JPH08295572A - Heat treatment of monolithic refractory - Google Patents

Heat treatment of monolithic refractory

Info

Publication number
JPH08295572A
JPH08295572A JP7125660A JP12566095A JPH08295572A JP H08295572 A JPH08295572 A JP H08295572A JP 7125660 A JP7125660 A JP 7125660A JP 12566095 A JP12566095 A JP 12566095A JP H08295572 A JPH08295572 A JP H08295572A
Authority
JP
Japan
Prior art keywords
heating
binder
carbon
water
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7125660A
Other languages
Japanese (ja)
Inventor
Shinichi Tamura
信一 田村
Atsushi Nakao
淳 中尾
Akihiro Oshima
明博 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7125660A priority Critical patent/JPH08295572A/en
Publication of JPH08295572A publication Critical patent/JPH08295572A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain a monolithic refractory which contains a carbonaceous binder and is homogeneous and rigid, and also, has high service durability by adding water to a monolithic refractory contg. a carbonaceous binder and heating the resultant mixture to a specified temp. by irradiating it with a microwave. CONSTITUTION: In this heat treatment, at the time of adding water to a monolithic refractory contg. a carbonaceous binder, kneading the resultant mixture and, thereafter, forming the kneaded material into a formed body, the resultant formed body is dried to remove water by irradiating it with a microwave, and further, heated by continuously performing this irradiation so that the temp. of the back face and surface of the formed body are >=150 deg.C and <=450 deg.C, respectively to solidify the carbonaceous binder. Heating of a material by irradiating it with a microwave is generally classified into dielectric heating and induction heating and, at the time of heating the material with the microwave irradiation, the difference in temp. between the surface and back face of the material is slight and, accordingly, the material can uniformly be heated. At this time, when the surface temp. of the formed body is raised to 150 deg.C at which the volatilization of volatile matter in the surface becomes active, the back face temp. is already >=150 deg.C at which water is completely volatilized. After the complete volatilization of water, the volatile components of the binder is volatilized to solidify the binder. Since oxidation of the carbon component of the binder is rapidly accelerated when the surface temp. exceeds 450 deg.C, it is required to complete the solidification of the binder at <=450 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属やスラグに対
し耐用性に優れる不定形耐火物を得るための、加熱処理
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for obtaining an amorphous refractory having excellent durability against molten metal and slag.

【0002】[0002]

【従来の技術】不定形耐火物は、一般に粒度分布を調整
した粉体材料に水を添加して混練し、流し込みや吹き付
けなどの方法で施工する。成形終了後、加熱により水分
を除去し、その後昇熱して溶融金属スラグなどと接する
部位で使用される。乾燥過程さらに昇熱あるいは予熱過
程でも強度が必要であり、種々のバインダーが添加され
ている。水分の乾燥には、一般にはガスバーナー加熱や
電気加熱などが適用されるが、誘電体である水を加熱で
きるマイクロ波を用いた乾燥方法も既知である(例えば
特公照48ー032175号公報、特公昭49ー001
921号公報)。また、不定形耐火物の強度を発現する
バインダーとしては珪酸ソーダや燐酸系の無機質バイン
ダー及びコールタール、コールタールピッチ、フェノー
ル樹脂などの炭素を含む有機バインダー等が使用され
る。
2. Description of the Related Art In general, an irregular refractory material is constructed by adding water to a powder material having a controlled particle size distribution, kneading, and pouring or spraying. After the completion of molding, moisture is removed by heating, and then the temperature is raised to be used in a portion in contact with molten metal slag or the like. Strength is required in the drying process and also in the heating or preheating process, and various binders are added. Generally, gas burner heating, electric heating, or the like is applied to dry the water, but a drying method using a microwave capable of heating water which is a dielectric is also known (for example, Japanese Patent Publication No. 48-032175). , Tokkyo Sho 49-001
921). In addition, as the binder exhibiting the strength of the amorphous refractory, sodium silicate, a phosphoric acid-based inorganic binder, an organic binder containing carbon such as coal tar, coal tar pitch, or a phenol resin is used.

