷却用水Cの供給口21と排出口
22間には、手動開閉弁23、圧力計25、流量計2
4、自動開閉弁41、液体用逆止弁26、バッファータ
ンク19と液体用逆止弁29、アスピレーター35を設
置している。バッファータンク19の上部には、リリー
フ弁27A,27Bと圧力計28A,28Bを取り付
け、リリーフ弁27A,27Bから減圧排気管30を通
して排気処理タンク31を設け、排気口14に接続して
いる。Further, a manual opening / closing valve 23, a pressure gauge 25, and a flowmeter 2 are provided between the supply port 21 and the discharge port 22 of the cooling water C.
4, an automatic opening / closing valve 41, a liquid check valve 26, a buffer tank 19, a liquid check valve 29, and an aspirator 35 are installed. Relief valves 27A and 27B and pressure gauges 28A and 28B are attached to the upper portion of the buffer tank 19, and an exhaust treatment tank 31 is provided from the relief valves 27A and 27B through a decompression exhaust pipe 30 and connected to the exhaust port 14.
【0010】一方、冷却器2の排気口4は気体用逆止弁
13を挟んで排気管12を通り排気口14に接続した構
造を主要部とする。また、冷却水冷却装置本体1は車輪
42によって移動可能となっている。On the other hand, the exhaust port 4 of the cooler 2 mainly has a structure in which a check valve for gas 13 is sandwiched between the exhaust port 4 and the exhaust port 12 and the exhaust port 14 is connected. Further, the cooling water cooling device body 1 can be moved by wheels 42.
【0011】次に装置の各部の働きについて説明する。
圧縮気体Eの供給接続口6から取り込んだ圧縮気体は、
フィルター8を通して除湿および不純物の除去が行われ
る。そして、圧力計付減圧弁9で圧力調整、圧縮気体用
流量計10で流量の調整を行い、適正状態に調整した圧
縮気体を冷却器2の圧縮気体供給口3に入れる。圧縮気
体供給口3に入った圧縮気体は内部で冷気体に変わり吐
出される。冷却器2の冷却能力を最大限に引き出すため
に必要な圧縮気体の適正圧力範囲は4から10kg/c
m2 で、流量は50から300リットル/min程度で
ある。Next, the function of each part of the apparatus will be described.
The compressed gas taken from the supply connection port 6 of the compressed gas E is
Dehumidification and removal of impurities are performed through the filter 8. Then, the pressure reducing valve 9 with a pressure gauge adjusts the pressure, and the compressed gas flow meter 10 adjusts the flow rate, and the compressed gas adjusted to an appropriate state is introduced into the compressed gas supply port 3 of the cooler 2. The compressed gas that has entered the compressed gas supply port 3 is changed into a cold gas inside and is discharged. The optimum pressure range of the compressed gas required to maximize the cooling capacity of the cooler 2 is 4 to 10 kg / c.
At m 2 , the flow rate is about 50 to 300 liters / min.
【0012】ここで、圧縮気体の供給温度が15℃で吐
出流量が300リットル/minの時、供給する圧縮気
体圧と冷気体Aの温度変化の一例を図3に示す。圧縮気
体圧が4kg/cm2 と10kg/cm2 の時の低温圧
縮気体吐出口5から出る冷気体Aの吐出温度は、4kg
/cm2 の時−15℃、10kg/cm2 の時−30℃
である。FIG. 3 shows an example of changes in the compressed gas pressure and the temperature of the cold gas A when the compressed gas supply temperature is 15 ° C. and the discharge flow rate is 300 liters / min. The discharge temperature of the cold gas A discharged from the low temperature compressed gas discharge port 5 when the compressed gas pressure is 4 kg / cm 2 and 10 kg / cm 2 is 4 kg.
/ Cm 2 −15 ° C., 10 kg / cm 2 −30 ° C.
Is.
【0013】溶接中の冷却用水温度は、溶接方法や溶接
時間、冷却面積および銅当金の個数によっても変わる
が、冷却後少なくとも50℃程度まで昇温する。本発明
は溶接中の冷却用水Cの水温を10〜25℃程度、条件
によってはそれ以下に保ち、冷却効果を高めて良好な溶
接金属を形成させる。高温になった冷却用水Cを10〜
25℃程度に冷却させるために、圧縮気体を冷気体Aに
変化させている。その冷却器2の作動原理について説明
する。図2に冷却器2の内部略図を示す。The temperature of the cooling water during welding varies depending on the welding method, the welding time, the cooling area and the number of copper deposits, but it rises to at least about 50 ° C. after cooling. According to the present invention, the water temperature of the cooling water C during welding is maintained at about 10 to 25 ° C or lower depending on the conditions to enhance the cooling effect and form a good weld metal. Cooling water C that has become high temperature 10
The compressed gas is changed to the cold gas A in order to cool it to about 25 ° C. The operating principle of the cooler 2 will be described. FIG. 2 shows an internal schematic diagram of the cooler 2.
