JPH08295941A - Production of ferritic stainless steel sheet excellent in ridging resistance - Google Patents

Production of ferritic stainless steel sheet excellent in ridging resistance

Info

Publication number
JPH08295941A
JPH08295941A JP10098795A JP10098795A JPH08295941A JP H08295941 A JPH08295941 A JP H08295941A JP 10098795 A JP10098795 A JP 10098795A JP 10098795 A JP10098795 A JP 10098795A JP H08295941 A JPH08295941 A JP H08295941A
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
hot rolling
less
recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10098795A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
浩志 藤村
Shinji Tsuge
信二 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10098795A priority Critical patent/JPH08295941A/en
Publication of JPH08295941A publication Critical patent/JPH08295941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To provide a method for producing a ferrite single phase stainless steel added with Ti and Nb in which the generation of ridging at the time of forming can be suppressed to a level free from problems in practical use with hardly changing the coventional producing process. CONSTITUTION: In hot rolling for a ferritic stainless steel having a compsn. contg., by weight, 11 to 18% Cr, 4N to 1% Ti, satisfying Ti+Nb: 8(C+N) or above and contg. 0.02% C, 1% Si, 1% Mn, 0.04% P, 0.02% S, 0.02% N, <=0.5% Nb, and the balance Fe with inevitable impurities, it is executed in such a manner that, in the temp. range of 1100 to 950 deg.C, the passes satisfying the draft (R)>=1.4Cr+94TiE+16Nb-201ogt-30; where t: the time (sec) between the rolling passes, TiE: the effective Ti content (wt.%) and TiE=Ti-3.4N are executed for >=three times, and next, cold rolling is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐リジング性に優れた
フェライト系ステンレス鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferritic stainless steel sheet having excellent ridging resistance.

【0002】[0002]

【従来の技術】JIS−SUS430などのフェライト
系ステンレス鋼板は、オーステナイト系ステンレス鋼板
に比べて安価であり、自動車部品や家電器具などの広い
分野に使用されている。また、フェライト系ステンレス
鋼の精錬技術の向上によるC+N量低減や、Ti、Nb
等の炭窒化物形成元素を添加した成分設計により、耐食
性や加工性においてもオーステナイト系ステンレス鋼板
と同等のレベルのフェライト系ステンレス鋼板が製造さ
れるようになった。
2. Description of the Related Art Ferritic stainless steel sheets such as JIS-SUS430 are less expensive than austenitic stainless steel sheets and are used in a wide range of fields such as automobile parts and household appliances. In addition, reduction of C + N amount by improvement of refining technology of ferritic stainless steel, Ti, Nb
By designing the components such as carbonitride forming elements, ferritic stainless steel sheets have come to be produced in the same level of corrosion resistance and workability as austenitic stainless steel sheets.

【0003】しかしながら、フェライト系ステンレス鋼
板にはその欠点として、プレス成形時にリジングと呼ば
れるしわが鋼板表面に発生し、鋼板の美観を著しく損な
わせることが知られている。
However, it is known that the ferritic stainless steel sheet has a drawback that wrinkles called ridging are formed on the surface of the steel sheet during press forming, and the appearance of the steel sheet is significantly impaired.

【0004】従って、このリジングが発生すると、成形
加工後に表面研磨などの作業によりこれを除去しなくて
はならず、製造コスト上昇につながる。
Therefore, if this ridging occurs, it must be removed by an operation such as surface polishing after the molding process, which leads to an increase in manufacturing cost.

【0005】この耐リジング性を向上させる基本思想と
しては、鋳造凝固時にできる組織の改善、または熱延、
焼鈍、冷延等の製造工程の中で凝固組織をいかに破壊
し、金属結晶組織のランダム方位化を進めるかというこ
とにあり、従来より、その観点から数多くの研究がなさ
れてきた。
The basic idea for improving the ridging resistance is to improve the structure formed during casting and solidification, or hot rolling,
In the manufacturing process such as annealing and cold rolling, how to destroy the solidified structure to promote the random orientation of the metal crystal structure has been studied from that viewpoint.

【0006】その具体的なリジング防止策については、
既に次のような提案がなされている。(イ)凝固組織の
微細化、等軸化(ロ)熱間圧延時の再結晶促進及び
(ハ)二相組織とすることによる結晶粒の微細化であ
る。
Regarding the concrete measures against ridging,
The following proposals have already been made. (A) Refining of solidification structure, equiaxing (b) Recrystallization promotion during hot rolling, and (c) refining of crystal grains by forming a two-phase structure.