【0003】[0003]

【発明が解決しようとする課題】不定形耐火物は成分的
にも多様であり、従来は金属酸化物系の材料が使用量か
らみても圧倒的に多かったが、最近は炭素系の粉体や炭
素系のバインダーを添加した不定形耐火物に対する要請
が増加しつつある。炭素成分を含むことにより、溶融ス
ラグに対する耐用性が向上すること、また熱伝導性がよ
くなり、耐熱衝撃性が向上することなど長所を有する。
しかし、酸素の存在下、450℃以上の温度に於いて酸
化損耗し、消滅する弱点がある。そのため酸化防止剤を
添加および表面に塗布し、高温で溶融してガラス層を形
成させる方法などが採用されている。炭素を含有した不
定形耐火物施工体をバーナー燃焼した排ガスで乾燥させ
る場合、表面は高温になり、背面との温度勾配が大き
く、背面は100℃以下でまだ水分を含む状態でも表面
は450℃以上となり、酸化が生じてしまう。
Inorganic refractories are diverse in composition, and conventionally, metal oxide-based materials were overwhelmingly large in terms of the amount used, but recently, carbon-based powders have been used. There is an increasing demand for amorphous refractories to which a carbon-based binder is added. The inclusion of the carbon component has advantages such as improved durability against molten slag, improved thermal conductivity, and improved thermal shock resistance.
However, in the presence of oxygen, there is a weak point that it is oxidized and worn out at a temperature of 450 ° C. or higher and disappears. Therefore, a method has been adopted in which an antioxidant is added and applied to the surface and melted at a high temperature to form a glass layer. When carbon-containing amorphous refractory construction is dried with burner-burned exhaust gas, the surface becomes hot and has a large temperature gradient with the back surface. The back surface is 100 ° C or less, and the surface is 450 ° C even if it still contains water. As described above, oxidation occurs.

【0004】さらに、背面の水分が水蒸気化して表面付
近の温度の高い付近に存在すると、水蒸気酸化により、
酸化が加速される。また、炭素系バインダーを含む場
合、150℃から450℃までにバインダー成分は溶
融、揮発分散逸、固化して緻密化するので、不均一な昇
温により表面部分で温度が上がり、固化すると、背面の
揮発分が表面へ抜け難いことから爆裂、亀裂発生するこ
と、固化して緻密化する際の体積変化により細かな亀裂
を発生すること等、耐火物の組織を劣化させてしまう。
Further, when the water on the back surface is vaporized and exists near the surface where the temperature is high, steam oxidation causes
Oxidation is accelerated. When a carbon-based binder is included, the binder component melts, volatilizes, disperses, and solidifies to densify between 150 ° C and 450 ° C, so the temperature rises at the surface due to uneven temperature rise, and when solidified, the back surface The volatile components of the refractory are difficult to escape to the surface, and thus the structure of the refractory is deteriorated, such as explosion and cracking, and fine cracking due to volume change when solidified and densified.

【0005】故に、450℃までの酸化が起こるまでは
表面、背面の温度勾配を極力小さくして昇温することが
要請される。本発明は、炭素系バインダーを含み、均一
で強固かつ高耐用な不定形耐火物を得るための加熱処理
方法を提供することを目的とする。
Therefore, it is required to raise the temperature by minimizing the temperature gradient on the front surface and the back surface until the oxidation up to 450 ° C. occurs. An object of the present invention is to provide a heat treatment method for obtaining an amorphous refractory material containing a carbon-based binder, which is uniform, strong, and highly durable.

【0006】[0006]