【0014】低温圧縮気体吐出口5のように一端がオリ
フィス、もう一端がドーナツ状の隙間の排気口4を有す
る円筒43の円周に沿って圧縮気体供給口3から圧縮気
体を吹き込むと円筒43に毎分20〜30万回転の超高
速渦ができる。そのため、渦の中心部44と外周部45
との間に大きな圧力差を生じ、中心部に向かって気体の
移動が起こり膨張によって温度が下がる。中心部に発生
した冷気体Aは低温圧縮気体吐出口5から流出し、外周
の熱気体Bはドーナツ状の隙間を有した排気口4から放
出される。When the compressed gas is blown from the compressed gas supply port 3 along the circumference of a cylinder 43 having an orifice at one end and a donut-shaped exhaust port 4 at the other end like the low temperature compressed gas discharge port 5, the cylinder 43 is blown. An ultra-high speed vortex with 200,000 to 300,000 revolutions per minute is created. Therefore, the central portion 44 and the outer peripheral portion 45 of the vortex
A large pressure difference is generated between the two, and the gas moves toward the center, causing the temperature to drop due to expansion. The cold gas A generated in the central portion flows out from the low temperature compressed gas discharge port 5, and the hot gas B on the outer periphery is discharged from the exhaust port 4 having a donut-shaped gap.
【0015】冷却器2の排気口4から放出された熱気体
Bは排気配管12を通り、排気の逆流防止用として設置
した気体用逆止弁13を通過して排気口14から外部に
放出される。一方、低温圧縮気体吐出口5から吐出され
た冷気体Aは、供給配管15から自動開閉弁11、気体
用逆止弁16と液体用逆止弁17を通りバッファータン
ク内へと流入する。The hot gas B discharged from the exhaust port 4 of the cooler 2 passes through the exhaust pipe 12, passes through the gas check valve 13 provided for preventing exhaust backflow, and is discharged to the outside from the exhaust port 14. It On the other hand, the cold gas A discharged from the low temperature compressed gas discharge port 5 flows from the supply pipe 15 into the buffer tank through the automatic opening / closing valve 11, the gas check valve 16 and the liquid check valve 17.
【0016】ほぼ同時に給液口21に接続した冷却用水
Cは、手動開閉弁23と流量計24で水量の調節が行わ
れ、バッファータンクに向かって流れてくる。圧力計2
5は冷却用水Cの供給圧力確認用として用いており、自
動開閉弁41は本発明装置の冷却開始時に連動して弁を
開き通水する。装置停止時の弁は閉じている。バッファ
ータンク入口18では、バッファータンクに向かって流
れてくる圧縮気体を冷却した冷気体Aと冷却用水Cとが
衝突し、冷気体Aと冷却用水C双方の吐出圧がプラスさ
れて加圧状態になる。Almost at the same time, the cooling water C connected to the liquid supply port 21 flows toward the buffer tank after the amount of water is adjusted by the manual opening / closing valve 23 and the flow meter 24. Pressure gauge 2
Reference numeral 5 is used for confirming the supply pressure of the cooling water C, and the automatic opening / closing valve 41 opens the valve to allow water to flow in conjunction with the start of cooling of the device of the present invention. The valve is closed when the system is stopped. At the buffer tank inlet 18, the cold gas A that has cooled the compressed gas flowing toward the buffer tank and the cooling water C collide with each other, and the discharge pressures of both the cold gas A and the cooling water C are added to the pressurized state. Become.