【0007】(イ)の具体的な手段としては、連続鋳造
の凝固時の電磁撹拌、鋳込み温度の低下、Ti、Nb、
Zr等の結晶微細化元素の添加等があるが、連続鋳造の
凝固組織を完全に微細等軸晶組織にすることは困難であ
る。また仮に完全な等軸晶凝固組織が得られても、その
後の熱延条件によって耐リジング性は大きく変化し得る
ので十分な改善策とはなっていない。
As specific means of (a), electromagnetic stirring during solidification in continuous casting, lowering of casting temperature, Ti, Nb,
Although there are additions of crystal refining elements such as Zr, it is difficult to completely transform the solidification structure of continuous casting into a fine equiaxed crystal structure. Even if a perfect equiaxed crystal solidification structure is obtained, the ridging resistance can greatly change depending on the subsequent hot rolling conditions, so that it is not a sufficient improvement measure.

【0008】上記(ロ)としては、例えば特開昭57−
70234号公報において、連続仕上熱間圧延に際し
て、900℃以上から圧延開始すると共に圧延パスの圧
下率が少なくとも25%である再結晶圧延を複数パス行
う方法が開示されている。この方法は累積圧下で再結晶
を促進させようとするものであるが、再結晶温度の高い
Ti、Nb等を添加したフェライト系ステンレス鋼に対
しては、これも十分な耐リジング性の改善策となってい
ないのが現状である。
As the above (b), for example, JP-A-57-57
Japanese Patent No. 70234 discloses a method of performing recrystallization rolling in which continuous rolling hot rolling is started from 900 ° C. or higher and the rolling pass has a rolling reduction of at least 25%. This method is intended to promote recrystallization under cumulative pressure, but this is also a sufficient measure for improving ridging resistance for ferritic stainless steel to which Ti, Nb, etc. having a high recrystallization temperature are added. The current situation is not.

【0009】また、特開昭58−199822号公報に
おいて、Nb含有のフェライト系ステンレス鋼を100
0℃以上での1パス当たり30%以上の圧下率の圧下を
1回以上含む熱延を行った後、熱延板焼鈍、さらに冷延
途中に中間焼鈍を入れて冷延する方法が開示されてい
る。これは再結晶を何度も繰りかえし耐リジング性には
効果的であるが、焼鈍工程が多く安価に製造する視点で
は採用しがたい。
Further, in Japanese Patent Application Laid-Open No. 58-199822, Nb-containing ferritic stainless steel is 100
Disclosed is a method of performing hot rolling including a reduction of a reduction rate of 30% or more per pass at 0 ° C. or more once or more, followed by hot-rolled sheet annealing, and further performing intermediate annealing during cold rolling to perform cold rolling. ing. This is effective for ridging resistance because recrystallization is repeated many times, but it is difficult to adopt from the viewpoint of many annealing steps and inexpensive manufacturing.

【0010】次に、上記(ハ)の手段としては、γポテ
ンシャルを増すような成分設計にしてα+γ二相温度域
で熱延したり焼鈍する方法があが、このような方法に適
用できる鋼種(例えばSUS430)はC、Nが高く耐食性が
劣り、酸洗時に粒界腐食を起こす等の欠点がある。
Next, as the means of (c) above, there is a method of hot rolling or annealing in the α + γ two-phase temperature region with a component design that increases the γ potential. Steel types applicable to such a method (For example, SUS430) has a high content of C and N and is inferior in corrosion resistance, and has drawbacks such as intergranular corrosion during pickling.

【0011】[0011]

【発明が解決しようとする課題】フェライト系ステンレ
ス鋼板にはTi、Nbなどの炭窒化物形成元素が下記の
ような目的でしばしば添加される。
Carbonitride forming elements such as Ti and Nb are often added to ferritic stainless steel plates for the following purposes.

【0012】(1)Cr炭窒化物の生成を抑制し、耐食
性を向上させる。
(1) Suppress formation of Cr carbonitride and improve corrosion resistance.

【0013】(2)凝固或いは熱延中に炭窒化物として
析出させることにより、固溶C、N量を低減し、冷延鋼
板の成形性を向上させる。
(2) By precipitating as carbonitrides during solidification or hot rolling, the amounts of solute C and N are reduced and the formability of the cold rolled steel sheet is improved.

【0014】(3)リジング防止策(イ)で記した、凝
固組織を微細化する効果があり、鋳造凝固時およびスラ
ブ加熱時に析出状態で存在するTi、Nb炭窒化物は、
フェライト粒界移動の障壁となり結晶粒の微細化をもた
らし、耐リジング性向上につながる。
(3) Ti and Nb carbonitrides, which have the effect of refining the solidified structure and are present in the precipitated state during solidification during casting and heating of the slab, described in (3) Measures to prevent ridging,
It acts as a barrier to the movement of ferrite grain boundaries, which leads to refinement of crystal grains and leads to improved ridging resistance.