【課題を解決するための手段】本発明は、マイクロ波を
用いて、炭素成分を含有する不定形耐火物を加熱する方
法である。炭素系バインダーとは、揮発成分を含むバイ
ンダーの役割を担う常温で粉体もしくは液体である。炭
素系のバインダーを含み、水を加えて施工する不定形耐
火物ではマイクロ波を照射し、表面と背面の温度差を極
力少なくしながら、まず水分を完全に乾燥させた後、表
面付近の炭素成分の酸化消耗を極力抑制する温度範囲で
炭素系バインダーを固化させる。流動性付与のための水
分を含まず、常温で個体あるいは液体状の炭素系バイン
ダーを含む不定形耐火物ではマイクロ波を照射によって
表面付近の炭素成分の酸化消耗を極力抑制する温度範囲
で炭素系バインダーを固化させる。不定形耐火物の保形
性が確保された後、保熱温度まで速やかに昇熱し、使用
に供する。マイクロ波で加熱中、散逸する水蒸気や揮発
成分の排除を促進するためには、被加熱体に近い温度の
加熱空気を流すことが効果的である。
The present invention is a method for heating an amorphous refractory material containing a carbon component using microwaves. The carbon-based binder is a powder or liquid at room temperature that plays the role of a binder containing a volatile component. Irregular refractories that contain a carbon-based binder and are added with water are irradiated with microwaves to minimize the temperature difference between the front and back surfaces, and to completely dry the moisture, then the carbon near the surface. The carbon-based binder is solidified in a temperature range that suppresses oxidative consumption of components as much as possible. Irregular refractories that do not contain water for imparting fluidity and contain solid or liquid carbon-based binders at room temperature are carbon-based within a temperature range that suppresses the oxidation and consumption of carbon components near the surface by microwave irradiation. Allow the binder to solidify. After ensuring the shape retention of the amorphous refractory, quickly raise the temperature to the heat retention temperature for use. In order to promote the elimination of water vapor and volatile components that dissipate during heating with microwaves, it is effective to flow heated air at a temperature close to that of the object to be heated.

【0007】即ち (1)炭素系バインダーを含む不定形耐火物に、水を加
えて混練後成形する際に、マイクロ波を照射し、水分を
乾燥させ、さらに継続して照射することにより、背面で
150℃以上、かつ表面で450℃以下となるよう加熱
して炭素系バインダーを固化させること。 (2)炭素系バインダーを含む不定形耐火物を施行後、
マイクロ波を照射して、背面で150℃以上、かつ表面
で450℃以下となるよう加熱して炭素系バインダーを
固化させること。 (3)大気中でマイクロ波を照射して上記(1)、
(2)の如く炭素系バインダーを固化させること。 を特徴とする不定形耐火物の加熱処理方法を手段とす
る。
That is, (1) by adding water to an amorphous refractory material containing a carbon-based binder, kneading the mixture, and then molding it, irradiate it with microwaves to dry the moisture, and then irradiate it continuously to obtain a back surface. In order to solidify the carbon-based binder by heating at 150 ° C. or higher and at 450 ° C. or lower on the surface. (2) After applying an amorphous refractory containing a carbon-based binder,
Irradiating with microwaves to heat the back surface to 150 ° C. or higher and the front surface to 450 ° C. or lower to solidify the carbon-based binder. (3) The above (1) by irradiating a microwave in the atmosphere,
Solidify the carbon-based binder as in (2). And a heat treatment method for an irregular refractory material.

【0008】[0008]

【作用】マイクロ波による物質の加熱は、大別して誘電
加熱と誘導加熱がある。誘電加熱は電気伝導度の低い誘
電体の場合、分子の振動、回転に起因する内部摩擦によ
る発熱が主体であり、物質のもつ誘電率と誘電体損失角
の大きいほど容易に加熱される。水分子や液状有機分子
などはこの理由により発熱する場合が多い。誘電加熱は
電気伝導度の高い導電体の場合、誘電電流による発熱が
起こる。電気伝導度の高い炭素では誘導加熱が主体とな
り、電気伝導度の低い炭素では誘電加熱が主体となる。
マイクロ波としては、0.915GHz以上を用いるこ
とが多く、2.45GHzが最も一般的である。それ以
上の周波数のマイクロ波も使用可能であるが、高周波数
になればマイクロ波の物質中への浸透深さは小さくなる
傾向にある。
[Function] The heating of the substance by the microwave is roughly classified into dielectric heating and induction heating. In the case of a dielectric material having a low electric conductivity, the dielectric heating is mainly caused by heat generated by internal friction caused by vibration and rotation of molecules, and the higher the permittivity and the dielectric loss angle of the substance, the easier the heating. For this reason, water molecules and liquid organic molecules often generate heat. In the case of a conductor having a high electric conductivity, the dielectric heating causes heat generation due to a dielectric current. Induction heating is mainly used for carbon having high electric conductivity, and dielectric heating is mainly used for carbon having low electric conductivity.
As the microwave, 0.915 GHz or more is often used, and 2.45 GHz is the most common. Microwaves having a higher frequency can be used, but the penetration depth of microwaves into a substance tends to become smaller at higher frequencies.