【0017】例えば、冷気体Aの吐出圧が5kg/cm
2 で、冷却用水Cの吐出圧が3kg/cm2 の場合、バ
ッファータンク入口18の内部圧力は(3+5)kg/
cm2 で8kg/cm2 程度となる。冷却用水Cの供給
口21から排出口22間の配管内部圧力が同圧(3kg
/cm2 と3kg/cm2 )で同形状の配管径ならば、
冷却用水Cはなめらかな層流状態で流れる。しかし、供
給と排出側の配管径が同等であっても、一定の供給圧力
で供給している冷却用水Cに加圧を施すと脈流状態とな
る。配管形状、衝突角度によっても脈流度合いに差異は
あるが、液体に対して気体を加圧した場合、気体と液体
は攪拌状態となり泡混じりの冷却用水が不定期的な断続
状態(気体空間と液体空間とが混在し、配管内に気体の
部分が無秩序にできた状態)で排出される。したがっ
て、排出口22以降の冷却用水Cは液体中に気体空間が
できて脈流が起こり、断続状態で通水するため、液体で
配管内を満たしたものに比べて冷却効果は格段に低下す
る。For example, the discharge pressure of the cold gas A is 5 kg / cm.
2 and the discharge pressure of the cooling water C is 3 kg / cm 2 , the internal pressure of the buffer tank inlet 18 is (3 + 5) kg /
the 8kg / cm 2 about in cm 2. The pressure inside the pipe between the supply port 21 and the discharge port 22 of the cooling water C is the same (3 kg
/ Cm 2 and 3 kg / cm 2 ) with the same pipe diameter,
The cooling water C flows in a smooth laminar flow state. However, even if the supply and discharge side pipe diameters are the same, if the cooling water C supplied at a constant supply pressure is pressurized, it will be in a pulsating state. The degree of pulsating flow varies depending on the pipe shape and collision angle, but when gas is pressurized against liquid, the gas and liquid become agitated and the cooling water containing bubbles is intermittently intermittently (gas space and The liquid space is mixed and the gas part is discharged randomly in the pipe). Therefore, the cooling water C after the discharge port 22 forms a gas space in the liquid and a pulsating flow occurs, and the water flows in an intermittent state, so that the cooling effect is significantly reduced as compared with the case of filling the pipe with the liquid. .
【0018】冷却水Cに冷気体Aを流入させて冷却させ
る時、バッファータンク入口18に向かって流れてくる
冷気体Aの吐出圧は、バッファータンク19側と液体用
逆止弁26側の双方にかかる。もし液体用逆止弁26を
設置していなければ、供給口21側から流れてきた冷却
用水Cに背圧をかける状態となり、供給圧力を低下させ
て冷却流量に大きな影響を与える。これを防止するため
に液体用逆止弁26を設置した。また、液体用逆止弁1
7と気体用逆止弁16を設置した理由は、冷気体Aの吐
出圧力が低下した時に冷却用水Cが冷却器2の方まで流
入する恐れがある。その流入と冷気体Aの逆流防止を兼
ねて液体用逆止弁17と気体用逆止弁16を設置した。When the cold gas A is introduced into the cooling water C for cooling, the discharge pressure of the cold gas A flowing toward the buffer tank inlet 18 is the same on both the buffer tank 19 side and the liquid check valve 26 side. Take If the check valve 26 for liquid is not installed, the back pressure is applied to the cooling water C flowing from the supply port 21 side, and the supply pressure is reduced, and the cooling flow rate is greatly affected. In order to prevent this, a check valve 26 for liquid was installed. Also, a check valve for liquid 1
7 and the check valve 16 for gas are installed, the cooling water C may flow into the cooler 2 when the discharge pressure of the cold gas A decreases. A check valve for liquid 17 and a check valve for gas 16 are provided for the purpose of both the inflow and the backflow of the cold gas A.
【0019】上記に示した状態をなくすためにバッファ
ータンク19を設置した。このバッファータンク19の
主な役割は、攪拌状態になった冷却用水Cを層流状態に
戻し、冷却効果を最大限に引き出すことにある。層流状
態に戻すためには、加圧している冷気体分の吐出圧力を
減圧し、熱交換作用だけ活用して冷却用水の供給圧力程
度までに供給圧力を下げることが必要となる。そのた
め、バッファータンク19の上部にリリーフ弁27A,
27Bを取り付け、内部圧力が冷却用水Cの供給圧力よ
りも高くなったら余分な圧力を気体用リリーフ弁27
A,27Bから逃がし、冷却用水Cの供給圧力と同圧状
態に保って層流状態での通水を可能にし、冷却効果の向
上を図っている。A buffer tank 19 was installed in order to eliminate the above-mentioned state. The main role of the buffer tank 19 is to return the stirring water C for cooling to the laminar flow state to maximize the cooling effect. In order to return to the laminar flow state, it is necessary to reduce the discharge pressure of the cold gas that is being pressurized and reduce the supply pressure to about the supply pressure of the cooling water by utilizing only the heat exchange action. Therefore, the relief valve 27A,
27B is attached, and when the internal pressure becomes higher than the supply pressure of the cooling water C, the excess pressure is applied to the relief valve 27 for gas.
