JPH0557400A - Method and apparatus for continuously casting aluminum - Google Patents

Method and apparatus for continuously casting aluminum

Info

Publication number
JPH0557400A
JPH0557400A JP13857391A JP13857391A JPH0557400A JP H0557400 A JPH0557400 A JP H0557400A JP 13857391 A JP13857391 A JP 13857391A JP 13857391 A JP13857391 A JP 13857391A JP H0557400 A JPH0557400 A JP H0557400A
Authority
JP
Japan
Prior art keywords
casting
gas
mold
ingot
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13857391A
Other languages
Japanese (ja)
Inventor
Norifumi Hayashi
典史 林
Koji Nagae
光司 長江
Katsu Nagayama
克 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP13857391A priority Critical patent/JPH0557400A/en
Publication of JPH0557400A publication Critical patent/JPH0557400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide continuous casting method and apparatus for preventing crack in a cast billet and warp and constriction in bottom part of the cast billet developed at the initial stage of casting. CONSTITUTION:At the time of casting Al by using a water cooled mold 1, a bubble dispersing device composed of a guide vane 9 and a current cutter 10, is inserted on the way of cooling water passage 7, and cooling medium is used by mixing gas from a gas cylinder 11 as extremely fine bubbles having micron order or finer into the cooling water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】アルミニウムの連続鋳造に関し、
特に鋳造の初期に発生する鋳塊の割れ及び鋳塊底部のそ
り、くびれをなくすための連続鋳造法およびその製造装
置に関するものである。
[Industrial application] Regarding continuous casting of aluminum,
In particular, the present invention relates to a continuous casting method for eliminating cracks in the ingot, warpage at the bottom of the ingot, and constriction that occur at the beginning of casting, and a manufacturing apparatus therefor.

【0002】[0002]

【従来の技術】アルミニウムの連続鋳造は、図4に示す
ように水路2をもった水冷鋳型1と底台3との空間にア
ルミニウム溶湯を注入し、凝固シェルを形成させた後、
底台を降下させ、冷却水を水冷鋳型の下部から注水し、
直接冷却しながら鋳造することにより行われる。
2. Description of the Related Art In continuous casting of aluminum, as shown in FIG. 4, a molten aluminum is poured into a space between a water-cooled mold 1 having a water channel 2 and a base 3 to form a solidified shell.
Lower the bottom stand, pour cooling water from the bottom of the water-cooled mold,
It is performed by casting while directly cooling.

【0003】また、電磁鋳造の場合には、図5に示すよ
うに鋳型による一次冷却がないため、溶湯を電磁力で保
持した状態で冷却水を注水し、凝固シェルを形成させた
後、底台を降下させる。その後もこの直接冷却(二次冷
却)によってのみ連続的に鋳造を行う。
Further, in the case of electromagnetic casting, since there is no primary cooling by the mold as shown in FIG. 5, cooling water is poured while the molten metal is held by electromagnetic force to form a solidified shell, and then the bottom is formed. Lower the platform. After that, casting is continuously performed only by this direct cooling (secondary cooling).

【0004】これらの方法では、鋳造底部に「そり」を
発生したり、図6に示すような「くびれ」が発生する。
またそれらの程度が大きい場合には「割れ」や鋳造失敗
を起こす場合がある。
In these methods, "warping" occurs at the bottom of casting, and "constriction" occurs as shown in FIG.
If the degree of these is large, "cracking" or casting failure may occur.

【0005】これらの連続鋳造法では、鋳塊底部のそり
を防止する方法として、鋳造初期における鋳塊からの熱
抽出を低減し、鋳込み時間とともに徐々に熱抽出を増大
させる方法が知られている。
In these continuous casting methods, as a method for preventing warpage at the bottom of the ingot, a method is known in which the heat extraction from the ingot at the initial stage of casting is reduced and the heat extraction is gradually increased with the pouring time. .