【0015】このようにTi、Nb元素は、耐食性、成
形性向上においてフェライト系ステンレス鋼には不可欠
でり、且つ耐リジング性にも密接な関係を持っている。
As described above, the Ti and Nb elements are indispensable for the ferritic stainless steel in improving the corrosion resistance and the formability, and have a close relationship with the ridging resistance.

【0016】本発明は、上記のように耐食性や成形性の
観点から重要な元素であるTi及びNbを添加したフェ
ライト単相ステンレス鋼において、従来の製造工程をほ
とんど変えることなく、成形時のリジングの発生を実用
上問題のないレベルに抑制することができる製造方法を
提供することを目的とする。
The present invention, in the ferritic single phase stainless steel to which Ti and Nb, which are important elements from the viewpoint of corrosion resistance and formability as described above, are added, ridging during forming without substantially changing the conventional manufacturing process. It is an object of the present invention to provide a manufacturing method capable of suppressing the occurrence of the above to a level at which there is no practical problem.

【0017】[0017]

【課題を解決するための手段】本発明者らは、リジング
の発生に大きく影響している鋳造時の凝固組織を熱間圧
延の前の段階の熱間圧延で破壊して、再結晶組織にする
ことに着目し、熱間圧延中に再結晶に及ぼす元素の影響
及び熱間圧延時の圧下条件の再結晶、リジングに及ぼす
影響につき鋭意実験、研究を行った結果、下記の知見を
得た。
The inventors of the present invention destroyed the solidification structure at the time of casting, which greatly influences the occurrence of ridging, in the hot rolling in the stage before the hot rolling to obtain a recrystallized structure. The following findings were obtained as a result of intensive experiments and studies on the effect of elements on recrystallization during hot rolling and the recrystallization of rolling conditions during hot rolling and the effect on ridging. .

【0018】A )熱間圧延において、3パス以上のパス
間で加工組織の50%以上を再結晶させることにより、
耐リジング性が著しく改善されること。
A) In hot rolling, by recrystallizing 50% or more of the worked structure during three or more passes,
The ridging resistance is significantly improved.

【0019】B )鋼中のCr、Ti、Nbは熱間圧延時
の再結晶を抑制する作用があること。
B) Cr, Ti, and Nb in the steel have an action of suppressing recrystallization during hot rolling.

【0020】C )その主原因は、熱間圧延中に析出する
炭窒化物ではなく、むしろ固溶したTi 、Nb、Crに
よるものであること。
C) The main cause is not the carbonitrides precipitated during hot rolling, but rather the solid solution Ti, Nb and Cr.

【0021】D )熱間圧延中にパス間で加工組織の50
%以上を再結晶させるには、Cr、Ti、Nb含有量と
圧下条件とが関係しており、各パスの圧下率Rを1.4
Cr+94TiE +160Nb−20log t−30以上
とすればよいこと。
D) 50 of the work structure between passes during hot rolling
%, The Cr, Ti, and Nb contents are related to the rolling reduction condition, and the rolling reduction R of each pass is 1.4.
Cr + 94Ti E + 160Nb-20log t-30 may be if more.

【0022】この発明は、上記のような知見に基づいて
完成したものであり、その要旨とするところは、「重量
%で、C:0.02%以下、Si:1%以下、Mn:1
%以下、P:0.04%以下、S:0.02%以下、
N:0.02%以下、Cr:11〜18%、Ti:4N
%〜1%、Nb:0〜0.5%を含み、Ti+Nb:8
(C+N)%以上で残部Fe及び不可避的不純物からな
るフェライト系ステンレス鋼の熱間圧延において、11
00〜950℃の温度域での圧延で、下記式(1)を満
足する圧下率R(%)のパスが3回以上となるように熱
間圧延を行い、次いで冷間圧延することを特徴とする耐
リジング性に優れたフェライト系ステンレス鋼板の製造
方法 R≧1.4Cr+94TiE +160Nb−20log t−30・・・・(1) ただし、 t:圧延パス間時間(秒) TiE :有効Ti量(重量%)、TiE =Ti−3.4
N とする。」にある。
The present invention has been completed on the basis of the above findings, and the gist of the invention is "C: 0.02% or less, Si: 1% or less, Mn: 1% by weight.
% Or less, P: 0.04% or less, S: 0.02% or less,
N: 0.02% or less, Cr: 11-18%, Ti: 4N
% To 1%, Nb: 0 to 0.5% included, Ti + Nb: 8
In the hot rolling of ferritic stainless steel containing (C + N)% or more and the balance Fe and unavoidable impurities, 11
In rolling in the temperature range of 00 to 950 ° C., hot rolling is performed so that the pass of the rolling reduction R (%) satisfying the following formula (1) is three times or more, and then cold rolling is performed. and manufacturing method excellent ferritic stainless steel sheet ridging resistance R ≧ 1.4Cr + 94Ti E + 160Nb -20log t-30 ···· (1) However, t: rolling path time (in seconds) Ti E: effective Ti Amount (wt%), Ti E = Ti-3.4
Let N. "It is in.