It escapes from A and 27B and is kept at the same pressure as the supply pressure of the cooling water C to enable water to flow in a laminar flow state, thereby improving the cooling effect.
【0020】バッファータンク19の容量は配管36よ
り大きくする必要がある。例えば、配管36内に流れる
冷却用水Cを満ちた状態にして通水させ、途中で配管3
6よりも太い配管に切り替えると流水部分と空間とが区
分され、配管径が切り替わった部位から流速がいくらか
遅くなる。この現象を利用し、冷却用水Cの流速をバッ
ファータンク内で一時的に遅らせて脈流を層流に近い状
態に変え、気体用リリーフ弁27A,27Bで冷却用水
Cの供給圧程度まで減圧を行って減圧排気管30と排気
処理タンク31を通して排気口14から余分な圧力を放
出する。冷却を施した冷却用水Cは層流状態に戻り、排
出口22から排出される。The capacity of the buffer tank 19 needs to be larger than that of the pipe 36. For example, the cooling water C flowing in the pipe 36 is filled and allowed to flow through the pipe 3
When switching to a pipe thicker than 6, the flowing water portion and the space are divided, and the flow velocity becomes somewhat slower from the portion where the pipe diameter is switched. Utilizing this phenomenon, the flow velocity of the cooling water C is temporarily delayed in the buffer tank to change the pulsating flow to a state close to the laminar flow, and the gas relief valves 27A and 27B reduce the pressure to about the supply pressure of the cooling water C. Then, excess pressure is released from the exhaust port 14 through the reduced pressure exhaust pipe 30 and the exhaust treatment tank 31. The cooled cooling water C returns to the laminar flow state and is discharged from the discharge port 22.
【0021】また、気体用リリーフ弁27A,27Bか
ら逃がした余分な圧力気体中に液体が少し混じる場合が
ある。気体に混じった液体は排気処理タンク31に導入
し、液体と気体とをある程度まで分離する。排気処理タ
ンク31内には、液体の通過を遮断して気体だけを通過
させる合成樹脂と繊維を組み合わせた液体分離フィルタ
ー32を垂れ幕状に設置し、液体と気体の分離を行って
いる。液体Dは排気処理タンク31の底に溜まるような
仕掛けになっており、冷却水冷却装置の作動に連動して
液体Dが溜まる前から自動開閉弁33を開く。液体Dは
冷却用水Cの供給口21から排出口22間の配管径より
細径の戻し管34を通り、排出口22側の配管36に流
れる。この流し込みを円滑にするため、供給口21から
排出口22に流れる冷却水用水Cの流速から生じる吸引
力で戻し管34から流れてくる液体Dを冷却用水Cに混
ぜ合わせ、排出口22以降に排出させるためにアスピレ
ーター35を設置する。アスピレーター35の前に設置
した液体用逆止弁37は、バッファータンク出口20側
から流れてきた冷却用水Cが流入して排気処理タンク3
1側に逆流しないためと、液体Dが速やかに配管36内
に流し戻せるために設ける。In addition, a little liquid may be mixed in the excess pressure gas released from the gas relief valves 27A and 27B. The liquid mixed with the gas is introduced into the exhaust treatment tank 31, and the liquid and the gas are separated to some extent. In the exhaust treatment tank 31, a liquid separation filter 32, which is a combination of synthetic resin and fibers that blocks the passage of the liquid and allows only the gas to pass, is installed in the form of a curtain to separate the liquid and the gas. The liquid D is designed to collect on the bottom of the exhaust treatment tank 31, and the automatic opening / closing valve 33 is opened before the liquid D collects in association with the operation of the cooling water cooling device. The liquid D passes through the return pipe 34 having a diameter smaller than the pipe diameter between the supply port 21 and the discharge port 22 of the cooling water C, and flows into the pipe 36 on the discharge port 22 side. In order to make this pouring smooth, the liquid D flowing from the return pipe 34 is mixed with the cooling water C by the suction force generated from the flow velocity of the cooling water C flowing from the supply port 21 to the discharge port 22, and is discharged to the outlet 22 and thereafter. An aspirator 35 is installed for discharging. The liquid check valve 37 installed in front of the aspirator 35 receives the cooling water C flowing from the buffer tank outlet 20 side and flows into the exhaust treatment tank 3.