【0006】例えば図7に示すように鋳型の冷却水配管
にソレノイドバルブ4を挿入し、水冷鋳型内の冷却水を
断続的に注入するパルスキャスティング法{カナディア
ンメタラジカル クォータリィ(CANADIAN M
ETALLURGICALQUATERLY)Volu
me 7 Number 1}、図8に示すように鋳型
の冷却水配管6に炭酸ガスを溶解させるポンプまたは静
的ミキサ5を挿入し、鋳造の初期に炭酸ガスを50%以
上溶解する冷却水を鋳型に注入する方法(特公昭55−
42903号公報)、また、図9で示すように鋳型1か
ら流出する冷却水に圧縮空気を吹きつけ、バブリングさ
せるエアーターボシステム(USP−4693298
号)などの提案がある。
For example, as shown in FIG. 7, a solenoid valve 4 is inserted into a cooling water pipe of a mold to intermittently inject the cooling water in the water-cooled mold into a pulse casting method {Canadian Metal Radical Quarterly.
ETALLURGICALQUATERLY) Volu
me 7 Number 1}, as shown in FIG. 8, a pump or a static mixer 5 for dissolving carbon dioxide gas is inserted in a cooling water pipe 6 of the mold, and cooling water for dissolving 50% or more of carbon dioxide gas in the initial stage of casting is used as a mold. Method (Japanese Patent Publication Sho 55-
No. 42903), and as shown in FIG. 9, an air turbo system (USP-4693298) in which compressed air is blown to bubbling the cooling water flowing out of the mold 1.
No.) etc.

【0007】[0007]

【発明が解決しようとする課題】鋳造の初期に炭酸ガス
を溶解する冷却水を鋳型に注入する方法は、それなりの
効果が得られるが、冷却水に溶解させるガスの量が多
く、また溶解処理水槽や高圧ポンプなどの付帯設備が必
要になり、また溶解ということから最も溶解性のよい炭
酸ガスを使用しなければならないという、欠点がある。
The method of injecting cooling water that dissolves carbon dioxide into the mold at the initial stage of casting has some effects, but the amount of gas that dissolves in cooling water is large, and the dissolution treatment is also performed. There are drawbacks in that ancillary equipment such as a water tank and a high-pressure pump is required, and that carbon dioxide, which has the highest solubility, must be used because it is dissolved.

【0008】そこで本発明は、簡単な装置を鋳型に導入
する配管に取りつけることにより、緩冷却を実現し、鋳
造の初期に発生する鋳塊の割れ及び鋳塊底部のそり、く
びれをなくすための鋳塊冷却方法および装置を提供する
にある。
Therefore, the present invention realizes slow cooling by attaching a simple device to a pipe for introducing into a mold to eliminate cracks in the ingot, warpage at the bottom of the ingot, and constriction that occur at the beginning of casting. An ingot cooling method and apparatus are provided.

【0009】[0009]

【課題を解決するための手段】本発明は、下端部が開放
された水冷鋳型を用いてアルミニウムを鋳造するにあた
り、鋳造の初期において炭酸ガスを含有する冷媒を鋳型
内に注入し、鋳塊を緩冷却させる連続鋳造方法におい
て、ミクロンオーダ以下の微細なガス気泡を混合した冷
媒を使用するアルミニウムの連続鋳造法、並びに下端部
が開放された水冷鋳型を用いてアルミニウムを鋳造する
にあたり、鋳造の初期においてガスを含有する冷媒を鋳
型内に注入し、鋳塊を緩冷却させる連続鋳造装置におい
て、水冷鋳型に冷媒を注入する配管の途中に、ガイドベ
ーン、カレントカッターからなる気泡分散器を挿入し、
ガイドベーン手前にガス配管を接合し、ガス配管に流量
調節弁を設けたアルミニウムの連続鋳造装置である。す
なわち、図3に示すようなリアクタヘ[(株)オー・エ
イチ・エル社製OHL式リアフター]による流体の瞬間
ミキシングシステムを鋳型に注水する配管に取りつける
ことにより、ガスの気泡を極微細にできることを見出
し、これを利用することにより本発明を完成した。図3
中、7は冷却水通路、8はガス通路、9はガイドベー
ン、10はカレントカッター、11はガスボンベであ
る。ガスボンベ11中のガスは一次圧力計12、二次圧
力計13を備えたレギュレータ14を通過し、ガス通路
8を経て冷却水通路7内を流れる冷却水に混入される。
そしてガイドベーン9のところで旋回流となり混合され
るが、このとき流れの中心部は低圧状態となり、円周方
向に大きな圧力差が生じる。さらに冷却水およびガス混
合流体は、カレントカッター10で剪断され、撹拌され
て極微細な気泡に分散させられる。なお、15は適宜設
けられる流量計である。
Means for Solving the Problems In casting aluminum using a water-cooled mold having an open lower end, a refrigerant containing carbon dioxide gas is injected into the mold at the initial stage of casting to form an ingot. In the continuous casting method of slowly cooling, in the continuous casting method of aluminum using a refrigerant mixed with fine gas bubbles of micron order or less, and in casting aluminum using a water-cooled mold with an open lower end, the initial casting Injecting a refrigerant containing a gas in the mold, in a continuous casting device for slowly cooling the ingot, in the middle of the pipe for injecting the refrigerant into the water-cooled mold, a guide vane, insert a bubble disperser consisting of a current cutter,
This is a continuous casting device for aluminum in which a gas pipe is joined in front of the guide vanes and a flow control valve is provided in the gas pipe. That is, gas bubbles can be made extremely fine by attaching a fluid instantaneous mixing system to a reactor as shown in FIG. The present invention has been completed by using the heading and utilizing it. Figure 3
Inside, 7 is a cooling water passage, 8 is a gas passage, 9 is a guide vane, 10 is a current cutter, and 11 is a gas cylinder. The gas in the gas cylinder 11 passes through a regulator 14 equipped with a primary pressure gauge 12 and a secondary pressure gauge 13, and is mixed with the cooling water flowing in the cooling water passage 7 via the gas passage 8.
Then, a swirling flow is formed at the guide vanes 9 and they are mixed, but at this time, the central part of the flow is in a low pressure state, and a large pressure difference occurs in the circumferential direction. Further, the cooling water and the gas mixture fluid are sheared by the current cutter 10, agitated, and dispersed into ultrafine bubbles. In addition, 15 is a flow meter provided suitably.