【0023】[0023]

【作用】次に、本発明において成分組成、熱間圧延条件
を限定した理由及び作用について説明をする。
Next, the reasons and effects of limiting the component composition and hot rolling conditions in the present invention will be explained.

【0024】表1に示す成分組成の25kg丸型鋼塊を
真空溶解炉で溶製し、直径8mm、高さ12mmの円柱
状の鍛圧試験片を採取し、2段圧縮による熱間圧延の模
擬試験を行った。
A 25 kg round steel ingot having the composition shown in Table 1 was smelted in a vacuum melting furnace, a cylindrical forging test piece having a diameter of 8 mm and a height of 12 mm was sampled, and a hot rolling simulation test by two-stage compression was performed. I went.

【0025】[0025]

【表1】 [Table 1]

【0026】試験条件は、試験片を1150℃に加熱
し、3分保持後、800〜1100℃で等温2段圧縮
(高さ12mm→9mm→6mm)し、各圧縮後1〜6
00秒保持した後、顕微鏡により断面の再結晶率を測定
した。
The test conditions were as follows: the test piece was heated to 1150 ° C., held for 3 minutes, and then isothermal two-stage compression (height 12 mm → 9 mm → 6 mm) at 800 to 1100 ° C. 1 to 6 after each compression.
After holding for 00 seconds, the recrystallization rate of the cross section was measured with a microscope.

【0027】図1は、上記試験結果を、圧縮温度と圧縮
加工の組織が50%再結晶するのに要する加工後の時間
との関係で整理した図である。
FIG. 1 is a view in which the above test results are arranged in relation to the compression temperature and the time after processing required for 50% recrystallization of the structure of compression processing.

【0028】同図より、高温で圧縮するほど再結晶しや
すく、Ti、Nbが添加されると再結晶に時間がかか
り、また、Cr量が増加すると再結晶に時間がかかり再
結晶を抑制する作用があることが分かる。
From the figure, it is easier to recrystallize as it is compressed at a higher temperature, and it takes time to recrystallize when Ti and Nb are added, and recrystallization takes longer to suppress recrystallization when the amount of Cr increases. You can see that it works.

【0029】また、一部の試験片を透過型電子顕微鏡
(TEM)観察、及び電解抽出残渣を分析したところ、
熱延途中で析出するTi、Nb介在物は約950℃以下
で析出し、950℃を超える温度域では殆ど析出しない
ことが分かった。従って、950℃を超えた圧延域での
再結晶の遅延は固溶状態にあるTi、Nb、Crによる
ものであることが判明した。
When a part of the test piece was observed with a transmission electron microscope (TEM) and the electrolytic extraction residue was analyzed,
It was found that Ti and Nb inclusions precipitated during hot rolling were precipitated at about 950 ° C or lower, and were hardly precipitated in the temperature range higher than 950 ° C. Therefore, it was found that the retardation of recrystallization in the rolling region above 950 ° C. was due to Ti, Nb, and Cr in the solid solution state.

【0030】その固溶Ti、Nb、Crによる抑制効果
を加工後の再結晶にかかる時間の対数を用いて定量的に
解析した結果、Cr、Ti、Nb再結晶抑制の重量%当
たりの係数は0.07:4.7:8.0となった。
As a result of quantitative analysis of the inhibitory effect of the solid solution Ti, Nb and Cr by using the logarithm of the time required for recrystallization after processing, the coefficient of Cr, Ti and Nb recrystallization inhibition per weight% was found. It became 0.07: 4.7: 8.0.

【0031】また、圧延圧下率と再結晶時間の関係につ
いても解析の結果、圧下率1%当たりの係数が−0.0
5となることを究明した。
As a result of analysis of the relationship between the rolling reduction and the recrystallization time, the coefficient per 1% of the reduction is -0.0.
It was determined that it would be 5.

【0032】上記の知見をもとに、熱間圧延後に体積率
にして50%再結晶する時間t50%をCr、Ti、Nb
量及び圧延圧下率Rを用いた式で表すと次のようにな
る。
Based on the above knowledge, the time t50% for recrystallization by 50% in volume ratio after hot rolling is set to Cr, Ti, Nb.
The expression using the amount and the rolling reduction R is as follows.