The liquid D is provided so as not to flow back to the first side and to allow the liquid D to quickly flow back into the pipe 36.
【0022】また、排気処理タンク31に溜まった液体
Dの流出が遅く液体Dが溜まってきた場合には、排気処
理タンク31に取り付けた液面検知用センサー38で液
面の上昇を検知させ、排出用ポンプ39を作動させて強
制的に配管36内に流し込む。排出用ポンプ39の下に
設置した液体用逆止弁40は、排出用ポンプ39内への
逆流を防止するために設ける。When the liquid D accumulated in the exhaust treatment tank 31 flows out slowly and the liquid D accumulates, the liquid level detection sensor 38 attached to the exhaust treatment tank 31 detects the rise of the liquid level. The discharge pump 39 is operated to forcefully flow into the pipe 36. A check valve for liquid 40 installed below the discharge pump 39 is provided to prevent backflow into the discharge pump 39.
【0023】本発明の冷却方法は、冷却用水Cを連続的
に供給して冷却することもできるし、冷却用水Cを断続
的に供給して冷却することもできる。断続的に冷却用水
Cを供給する場合には、ある程度の冷却用水Cをバッフ
ァータンク19に流入させ、自動開閉弁41を閉めて冷
気体Aの吐出圧で冷却を施しながら、バッファータンク
出口20から冷却用水Aを排出させる。このとき滑らか
に冷却用水Aが排出できるように、リリーフ弁27A,
27Bで圧力調整を行う。そして、この制御を繰り返し
行い冷却用水Cを10から25℃程度に冷却する。In the cooling method of the present invention, the cooling water C can be continuously supplied for cooling, or the cooling water C can be intermittently supplied for cooling. When supplying the cooling water C intermittently, a certain amount of the cooling water C is caused to flow into the buffer tank 19, the automatic opening / closing valve 41 is closed, and cooling is performed by the discharge pressure of the cold gas A, while the cooling water C is supplied from the buffer tank outlet 20. The cooling water A is discharged. At this time, the relief valve 27A,
Adjust pressure at 27B. Then, this control is repeated to cool the cooling water C to about 10 to 25 ° C.
【0024】また、バッファータンク出口20側に温度
センサーを取り付け、温度管理を施して圧縮気体の供給
流量や圧縮気体圧力を自動制御させ、冷却用水Cを設定
温度に制御することもできる。さらに、水道水や工業用
水を直接本発明の冷却水冷却装置に接続し、冷却処理後
の水を排水する冷却方式や冷却水循環装置の配管系統の
一部に取り付けて冷却を施す方式のどとらでも使用でき
る。また、上記した方式以外の冷却方式でも使用条件が
適合すれば使用可能である。It is also possible to mount a temperature sensor on the buffer tank outlet 20 side and perform temperature control to automatically control the supply flow rate of compressed gas and the compressed gas pressure to control the cooling water C to a set temperature. Furthermore, tap water or industrial water is directly connected to the cooling water cooling device of the present invention, and a cooling system for draining the water after the cooling treatment or a system for cooling by installing it in a part of the piping system of the cooling water circulation device Can be used. Also, a cooling method other than the above-mentioned method can be used if the usage conditions are suitable.
【0025】以上、図面に基づいて本発明例を詳細に説
明したが、これは代表例であって本発明を限定する性質
のものでなく、説明した技術思想での変更の範囲は本発
明の技術的範囲に含まれる。The example of the present invention has been described in detail with reference to the drawings. However, this is a representative example and does not limit the scope of the present invention. It is included in the technical scope.
【0026】[0026]
【実施例】図4に示す板厚50mm、長さ500mmの
被溶接材48を用いて、大入熱溶接であるエレクトロス
ラグ溶接を行った。図中46は水冷銅当金であって、5
0,51はそれぞれ冷却水の供給口、排出口である。な
お47は鋼当金、49は開先である。溶接条件は溶接電
圧52V、溶接電流380Aでフラックス添加量105
gである。EXAMPLE Using the material to be welded 48 having a plate thickness of 50 mm and a length of 500 mm shown in FIG. 4, electroslag welding, which is high heat input welding, was performed. In the figure, 46 is a water-cooled copper alloy, and 5
Reference numerals 0 and 51 are a cooling water supply port and a cooling water discharge port, respectively. Note that 47 is a steel dowel and 49 is a groove. Welding conditions are welding voltage 52V, welding current 380A, flux addition amount 105
g.