【0009】水分を加えて混練後施工する不定形耐火物
に於いて、マイクロ波乾燥することにより、均熱されな
がら昇熱されるので表面と背面の物性差も少なく、乾燥
収縮などに伴う亀裂発生も無い。また電気伝導性の良い
炭素を含む場合、誘導加熱も加わり、短時間で効率良く
加熱される。炭素系バインダーを含む場合、バインダー
は主として150℃近辺から揮発分の散逸が活発になる
ことから、急激に昇温して水蒸気発生(水分散逸)と揮
発分散逸が同時に発生すると気体発生増大により、強度
の弱い素地に空隙等欠陥を発生すること、また分解中の
活性な炭素が水蒸気により、酸化が促進され組織が劣化
するなど不定形耐火物の性能を著しく低下してしまうの
で、表面付近のバインダーの揮発分が散逸し始める前に
背面の水分を完全に除去することが不可欠である。
[0009] In an irregular shaped refractory to be applied after adding water and kneading, by microwave drying, the temperature rises while being soaked, so there is little difference in physical properties between the front and back surfaces, and cracking occurs due to drying shrinkage, etc. There is also no. In addition, when carbon having good electric conductivity is included, induction heating is also added, and heating is efficiently performed in a short time. When a carbon-based binder is included, since the volatile component mainly dissipates from around 150 ° C, the temperature rises rapidly and vapor generation (water dispersal) and volatile dispersal occur at the same time. Voids and other defects are generated in the base material with low strength, and the active carbon during decomposition is oxidized by water vapor, which accelerates the oxidation and deteriorates the structure. It is essential to completely remove the moisture on the backside before the binder volatiles begin to dissipate.

【0010】マイクロ波加熱の場合は表面と背面温度差
は僅かで均一加熱ができる特徴があり、表面の揮発分散
逸が活発になる150℃に達する時点で、既に背面は1
50℃以上になり水分は完全に散逸している。水分が完
全に散逸した後、バインダーの揮発成分が散逸し、固化
する。表面が450℃を越えると炭素成分の酸化が急激
に増大するので、450℃以下でバインダーの固化を終
了させることが必要である。その際、背面は100℃以
上で水分が完全に除去された後、150℃以上で炭素系
バインダーの揮発分散逸、固化が促進されるので、背面
が150℃以上、表面を450℃以下の範囲で均一加熱
させて炭素系バインダーを安定かつ完全に固化させるこ
とができる。
In the case of microwave heating, the temperature difference between the front surface and the back surface is small and uniform heating is possible, and when the temperature reaches 150 ° C. at which the volatilization and dispersion of the surface becomes active, the back surface has already reached 1
Water has been completely dissipated at temperatures above 50 ° C. After the water is completely dissipated, the volatile components of the binder dissipate and solidify. When the surface temperature exceeds 450 ° C., the oxidation of the carbon component rapidly increases, so it is necessary to complete the solidification of the binder at 450 ° C. or lower. At that time, after the water is completely removed on the back surface at 100 ° C or higher, the volatilization dispersion and solidification of the carbon-based binder are promoted at 150 ° C or higher, so that the back surface is in the range of 150 ° C or higher and the surface of 450 ° C or lower. Can be uniformly heated to solidify the carbon-based binder stably and completely.

【0011】均一加熱を特に必要とする温度範囲は背面
が150℃以上、かつ表面が450℃以下であるが、好
ましくは背面が200℃以上、かつ表面が400℃以下
である。図1には炭素系バインダーを用いた成形体の加
熱挙動を表す。ここでは、炭素粉に炭素系バインダーお
よび水分を配合した成形体で試験した結果を示す。横軸
に加熱処理温度、縦軸には強度と酸化率を示した。水分
乾燥後、炭素系バインダーの揮発分散逸、固化により強
度を発現し、150℃では50%強度、200℃では7
0%強度を示す。
The temperature range in which uniform heating is particularly required is 150 ° C. or higher on the back side and 450 ° C. or lower on the front side, preferably 200 ° C. or higher on the back side and 400 ° C. or lower on the surface. FIG. 1 shows the heating behavior of a molded product using a carbon-based binder. Here, the results of the test conducted on a molded body in which carbon powder is mixed with a carbon-based binder and water are shown. The horizontal axis shows the heat treatment temperature, and the vertical axis shows the strength and the oxidation rate. After drying with water, the strength is developed by volatilization and dispersion of the carbon-based binder and solidification. 50% strength at 150 ° C, 7% at 200 ° C.
Indicates 0% strength.