【0010】本発明はかかる極微細なガス気泡を混合し
た冷媒を用いて鋳塊を直接冷却する鋳造に適用するもの
であり、いわゆるDC鋳造法及び電磁鋳造法に適用され
る。
The present invention is applied to casting in which an ingot is directly cooled by using a refrigerant mixed with such extremely fine gas bubbles, and is applied to so-called DC casting method and electromagnetic casting method.

【0011】ガスは炭酸ガスが主として用いられるが、
空気等他のガスでも効果は変らない。
Carbon dioxide is mainly used as the gas,
The effect does not change with other gases such as air.

【0012】本発明でいう鋳造の初期とは、鋳塊の大き
さにより変化するので特定することは困難であるが、冷
却水が鋳塊に当たり始めてから10〜120mm程度で
あり、DC鋳造法では80〜120mm、電磁鋳造法で
は10〜80mmが好ましい。
The initial stage of casting referred to in the present invention is difficult to specify because it varies depending on the size of the ingot, but it is about 10 to 120 mm after the cooling water begins to hit the ingot, and in the DC casting method. It is preferably 80 to 120 mm, and 10 to 80 mm in the electromagnetic casting method.

【0013】極微細なガス気泡を含有する冷却水を鋳塊
の表面に注入すると、鋳塊の表面で断熱層を形成し、熱
抽出を妨げ、鋳塊底部のそり防止と鋳塊の割れ防止に効
果がある。
When cooling water containing extremely fine gas bubbles is injected into the surface of the ingot, a heat insulating layer is formed on the surface of the ingot, heat extraction is prevented, warpage of the bottom of the ingot and cracking of the ingot are prevented. Has an effect on.

【0014】冷却水へのガス混合量は、冷却水に対して
5〜45%が好ましく、DC鋳造法では冷却水400〜
700l/minに対しガス50〜150l/min、
電磁鋳造法では250〜500l/minに対しガス2
5〜100l/min含有させるのが好ましい。
The amount of the gas mixed with the cooling water is preferably 5 to 45% with respect to the cooling water, and 400 to 400% of the cooling water in the DC casting method.
50 to 150 l / min gas for 700 l / min,
In the electromagnetic casting method, gas 2 for 250 to 500 l / min
It is preferable to contain 5 to 100 l / min.