【0027】まず、溶接前に本発明装置の冷却効果およ
び冷却後の送流状態を確認するため、予備調査を実施し
た。図1に示す圧縮気体供給口3から5kg/cm2 に
圧縮した空気を100リットル/minに調整して供給
し、溶接開始前に冷却水を止めて冷空気だけを吐出させ
たとき排出口22で温度を測定した。冷空気の温度は−
8℃であり、冷却前の圧縮空気温度は16℃であった。First, in order to confirm the cooling effect of the apparatus of the present invention and the flow state after cooling before welding, a preliminary investigation was carried out. Air compressed to 5 kg / cm 2 from the compressed gas supply port 3 shown in FIG. 1 is adjusted to 100 liters / min and supplied, and the cooling water is stopped before welding is started to discharge only cold air. The temperature was measured at. The temperature of cold air is −
The temperature was 8 ° C., and the compressed air temperature before cooling was 16 ° C.
【0028】次に、冷却水冷却装置1をすべて作動させ
た状態とし、供給口21から5リットル/minの流量
に調整した冷却用水Cと冷空気をバッファータンク入口
18で衝突させ、冷却処置を施した溶接前の水温を測定
した。冷却処理後の水温は3℃で、冷却処理前の温度が
20℃だったので17℃冷却することができた。また、
排出口22から流出した冷却水の送流状態は、供給側と
ほぼ同等で滑らかな層流状態であった。そして、冷却水
冷却装置1の排出口22側に水冷銅当金を取り付け、銅
当金の表面温度を測定したところ冷却後の水温とほぼ同
等であった。Next, with the cooling water cooling device 1 all in operation, cooling water C adjusted to a flow rate of 5 liters / min from the supply port 21 and cold air collide with each other at the buffer tank inlet 18 to perform cooling treatment. The water temperature before welding was measured. The water temperature after the cooling treatment was 3 ° C., and the temperature before the cooling treatment was 20 ° C., so that cooling could be performed at 17 ° C. Also,
The flow state of the cooling water flowing out from the discharge port 22 was almost the same as the supply side, and was a smooth laminar flow state. Then, when a water-cooled copper plate was attached to the outlet 22 side of the cooling water cooling device 1 and the surface temperature of the copper plate was measured, it was almost the same as the water temperature after cooling.
【0029】そこで、実際に本発明の冷却水冷却装置1
を用いてエレクトロスラグ溶接を実施することにした。
冷却水の供給は工業用水を水冷銅当金内に通水させ、冷
却後排水する冷却方式を用い、冷却水冷却装置1に供給
する冷却用水および圧縮空気は先に示した予備調査の条
件を用いて行った。Therefore, the cooling water cooling device 1 of the present invention is actually used.
We decided to carry out electroslag welding using.
Cooling water is supplied by using a cooling method in which industrial water is passed through a water-cooled copper alloy, and is cooled and then drained. The cooling water and compressed air supplied to the cooling water cooling device 1 are based on the conditions of the preliminary survey shown above. It was done using.
【0030】その結果、溶接中の冷却水排出温度を18
〜22℃の範囲に制御することができ、大入熱の溶接に
おいても良好な冷却効果が得られ安定した溶接が行え
た。また、溶接終端部の150mm前で冷却水冷却装置
1を止め、工業用水の冷却効果だけで冷却を行った時の
冷却水排出温度を測定した。冷却水温度は次第に昇温し
溶接終了時には41℃程度まで昇温していた。As a result, the cooling water discharge temperature during welding was set to 18
It was possible to control the temperature within a range of up to 22 ° C, and a good cooling effect was obtained even in the welding with a large heat input, and stable welding could be performed. Further, the cooling water cooling device 1 was stopped 150 mm before the welding end portion, and the cooling water discharge temperature was measured when cooling was performed only by the cooling effect of industrial water. The temperature of the cooling water gradually increased and was raised to about 41 ° C. at the end of welding.
【0031】[0031]
【発明の効果】本発明の冷却水冷却方法を用いること
で、大入熱溶接を含めた各種の溶接に適用する水冷銅当
金の冷却効果を一段と高めることができる。これにより
溶接中の冷却水沸騰による溶接の中断や冷却能力不足に
よる連続溶接の不可等を解消し、安定した冷却水温度を
維持して良好な溶接金属を形成することができるため本
発明の工業的価値は非常に高い。By using the cooling water cooling method of the present invention, it is possible to further enhance the cooling effect of the water-cooled copper alloy applied to various types of welding including high heat input welding. As a result, it is possible to eliminate the inability of continuous welding due to the interruption of welding due to boiling of cooling water during welding and the insufficient cooling capacity, and to maintain a stable cooling water temperature to form a good weld metal. Value is very high.