【0033】logt50% =0.07Cr+4.7Ti
E +8.0Nb−0.05R−Dここで、TiE は有効
Ti量でTiE =Ti%−3.4N%(TiN析出分を
差し引く)で計算する。これはTiNはスラブ加熱時に
サイズ1μm以上で全て析出しており、熱間圧延時の再
結晶に殆ど影響を与えないことが実験的にわかったから
である。TiNはむしろ凝固組織を細粒化し熱間再結晶
を促進させることも知られているが、本発明のN0.0
2%以下の鋼種にはその効果による耐リジング性に差が
殆ど現れない。また、上記式のDは試験により求められ
る定数である。
Logt 50% = 0.07Cr + 4.7Ti
E + 8.0Nb-0.05R-D where, Ti E is calculated by Ti E = Ti% -3.4N% effective Ti amount (subtracting TiN precipitation amount). This is because it was experimentally found that TiN was entirely precipitated in a size of 1 μm or more during slab heating and had little effect on recrystallization during hot rolling. It is also known that TiN rather refines the solidified structure and promotes hot recrystallization.
For steel types of 2% or less, there is almost no difference in ridging resistance due to the effect. Further, D in the above formula is a constant obtained by the test.

【0034】上記の式を基に、圧延中に各パスで加工組
織の50%が再結晶するのに必要な時間の長さ、圧延荷
重の観点から熱間圧延での適切な最低温度を950℃と
して、それより高温で熱間圧延し、圧延後t秒経過した
とき、圧延後の組織の50%以上を再結晶させるための
条件を求めるべく種々実験を行った結果、下記式(1)
を得た。
Based on the above equation, from the viewpoint of the length of time required for 50% of the work structure to be recrystallized in each pass during rolling and the rolling load, an appropriate minimum temperature in hot rolling is set to 950. As a result of conducting various experiments to obtain conditions for recrystallizing 50% or more of the structure after rolling when hot-rolling at a temperature higher than ℃ and t seconds after rolling, the following formula (1)
I got

【0035】 R≧1.4Cr+94TiE +160Nb−20log t−30・・・・(1) (Rは圧下率%) Ti、Nb含有のフェライト系ステンレス鋼において
は、上記式(1)を満足するように熱間圧延時のパス間
時間、各パスでの圧下率とCr、Ti、Nb量を適切に
制御することにより熱間圧延時の再結晶を促進させ耐リ
ジング性を向上させることが可能となる。
R ≧ 1.4Cr + 94Ti E + 160Nb−20log t−30 (1) (R is reduction ratio%) In the ferritic stainless steel containing Ti and Nb, the above formula (1) should be satisfied. In addition, it is possible to promote recrystallization during hot rolling and improve ridging resistance by appropriately controlling the time between passes during hot rolling, the reduction ratio in each pass, and the amounts of Cr, Ti, and Nb. Become.

【0036】熱間圧延温度は通常の1250〜900℃
程度で、必要により熱延板、冷延板の焼鈍を行う。ま
た、熱間圧延後の冷間圧延は通常の方法でよい。
The hot rolling temperature is usually 1250 to 900 ° C.
Annealing of hot-rolled sheet and cold-rolled sheet is carried out if necessary. In addition, cold rolling after hot rolling may be an ordinary method.

【0037】次に本発明における成分組成と熱延条件の
限定理由と作用について説明する。
Next, the reasons for limiting the component composition and the hot rolling conditions and the action in the present invention will be explained.

【0038】C、N:C、Nは低いほどよく、含有量が
0.02重量%を超えるとTi、Nb量との関係から冷
延板での固溶量が増加してしまい耐食性、成形性共に劣
化するため上限を0.02%とした。
C, N: The lower the content of C, N, the better. If the content exceeds 0.02% by weight, the amount of solid solution in the cold-rolled sheet will increase due to the relationship with the amounts of Ti and Nb, resulting in corrosion resistance and forming. The upper limit was set to 0.02% because both the properties deteriorate.

【0039】Si、Mn:これらは脱酸のための元素で
あるが、それぞれ1%を超えると成形性が劣化するの
で、上限を各1%とした。
Si, Mn: These are elements for deoxidation, but if each exceeds 1%, the formability deteriorates, so the upper limit was made 1% each.

【0040】P:不純物のPは、0.04%を超えると
成形性が著しく悪化するので上限を0.04%とする。
P: If the content of P as an impurity exceeds 0.04%, the formability is significantly deteriorated, so the upper limit is made 0.04%.

【0041】S:不純物のSは、0.02%を超えると
耐食性が劣化するので上限を0.02%とする。
S: If S of impurities exceeds 0.02%, the corrosion resistance deteriorates, so the upper limit is made 0.02%.