【0015】[0015]

【実施例】 実施例1 Al−4.3%Mg−0.33%Mn系アルミニウム合
金を溶解し、これを図1に示すDC鋳造装置を用いて、
500×960mmの鋳塊に造塊した。図1の装置は通
常のDC鋳造装置の水冷鋳型1に冷媒を注入する水路2
の途中に前記図3に示したリアクターを設置し、炭酸ガ
スのガスボンベ11を用いて、冷却水の中に極微細な炭
酸ガスの気泡を分散せしめて、これを水冷鋳型1に供給
し造塊した。この際、炭酸ガスは鋳型内で断熱層を形成
し、鋳塊Aからの熱抽出を弱まらせることとなる。この
時、冷却水の圧力は144kPa、CO2ガスの圧力は
192kPaで、温度は双方とも20〜30℃である。
又、CO2ガス混合水のpH測定値は5.3であった。
この場合の鋳造条件を表1に示す。
EXAMPLES Example 1 Al-4.3% Mg-0.33% Mn-based aluminum alloy was melted, and this was cast using a DC casting apparatus shown in FIG.
It was cast into a 500 × 960 mm ingot. The apparatus shown in FIG. 1 is a water channel 2 for injecting a refrigerant into a water-cooled mold 1 of an ordinary DC casting apparatus.
The reactor shown in FIG. 3 is installed in the middle of the process, and the carbon dioxide gas cylinder 11 is used to disperse ultrafine carbon dioxide gas bubbles in the cooling water, which is then supplied to the water-cooled mold 1 for ingot formation. did. At this time, the carbon dioxide gas forms a heat insulating layer in the mold and weakens the heat extraction from the ingot A. At this time, the pressure of the cooling water is 144 kPa, the pressure of the CO 2 gas is 192 kPa, and the temperatures are both 20 to 30 ° C.
The measured pH value of the CO 2 gas mixed water was 5.3.
Table 1 shows the casting conditions in this case.

【0016】[0016]

【表1】 [Table 1]

【0017】得られた鋳塊は、鋳造の初期に発生する割
れ、そり、くびれの発生が軽減された。
In the obtained ingot, the occurrence of cracks, warps and constrictions occurring in the early stage of casting was reduced.

【0018】実施例2 実施例1と同じアルミニウム合金溶湯を用いて図2に示
す電磁鋳造装置を用いて500×960mmの鋳塊を造
塊した。リアクターの一部は省略し、又変形してあるが
本質的には図3のリアクターと変りがない。鋳造条件を
表2に示すが、他の条件は実施例1と同様にした。
Example 2 Using the same molten aluminum alloy as in Example 1, an ingot of 500 × 960 mm was cast using the electromagnetic casting apparatus shown in FIG. A part of the reactor is omitted and modified, but it is essentially the same as the reactor of FIG. The casting conditions are shown in Table 2, but other conditions were the same as in Example 1.

【0019】[0019]

【表2】 [Table 2]

【0020】得られた鋳塊は、鋳造の初期に発生する割
れ、そり、くびれの発生が軽減された。
In the obtained ingot, the occurrence of cracks, warps and constrictions occurring in the early stage of casting was reduced.

【0021】上記図3に示すリアクターを用いない場合
は、ガスが微細化されず、鋳型周辺の冷却水放出部でラ
ンダムにガス放出が行われることになり、部分々々で水
切れ現象を生じる。このため鋳造不能となる。
When the reactor shown in FIG. 3 is not used, the gas is not atomized, and the gas is randomly discharged at the cooling water discharge portion around the mold, resulting in a water drainage phenomenon in each part. Therefore, casting becomes impossible.

【0022】[0022]

【発明の効果】本発明は、連続鋳造の冷却水にガスを極
微細に混合することにより、鋳造初期の冷却を緩慢にで
きるので、鋳塊底部のそりやくびれが軽減され、例えば
500×980mm程度の寸法では、そりは30mmか
ら10mmに軽減され、くびれは20mmからほとんど
0になる。
EFFECTS OF THE INVENTION According to the present invention, since the cooling water in the continuous casting can be finely mixed with the gas so that the cooling at the initial stage of the casting can be slowed down, warpage and constriction at the bottom of the ingot can be reduced, for example, 500 × 980 mm. At some size, the warpage is reduced from 30 mm to 10 mm and the waist is reduced from 20 mm to almost zero.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のDC鋳造装置の説明図であ
る。
FIG. 1 is an explanatory diagram of a DC casting apparatus according to an embodiment of the present invention.