【0012】他方、酸化は400℃付近から始まり、4
50℃では約5%の酸化が進行する。故にマイクロ波に
より水分を乾燥させた後均一加熱を行う範囲としては1
50℃〜450℃、好ましくは200℃〜400℃であ
る。水分を含まず炭素系バインダーを含む場合、水分の
除去は必要ないが、効果は前述の場合と同様であり、マ
イクロ波を用い、背面150℃、表面450℃の範囲
で、好ましくは背面が200℃以上、かつ表面が400
℃以下の範囲で均一加熱することにより炭素系バインダ
ーを安全かつ完全に固化させることができる。
On the other hand, the oxidation starts at around 400 ° C. and 4
At 50 ° C., about 5% of oxidation proceeds. Therefore, the range of uniform heating after drying water by microwave is 1
It is 50 ° C to 450 ° C, preferably 200 ° C to 400 ° C. When the carbon-based binder is contained without water, it is not necessary to remove the water, but the effect is similar to the above-mentioned case, and microwaves are used, and the back surface is in the range of 150 ° C. and the surface 450 ° C., preferably 200 ℃ or more and the surface is 400
The carbon-based binder can be solidified safely and completely by uniformly heating in the range of ℃ or less.

【0013】本発明のマイクロ波加熱を用い均一加熱す
ることにより、不定形耐火物中の炭素系バインダーを安
全かつ完全に固化することが可能となり、高強度かつ高
耐用の不定形耐火物を実用化することができた。不定形
耐火物において、炭素形バインダーを用いる場合、炭素
の粉体を加えると、焼成によるカーボン結合の強度が向
上する傾向を示し、併用することが多い。 また、45
0℃を越えた温度では酸化防止剤の効果を発現し得る温
度まで急熱することが望ましく、その際もマイクロ波を
用いることにより、均一に昇温され、最も高耐用を発揮
する組織を得ることができる。但し、450℃を越えた
温度の加熱については、低コストが望まれることから多
少の特性低下を許容して従来加熱方法を採用することも
可能である。
By uniformly heating using the microwave heating of the present invention, the carbon-based binder in the amorphous refractory can be solidified safely and completely, and the amorphous refractory having high strength and high durability can be practically used. I was able to In the case of using a carbon binder in an amorphous refractory, the addition of carbon powder tends to improve the strength of carbon bond by firing, and is often used in combination. Also, 45
When the temperature exceeds 0 ° C, it is desirable to rapidly heat to a temperature at which the effect of the antioxidant can be exhibited. At this time, the microwave is used to uniformly raise the temperature and obtain the structure having the highest durability. be able to. However, for heating at a temperature of higher than 450 ° C., it is possible to use the conventional heating method while allowing a slight decrease in characteristics because low cost is desired.

【0014】[0014]

【実施例】【Example】

<ケース1>実施例1と比較例1を示す。粉体の粒度構
成としては表1に示すものを用いた。
<Case 1> Example 1 and Comparative Example 1 are shown. As the particle size composition of the powder, the one shown in Table 1 was used.

【表1】 この粉体を重量で100部に対して、炭素系バインダー
としてピッチ粉末10部、酸化防止剤1部に水8部を混
ぜ、混練後、振動成形により、500×500×250
mmの大きさの成形体を作成した。500×500mm
の表面として周りを断熱レンガで囲み、表面からの加熱
を可能とする炉に設置した。加熱は次の2通りの方法で
行った。測温は成形体の表面に温度センサーを設置して
行った。
[Table 1] To 100 parts by weight of this powder, 10 parts of pitch powder as a carbon-based binder, 1 part of antioxidant and 8 parts of water were mixed, and after kneading, vibration molding was performed to obtain 500 × 500 × 250.
A molded body having a size of mm was prepared. 500 x 500 mm
The surface was surrounded by heat insulating bricks and installed in a furnace that enables heating from the surface. The heating was performed by the following two methods. The temperature was measured by installing a temperature sensor on the surface of the molded body.