【0042】Cr:Crは、耐食性を確保するための元
素で、11%未満ではステンレス鋼としての耐食性が保
てなく、また18%を超えると鋼中のC、N活量が下が
り、熱延途中でTi、Nbの炭窒化物が微細に析出しや
すくなり熱延時の再結晶の進行が極端に抑制される。C
rによる再結晶抑制作用も大きくなり、目的の圧延後の
再結晶が十分に得られなくなるからである。
Cr: Cr is an element for ensuring the corrosion resistance, and if it is less than 11%, the corrosion resistance as stainless steel cannot be maintained, and if it exceeds 18%, the C and N activities in the steel decrease and the hot rolling Carbonitrides of Ti and Nb are likely to be finely precipitated during the process, and the progress of recrystallization during hot rolling is extremely suppressed. C
This is because the recrystallization suppressing effect of r is also increased, and the desired recrystallization after rolling cannot be sufficiently obtained.

【0043】Ti:Tiの下限をN量の4倍%とした理
由は、TiはTiNとして析出させNbNの生成と共に
熱延前の段階で実質的に固溶Nを皆無にできるが、4N
%未満になると熱延途中でTiNが析出し本発明の目的
である十分な再結晶が得られなくなるからである。一
方、1%を超えると成形性が劣化すると共に、圧延パス
間での再結晶が抑制され、耐リジング性が劣化するため
上限を1%とする。
Ti: The lower limit of Ti is set to 4 times the amount of N. The reason for this is that Ti is precipitated as TiN so that solid solution N can be substantially eliminated at the stage before hot rolling with the formation of NbN.
If it is less than 0.1%, TiN is precipitated during hot rolling and sufficient recrystallization, which is the object of the present invention, cannot be obtained. On the other hand, if it exceeds 1%, the formability is deteriorated, recrystallization is suppressed between rolling passes, and the ridging resistance is deteriorated, so the upper limit is made 1%.

【0044】Nb:Nbは耐食性向上効果があり必要に
より添加されるが、0.5%を超えると圧延パス間での
再結晶を抑制する作用があり、耐リジング性を劣化させ
るので上限を0.5%とする。
Nb: Nb has an effect of improving corrosion resistance and is added if necessary, but if it exceeds 0.5%, it has an effect of suppressing recrystallization between rolling passes and deteriorates ridging resistance, so the upper limit is 0. 0.5%.

【0045】Ti+Nb:Ti+Nbの下限を8(C+
N)%とした理由は、8(C+N)%未満では、スラブ
加熱時のC、Nを十分Ti、Nb炭窒化物として固定で
きず、これも上記同様再結晶抑制につながり、耐食性、
成形性にも悪影響を及ぼすためである。
Ti + Nb: The lower limit of Ti + Nb is 8 (C +
The reason why N)% is less than 8 (C + N)% is that C and N at the time of slab heating cannot be fixed sufficiently as Ti and Nb carbonitrides, which also leads to suppression of recrystallization and corrosion resistance,
This is because the moldability is also adversely affected.

【0046】熱間圧延温度、1100〜950℃:上限
を1100℃、下限を950℃に限定した理由は、11
00℃を超える温度域での熱間圧延では再結晶よりも回
復を主とした組織となり凝固組織を破壊するには至らな
いからであり、また950℃未満では再結晶にかかる時
間が長くなり、熱延板の再加熱をしない限りこれも十分
な再結晶組織が得られないからである。
Hot rolling temperature, 1100 to 950 ° C .: The reason for limiting the upper limit to 1100 ° C. and the lower limit to 950 ° C. is 11
This is because hot rolling in a temperature range of higher than 00 ° C does not lead to destruction of the solidified structure due to a structure mainly for recovery rather than recrystallization, and if the temperature is lower than 950 ° C, the time required for recrystallization becomes long, This is because a sufficient recrystallized structure cannot be obtained unless the hot-rolled sheet is reheated.

【0047】R≧1.4Cr+94TiE +160Nb
−20log t−30:熱間圧延の3パス以上の圧延での
圧下率Rを規定するのは、前記したように各圧延パス間
で加工組織の50%を再結晶させるためであり、この式
の右辺で与えられる値よりも小さい圧下率で圧延を実施
した場合、熱間圧延温度1100〜950℃の温度域で
の各パス間で50%以上の再結晶組織が得られないから
である。
R ≧ 1.4Cr + 94Ti E + 160Nb
-20log t-30: The reason why the rolling reduction R in the rolling of three or more passes of hot rolling is specified is to recrystallize 50% of the worked structure between the rolling passes as described above, and this formula This is because when rolling is carried out at a rolling reduction smaller than the value given on the right side of, the recrystallization structure of 50% or more cannot be obtained between the passes in the temperature range of the hot rolling temperature of 1100 to 950 ° C.