【図1】本発明を実施するための装置の例を示す説明図FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the present invention.
【図2】冷却器の内部略図FIG. 2 Schematic diagram of the inside of the cooler
【図3】供給する圧縮空気と吐出冷気の温度変化の例を
示すグラフFIG. 3 is a graph showing an example of temperature changes of supplied compressed air and discharged cold air.
【図4】水冷銅当金を用いた試験板の斜視図FIG. 4 is a perspective view of a test plate using a water-cooled copper plate.
1 冷却水冷却装置本体 2 冷却器 3 圧縮気体供給口 4 排気口 5 低温圧縮気体吐出口 6 圧縮気体の供給接続口 7,23 手動開閉弁 8 フィルター 9 圧力計付減圧弁 10 圧縮気体用流量計 11,33,41 自動開閉弁 12 排気配管 13,16 気体用逆止弁 14 排気口 15 供給配管 17,26,29,37,40 液体用逆止弁 18 バッファータンク入口 19 バッファータンク 20 バッファータンク出口 21 供給口 22 排出口 24 流量計 25,28A,28B 圧力計 27A,27B リリーフ弁 30 減圧排気管 31 排気処理タンク 32 液体分離フィルター 34 戻し管 35 アスピレーター 36 配管 38 液面検知用センサー 39 排出用ポンプ 42 車輪 43 円筒 44 渦の中心部 45 外周部 A 冷気体 B 熱気体 C 冷却用水 D 液体 E 圧縮気体 1 Cooling Water Cooling Device Main Body 2 Cooler 3 Compressed Gas Supply Port 4 Exhaust Port 5 Low Temperature Compressed Gas Discharge Port 6 Compressed Gas Supply Connection Port 7,23 Manual Open / Close Valve 8 Filter 9 Pressure Reduction Valve with Pressure Gauge 10 Flowmeter for Compressed Gas 11, 33, 41 Automatic on-off valve 12 Exhaust pipe 13, 16 Gas check valve 14 Exhaust port 15 Supply pipe 17, 26, 29, 37, 40 Liquid check valve 18 Buffer tank inlet 19 Buffer tank 20 Buffer tank outlet 21 Supply Port 22 Discharge Port 24 Flow Meter 25, 28A, 28B Pressure Gauge 27A, 27B Relief Valve 30 Reduced Pressure Exhaust Pipe 31 Exhaust Treatment Tank 32 Liquid Separation Filter 34 Return Pipe 35 Aspirator 36 Piping 38 Liquid Level Detection Sensor 39 Discharge Pump 42 Wheels 43 Cylinder 44 Center of Vortex 45 Outer Part A Cold Gas B Hot Gas C Cooling water D Liquid E Compressed gas
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 37/06 B23K 37/06 J F25D 9/00 F25D 9/00 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B23K 37/06 B23K 37/06 J F25D 9/00 F25D 9/00 B
Claims (3)
換し、前記低温圧縮気体により冷却水を冷却し、溶接用
の冷却水を冷却することを特徴とする圧縮気体冷媒によ
る冷却水冷却方法。1. A cooling water cooling method using a compressed gas refrigerant, which comprises expanding a compressed gas to convert it into a low temperature compressed gas, cooling the cooling water with the low temperature compressed gas, and cooling the cooling water for welding. .
で超高速渦を発生させ、円筒中心部に低温圧縮気体を生
成させることを特徴とする請求項1記載の圧縮気体冷媒
による冷却水冷却方法。2. The cooling water by the compressed gas refrigerant according to claim 1, wherein the compressed gas is blown along the circumference of the cylinder to generate an ultra-high speed vortex, and the low temperature compressed gas is generated in the center of the cylinder. Cooling method.