【0015】第1法:ガスバーナーを用い1時間で15
0℃まで昇温1時間保持、続いて1時間で450℃まで
昇温1時間保持、その後450℃から1400℃まで3
時間で昇温し1時間保持後炉冷した。 第2法:マイクロ波(2.45GHz)を照射し、1時
間で150℃まで昇温1時間保持、続いて1時間で45
0℃まで昇温1時間保持した。その後、ガスバーナーを
用い450℃から1400℃まで3時間で昇温し1時間
保持後炉冷した。
First method: 15 hours using a gas burner
Raise the temperature to 0 ° C for 1 hour, then raise the temperature to 450 ° C for 1 hour, hold for 1 hour, and then increase from 450 ° C to 1400 ° C 3
The temperature was raised over a period of time, the temperature was maintained for 1 hour, and then the furnace was cooled. Second method: irradiation with microwave (2.45 GHz), heating to 150 ° C. in 1 hour and holding for 1 hour, and then 45 in 1 hour
The temperature was raised to 0 ° C. and maintained for 1 hour. Then, using a gas burner, the temperature was raised from 450 ° C. to 1400 ° C. in 3 hours, held for 1 hour, and cooled in the furnace.

【0016】第1法で加熱処理したものが比較例1、第
2法で加熱処理したものが実施例1である。試料の評価
方法としては、曲げ強度試験は加熱実験後、成形体の表
面と背面から40×40×160mmの試料を切り出し
3点曲げ試験を行った。気孔率は曲げ試験後の試料を使
用して測定した。表面酸化は目視観察の結果、劣化の程
度の大のものは×、小のものはOとした。耐食性は、加
熱処理後の成形体表面および背面から試料を切り出し、
円筒形のドラムの内側に張り合わせて耐火物の回転侵食
試験法で評価した。その際の、表2に示したスラグを用
い、1550℃で4時間行った。スラグは30分毎に排
滓し、新しいスラグを投入した。試験後、比較例1の溶
損量を100として以下の実施例、比較例の溶損量を指
数表示した。
Comparative Example 1 was heat-treated by the first method, and Example 1 was heat-treated by the second method. As a method for evaluating the sample, a bending strength test was carried out after a heating experiment, and a 40 × 40 × 160 mm sample was cut out from the front surface and the back surface of the molded body and subjected to a three-point bending test. The porosity was measured using the sample after the bending test. As a result of visual observation, the surface oxidation was evaluated as × when the degree of deterioration was large and O when the degree of deterioration was small. Corrosion resistance, cut the sample from the surface and back of the molded body after heat treatment,
It was attached to the inside of a cylindrical drum and evaluated by the rotary erosion test method of refractory materials. At that time, using the slag shown in Table 2, it was carried out at 1550 ° C. for 4 hours. Slag was discharged every 30 minutes and new slag was added. After the test, the erosion amount of Comparative Example 1 was set to 100, and the erosion amounts of the following Examples and Comparative Examples were displayed as an index.

【表2】 [Table 2]

【0017】結果を表3に示す。450℃加熱後の強度
をみると、実施例1では表面と背面とで差は小さく、強
度は大きいが、比較例1では温度差を発生して、背面か
らの水分の散逸と、表面における炭素系バインダーの変
化とが重なって起こるため、組織の劣化が生じ、強度が
小さい。1400℃加熱後では焼成による炭素結合を生
ずるので、強度は向上する。実施例1も450℃以上は
ガスバーナーによる急速加熱で、表面と背面に温度差が
発生するもので低温側の背面では表面に比べ強度は低
い。比較例1では、表面と背面の温度差は大きく背面の
水分がまだ残っている内に表面では炭素系バインダーの
揮発成分の散逸が起こり、背面からの水分の移動も加わ
って、化学構造が変わろうとしている活性な炭素成分が
酸化される。
The results are shown in Table 3. As for the strength after heating at 450 ° C., in Example 1, the difference between the front surface and the back surface is small and the strength is large, but in Comparative Example 1, a temperature difference is generated, the water is dissipated from the back surface, and the carbon on the surface is dissipated. Since the change occurs with the change of the system binder, deterioration of the structure occurs and the strength is low. After heating at 1400 ° C., carbon bond is generated by firing, so that the strength is improved. In Example 1 as well, a temperature difference between the front surface and the back surface is generated due to rapid heating by a gas burner at 450 ° C. or more, and the back surface on the low temperature side has lower strength than the surface. In Comparative Example 1, the temperature difference between the front surface and the back surface is large, and while the water content on the back surface still remains, the volatile components of the carbon-based binder dissipate on the surface, and the migration of water content from the back surface also changes the chemical structure. The active carbon component which is about to be oxidized is oxidized.