【0048】圧下率Rのパスが3回以上の圧延:上記式
を満足する圧下率のパスを3回以上行うのは、3回未満
では凝固組織を完全に破壊し、結晶方位のランダム化が
できず、耐リジング性の改善が図れないからである。な
お、この式を満足する圧下率とするのは1100〜95
0℃での温度域での圧下でよく、この温度範囲外の熱間
圧延温度域での圧下率は任意でよい。
Rolling with a rolling pass of a rolling reduction R of 3 times or more: If the rolling pass of a rolling reduction satisfying the above formula is performed 3 times or more, the solidified structure is completely destroyed and the crystal orientation is randomized if the rolling is performed less than 3 times. This is because it is not possible to improve ridging resistance. In addition, the rolling reduction satisfying this equation is 1100 to 95.
The rolling may be performed in the temperature range of 0 ° C., and the rolling reduction in the hot rolling temperature range outside this temperature range may be arbitrary.

【0049】[0049]

【実施例】次に、実施例により本発明の効果について具
体的に説明する。
EXAMPLES Next, the effects of the present invention will be specifically described by way of examples.

【0050】表2に示す成分の25kgのインゴットを溶
製し、鍛造により厚さ40mmのスラブにして供試鋼とし
た。このスラブを1150℃に加熱した後、表3に示す
パススケジュールで熱間圧延及び熱間圧延を行い4mm
厚の熱延鋼板にした。
A 25 kg ingot having the components shown in Table 2 was melted and forged into a slab having a thickness of 40 mm to obtain a sample steel. After heating this slab to 1150 ° C., hot rolling and hot rolling were performed according to the pass schedule shown in Table 3 to 4 mm.
A hot rolled steel sheet was used.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】この熱延板に950℃で6分保持後空冷す
る焼鈍を施し、酸洗脱スケール後0.8mmまで冷間圧
延し、次いで980℃で2分保持後空冷する冷延板仕上
焼鈍を行い、耐リジング性及び成形性を評価した。その
結果を表4に示す。
This hot-rolled sheet was annealed by holding it at 950 ° C. for 6 minutes and then air-cooling, pickling and descaling, cold-rolling to 0.8 mm, and then holding it at 980 ° C. for 2 minutes and air-cooling finish annealing. The ridging resistance and moldability were evaluated. The results are shown in Table 4.

【0054】[0054]

【表4】 [Table 4]

【0055】対リジング性の評価方法は、上記冷延鋼板
をJIS5号引張試験片(各条件2枚)に加工後、表面
を鏡面研磨し、20%引張変形後試験片表面を3次元粗
さ計でリジングの高さを測定し、グレードをリジングの
高さにより下記のように決めた。
The ridging resistance was evaluated by processing the cold-rolled steel sheet into JIS No. 5 tensile test pieces (two pieces under each condition), mirror-polishing the surface, and after 20% tensile deformation, the surface of the test piece had a three-dimensional roughness. The ridging height was measured with a meter, and the grade was determined as follows according to the ridging height.

【0056】 グレードA :5μm未満 グレードB´:20〜30μm未満 〃 A´:5〜10μm未満 〃 C :30μm以上 〃 B :10〜20μm未満 ここで、A、A´が実用上問題ないレベルである。表3
より、耐リジング性A、A´を確保するには熱間圧延で
本発明における式を満足する圧下率のパスを3回以上行
う必要があることが分かる。例えば、表4の圧延番号V
の場合、本発明で規定する圧下率を満足した圧延は3と
4パスの2回の例であるが、耐リジング性は劣っている
ことが分かる。またr値も耐リジング性同様に上昇し、
成形性の面でも充分な特性を有する。
Grade A: less than 5 μm Grade B ′: 20 to less than 30 μm 〃 A ′: less than 5 to 10 μm 〃 C: 30 μm or more 〃 B: less than 10 to 20 μm where A and A ′ are practically no problem is there. Table 3
From the above, it can be seen that in order to secure the ridging resistances A and A ′, hot rolling needs to be performed three or more passes with a rolling reduction satisfying the formula of the present invention. For example, rolling number V in Table 4
In the case of, the rolling satisfying the rolling reduction specified in the present invention is an example of two times of 3 and 4 passes, but it is understood that the ridging resistance is inferior. In addition, the r-value increases as well as ridging resistance
It has sufficient characteristics in terms of moldability.