【図2】本発明の実施例の電磁鋳造装置の説明図であ
る。
FIG. 2 is an explanatory diagram of an electromagnetic casting apparatus according to an embodiment of the present invention.

【図3】本発明に用いるリアクターの説明図である。FIG. 3 is an explanatory diagram of a reactor used in the present invention.

【図4】従来の連続鋳造装置の説明図である。FIG. 4 is an explanatory view of a conventional continuous casting device.

【図5】従来の電磁鋳造装置の説明図である。FIG. 5 is an explanatory view of a conventional electromagnetic casting apparatus.

【図6】鋳塊の欠陥の説明図である。FIG. 6 is an explanatory diagram of a defect of an ingot.

【図7】従来のパルスキャスティングの説明図である。FIG. 7 is an explanatory diagram of conventional pulse casting.

【図8】冷却水に炭酸ガスを溶解する形式の先行鋳造法
の説明図である。
FIG. 8 is an explanatory view of a preceding casting method of a type in which carbon dioxide gas is dissolved in cooling water.

【図9】先行技術のエアーターボシステム鋳造法の説明
図である。
FIG. 9 is an explanatory diagram of a prior art air turbo system casting method.

【符号の説明】[Explanation of symbols]

1 水冷鋳型 2 水路 3 底台 4 ソレノイドバルブ 5 ポンプまたは静的ミキサ 6 冷却水配管 7 冷却水通路 8 ガス通路 9 ガイドベーン 10 カレントカッター 11 ガスボンベ 12 一次圧力計 13 二次圧力計 14 レギュレータ 15 流量計 1 Water Cooling Mold 2 Water Channel 3 Bottom 4 Solenoid Valve 5 Pump or Static Mixer 6 Cooling Water Piping 7 Cooling Water Channel 8 Gas Channel 9 Guide Vane 10 Current Cutter 11 Gas Cylinder 12 Primary Pressure Gauge 13 Secondary Pressure Gauge 14 Regulator 15 Flowmeter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下端部が開放された水冷鋳型を用いてア
ルミニウムを鋳造するにあたり、鋳造の初期において炭
酸ガスを含有する冷媒を鋳型内に注入し、鋳塊を緩冷却
させる連続鋳造方法において、ミクロンオーダ以下の微
細なガス気泡を混合した冷媒を使用することを特徴とす
るアルミニウムの連続鋳造法。
1. A continuous casting method for casting aluminum using a water-cooled mold having an open lower end, in which a refrigerant containing carbon dioxide gas is injected into the mold at the initial stage of casting to slowly cool the ingot, A continuous casting method for aluminum, characterized in that a refrigerant mixed with fine gas bubbles of micron order or less is used.
【請求項2】 下端部が開放された水冷鋳型を用いてア
ルミニウムを鋳造するにあたり、鋳造の初期においてガ
スを含有する冷媒を鋳型内に注入し、鋳塊を緩冷却させ
る連続鋳造装置において、水冷鋳型に冷媒を注入する配
管の途中に、ガイドベーン、カレントカッターからなる
気泡分散器を挿入し、ガイドベーン手前にガス配管を接
合し、ガス配管に流量調節弁を設けたことを特徴とする
アルミニウムの連続鋳造装置。
2. When casting aluminum using a water-cooled mold having an open lower end, a refrigerant containing a gas is injected into the mold at an early stage of casting to continuously cool the ingot in a continuous casting apparatus. Aluminum which is characterized in that a bubble distributor consisting of a guide vane and a current cutter is inserted in the middle of the pipe for injecting the refrigerant into the mold, the gas pipe is joined in front of the guide vane, and a flow control valve is provided in the gas pipe. Continuous casting equipment.
JP13857391A 1991-05-15 1991-05-15 Method and apparatus for continuously casting aluminum Pending JPH0557400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13857391A JPH0557400A (en) 1991-05-15 1991-05-15 Method and apparatus for continuously casting aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13857391A JPH0557400A (en) 1991-05-15 1991-05-15 Method and apparatus for continuously casting aluminum

Publications (1)

Publication Number Publication Date
JPH0557400A true JPH0557400A (en) 1993-03-09

Family

ID=15225293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13857391A Pending JPH0557400A (en) 1991-05-15 1991-05-15 Method and apparatus for continuously casting aluminum