あたり、低温圧縮気体と冷却水とを混合し、その後に冷
却水から気体を分離することを特徴とする請求項1また
は2記載の圧縮気体冷媒による冷却水冷却方法。3. The compressed gas according to claim 1, wherein when cooling the cooling water with the low temperature compressed gas, the low temperature compressed gas and the cooling water are mixed and then the gas is separated from the cooling water. Cooling method for cooling water using a refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12295395A JPH08296910A (en) | 1995-04-25 | 1995-04-25 | Cooling method of cooling water by compressed gas refrigerant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12295395A JPH08296910A (en) | 1995-04-25 | 1995-04-25 | Cooling method of cooling water by compressed gas refrigerant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08296910A true JPH08296910A (en) | 1996-11-12 |
Family
ID=14848717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12295395A Pending JPH08296910A (en) | 1995-04-25 | 1995-04-25 | Cooling method of cooling water by compressed gas refrigerant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08296910A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004272922A (en) * | 2003-03-06 | 2004-09-30 | Northrop Grumman Corp | Direct instruction for executing emulation computer technique |
US7206009B2 (en) | 2004-02-18 | 2007-04-17 | Hideo Taniguchi | Heating head for erasing a printed image on re-writable media |
CN102873479A (en) * | 2012-09-26 | 2013-01-16 | 奇瑞汽车股份有限公司 | Water and gas supply unit of welding robot |
CN102886630A (en) * | 2012-07-18 | 2013-01-23 | 奇瑞汽车股份有限公司 | Robot spot welding system and control method thereof |
KR101423201B1 (en) * | 2014-02-06 | 2014-07-24 | 한국훼스토 주식회사 | Coolant circulator of spot welding gun |
TWI643654B (en) * | 2017-10-30 | 2018-12-11 | 王鵬竣 | High pressure air dryer |
-
1995
- 1995-04-25 JP JP12295395A patent/JPH08296910A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004272922A (en) * | 2003-03-06 | 2004-09-30 | Northrop Grumman Corp | Direct instruction for executing emulation computer technique |
JP4684571B2 (en) * | 2003-03-06 | 2011-05-18 | ノースロップ グラマン コーポレイション | Direct instructions to implement emulation computer technology |
US7206009B2 (en) | 2004-02-18 | 2007-04-17 | Hideo Taniguchi | Heating head for erasing a printed image on re-writable media |
CN102886630A (en) * | 2012-07-18 | 2013-01-23 | 奇瑞汽车股份有限公司 | Robot spot welding system and control method thereof |
CN102873479A (en) * | 2012-09-26 | 2013-01-16 | 奇瑞汽车股份有限公司 | Water and gas supply unit of welding robot |
KR101423201B1 (en) * | 2014-02-06 | 2014-07-24 | 한국훼스토 주식회사 | Coolant circulator of spot welding gun |
TWI643654B (en) * | 2017-10-30 | 2018-12-11 | 王鵬竣 | High pressure air dryer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5419287A (en) | Engine cooling system and heater circuit therefor | |
JPH08296910A (en) | Cooling method of cooling water by compressed gas refrigerant | |
US4457768A (en) | Control of a refrigeration process | |
US20060042771A1 (en) | Die thermal management through coolant flow control | |
JP4409047B2 (en) | Equipment for reducing dissolved oxygen in water | |
CN208817751U (en) | A kind of High Accuracy Constant Temperature constant pressure cooling-water machine based on pincushion plate-type evaporator | |
KR101631214B1 (en) | System and method for driving compressor by detecting of water temperature | |
CN211276478U (en) | Efficient and energy-saving three-level cooling device for cooling purified water backwater of mold | |
CN211420869U (en) | Concrete heat sink is used in road and bridge construction | |
CN208083430U (en) | A kind of casting device that heat temperature resistant safe is high | |
CN209385313U (en) | Anhydrous cooling air cylinder structure | |
CN215259236U (en) | Cooling device for industrial gas storage tank | |
CN206572792U (en) | A kind of vertical totally-enclosed screw water cooling machine set | |
JPH0557400A (en) | Method and apparatus for continuously casting aluminum | |
EP0709626A3 (en) | Improved heat transfer method and apparatus | |
JPH08146524A (en) | Water screen device | |
CN214582637U (en) | Water-cooling heat dissipation exchanger | |
CN205472989U (en) | Water purifying system | |
JPH07269992A (en) | Receiver tank for heat pump | |
JPH01258725A (en) | Dehumidification device | |
CN209623425U (en) | A kind of chilled water cooling device for apparatus for production line | |
CN106762527A (en) | 45KW compressor arrangements | |
JPH07159006A (en) | Refrigerant-collecting device | |
JPH06190529A (en) | Method for cooling die | |
CN113088668A (en) | Heat treatment cooling device for cast ball |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020604 |