【0057】[0057]

【発明の効果】上記実施例より示された通り、本発明に
よれば耐リジング性に優れたフェライト系ステンレス鋼
をTi、Nbの添加量と熱間圧延圧下率条件を組み合わ
せた最適な条件の下に製造することができる。
As shown in the above examples, according to the present invention, a ferritic stainless steel having excellent ridging resistance can be used under the optimum conditions in which the amounts of Ti and Nb added and the hot rolling reduction conditions are combined. Can be manufactured below.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cr、Ti 、Nbの再結晶時間に及ぼす影響を
示す図である
FIG. 1 is a diagram showing the influence of Cr, Ti, and Nb on the recrystallization time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.02%以下、Si:1
%以下、Mn:1%以下、P:0.04%以下、S:
0.02%以下、N:0.02%以下、Cr:11〜1
8%、Ti:4N%〜1%、Nb:0〜0.5%を含
み、Ti+Nb:8(C+N)%以上で残部Fe及び不
可避的不純物からなるフェライト系ステンレス鋼の熱間
圧延において、1100〜950℃の温度域での圧延
で、下記式(1)を満足する圧下率R(%)のパスが3
回以上となるように熱間圧延を行い、次いで冷間圧延す
ることを特徴とする耐リジング性に優れたフェライト系
ステンレス鋼板の製造方法 R≧1.4Cr+94TiE +160Nb−20log t−30・・・・(1) ただし、 t:圧延パス間時間(秒) TiE :有効Ti量(重量%)、TiE =Ti−3.4
N とする。
1. By weight%, C: 0.02% or less, Si: 1
% Or less, Mn: 1% or less, P: 0.04% or less, S:
0.02% or less, N: 0.02% or less, Cr: 11 to 1
In the hot rolling of ferritic stainless steel containing 8%, Ti: 4 N% to 1%, Nb: 0 to 0.5%, Ti + Nb: 8 (C + N)% or more and the balance Fe and unavoidable impurities, 1100 When rolling in the temperature range of up to 950 ° C., there are 3 passes with a rolling reduction R (%) that satisfies the following formula (1).
A method for producing a ferritic stainless steel sheet having excellent ridging resistance, which comprises performing hot rolling so that the number of times is equal to or more than one, and then performing cold rolling. R ≧ 1.4Cr + 94Ti E + 160Nb-20log t-30 ... - (1) where, t: rolling path time (in seconds) Ti E: effective Ti amount (wt%), Ti E = Ti- 3.4
Let N.
JP10098795A 1995-04-25 1995-04-25 Production of ferritic stainless steel sheet excellent in ridging resistance Pending JPH08295941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098795A JPH08295941A (en) 1995-04-25 1995-04-25 Production of ferritic stainless steel sheet excellent in ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10098795A JPH08295941A (en) 1995-04-25 1995-04-25 Production of ferritic stainless steel sheet excellent in ridging resistance

Publications (1)

Publication Number Publication Date
JPH08295941A true JPH08295941A (en) 1996-11-12

Family

ID=14288680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098795A Pending JPH08295941A (en) 1995-04-25 1995-04-25 Production of ferritic stainless steel sheet excellent in ridging resistance

Country Status (1)

Country Link
JP (1) JPH08295941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053817A (en) * 1996-08-08 1998-02-24 Nippon Steel Corp Manufacture of ferritic stainless steel sheet excellent in roping resistance, ridging resistance, and formability
JP2020532651A (en) * 2017-08-31 2020-11-12 ポスコPosco Ferritic stainless steel with improved heat dissipation and workability and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053817A (en) * 1996-08-08 1998-02-24 Nippon Steel Corp Manufacture of ferritic stainless steel sheet excellent in roping resistance, ridging resistance, and formability
JP2020532651A (en) * 2017-08-31 2020-11-12 ポスコPosco Ferritic stainless steel with improved heat dissipation and workability and its manufacturing method

Similar Documents

Publication Publication Date Title
EP1846584B2 (en) Austenitic steel having high strength and formability method of producing said steel and use thereof
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
KR101705135B1 (en) Ferritic stainless steel sheet
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
CN110343970A (en) A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
CN111295458A (en) Ferritic stainless steel sheet and method for producing same
JP3449126B2 (en) Austenitic stainless cold-rolled steel sheet with small springback amount and method for producing the same
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JPH08296000A (en) Ferritic stainless steel excellent in workability and corrosion resistance and its production
JPH0617519B2 (en) Method for producing steel plate or strip of ferritic stainless steel with good workability
JP2002030346A (en) METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY
JPH08295941A (en) Production of ferritic stainless steel sheet excellent in ridging resistance
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
WO2014045476A1 (en) Ferritic stainless steel
JP4239247B2 (en) Method for producing Ti-containing ferritic stainless steel sheet with excellent workability