Country Status (1)

Country Link
JP (1) JPH0557400A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064743A (en) * 1999-07-13 2001-03-13 Alcoa Inc Improved cast alloy
US7326306B2 (en) * 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel
KR20150013818A (en) * 2012-05-17 2015-02-05 알멕스 유에스에이 인코퍼레이티드 Apparatus for casting aluminum lithium alloys
US9231317B2 (en) 2009-12-17 2016-01-05 Phoenix Contact Gmbh & Co. Kg Looped fastening element for removably fixing a conductor to a current transformer housing
US9764380B2 (en) 2013-02-04 2017-09-19 Almex USA, Inc. Process and apparatus for direct chill casting
US9849507B2 (en) 2012-05-17 2017-12-26 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323045A (en) * 1989-06-14 1991-01-31 Aluminum Co Of America <Alcoa> Continuously-controlling and monitoring method for heat-exchanging capacity, and ingot-casting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323045A (en) * 1989-06-14 1991-01-31 Aluminum Co Of America <Alcoa> Continuously-controlling and monitoring method for heat-exchanging capacity, and ingot-casting apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064743A (en) * 1999-07-13 2001-03-13 Alcoa Inc Improved cast alloy
US7326306B2 (en) * 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel
US9231317B2 (en) 2009-12-17 2016-01-05 Phoenix Contact Gmbh & Co. Kg Looped fastening element for removably fixing a conductor to a current transformer housing
US9849507B2 (en) 2012-05-17 2017-12-26 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
JP2015516307A (en) * 2012-05-17 2015-06-11 アルメックス ユーエスエー, インコーポレイテッド Equipment for casting aluminum lithium alloy
KR20150013818A (en) * 2012-05-17 2015-02-05 알멕스 유에스에이 인코퍼레이티드 Apparatus for casting aluminum lithium alloys
US9895744B2 (en) 2012-05-17 2018-02-20 Almex USA, Inc. Process and apparatus for direct chill casting
JP2018089703A (en) * 2012-05-17 2018-06-14 アルメックス ユーエスエー, インコーポレイテッド Device for casting aluminum-lithium alloy
US10646919B2 (en) 2012-05-17 2020-05-12 Almex USA, Inc. Process and apparatus for direct chill casting
US10946440B2 (en) 2012-05-17 2021-03-16 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting aluminum alloys
US9764380B2 (en) 2013-02-04 2017-09-19 Almex USA, Inc. Process and apparatus for direct chill casting
US9950360B2 (en) 2013-02-04 2018-04-24 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys
US10864576B2 (en) 2013-02-04 2020-12-15 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
US10932333B2 (en) 2013-11-23 2021-02-23 Almex USA, Inc. Alloy melting and holding furnace

Similar Documents

Publication Publication Date Title
US4166495A (en) Ingot casting method
RU2296034C2 (en) Method for treating melt metals by means of moving electric arc
JPH0557400A (en) Method and apparatus for continuously casting aluminum
CN100479947C (en) Horizontal continuous-casting electromagnetic agitating technology
CN111347020A (en) Method for controlling internal quality of 82B steel type continuous casting billet in steelmaking continuous casting process
CN104014752B (en) A kind of semicontinuous many ingot casting casting systems of vertical direct water-cooling
CN203281810U (en) Highly anti-corrosion nickel base alloy large valve body pouring device
JP3458038B2 (en) Vertical continuous casting method of aluminum alloy slab
JPH06142847A (en) Continuous casting method of aluminum
JPH07148561A (en) Pouring nozzle for continuous casting and continuous casting method
JP3262672B2 (en) Starting method in twin roll casting of aluminum alloy
JP2000263199A (en) Method for continuously casting molten steel
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP2727886B2 (en) Horizontal continuous casting method
RU2741876C1 (en) Method for continuous casting of slab bills
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP4595186B2 (en) Continuous casting method
JPS619946A (en) Method and device for continuously casting metallic molten metal
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPH0270354A (en) Method for casting extremely low carbon titanium killed steel
Dibrov Developments in the field of melting pouring, inoculation and refining of cast alloys
JPS58196148A (en) Horizontal and continuous casting method
KR950012627B1 (en) Method for cooling of bloom casting
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple
JPH03165953A (en) Method and apparatus for continuously casting metal