【0018】表面温度が450℃以上になり1400℃
までの急速加熱を開始しても、表面と背面の物性の差が
大きく、組織に欠陥が発生しやすいことから、1400
℃加熱後の強度も低い。耐食性試験による侵食量も実施
例1では少ないが、比較例1では大きく、特に水分蒸
発、バインダーによる強度発現の温度的タイミングが適
切でない背面の組織が悪く、侵食量も最も大きい。以上
のことから、450℃までをマイクロ波を用いて極力均
熱化する実施例1の優位性が認められる。
The surface temperature becomes 450 ° C or higher and becomes 1400 ° C.
Even if the rapid heating up to 1400 is started, there is a large difference in the physical properties between the front surface and the back surface, and defects easily occur in the tissue.
The strength after heating at ℃ is also low. The amount of erosion by the corrosion resistance test is also small in Example 1, but is large in Comparative Example 1, especially the back surface structure where the temperature timing of moisture evaporation and strength development by the binder is not appropriate, and the amount of erosion is the largest. From the above, the superiority of Example 1 in which heat up to 450 ° C. is used as much as possible by using microwaves is recognized.

【0019】<ケース2>実施例2と比較例2を示す。
粉体の粒度構成としては表1に示すものを用いた。 こ
の粉体を重量で100部に対して、炭素系バインダーと
して粉末状フェノール樹脂10部、酸化防止剤1部を混
ぜ、混合後、500Kg/cm2 で加圧成形し、500
×500×250mmの大きさの成形体を作製した。5
00×500mmの面を表面として周りを断熱レンガで
囲み、表面からの加熱を可能とする炉に設置した。加熱
方法、評価方法も前述の例と同様に行った。
<Case 2> Example 2 and Comparative Example 2 are shown.
As the particle size composition of the powder, the one shown in Table 1 was used. To 100 parts by weight of this powder, 10 parts of a powdery phenolic resin as a carbon-based binder and 1 part of an antioxidant are mixed, mixed and then pressure-molded at 500 Kg / cm 2 ,
A molded body having a size of × 500 × 250 mm was produced. 5
The surface was surrounded by a heat insulating brick with a surface of 00 × 500 mm as a surface, and the furnace was installed in a furnace capable of heating from the surface. The heating method and the evaluation method were the same as in the above-mentioned example.

【0020】結果を表3に示す。450℃加熱後の強度
は、比較例2の背面がかなり小さい。 今回は炭素系バ
インダーのみであり、バインダーの固化が順調に進行し
ないと安定した強度は得られない。450℃までのバイ
ンダーの固化過程が均一に進む実施例2では比較例2に
比べ、1400℃加熱後の強度も大きく、またバインダ
ー中の揮発成分の散逸も安定しているので気孔率も小さ
い。耐食性試験では、実施例2の試料が優れ、比較例2
の背面は強度も小さく、侵食量も大きい。表面酸化につ
いては、比較例2の場合でも本試料は成形時に水分を添
加しないので、比較例1よりは耐酸化の程度は良好であ
った。ただし比較例2では、背面からの揮発分の散逸が
450℃以上の加熱時でも続くので気孔率は大きく、実
施例2に比べると酸化されやすい傾向を示す。以上のよ
うに、本発明により、炭素系バインダーを含む高耐用性
不定形耐火物を得ることができる。
The results are shown in Table 3. Regarding the strength after heating at 450 ° C., the back surface of Comparative Example 2 is considerably small. This time, only the carbon-based binder is used, and if the solidification of the binder does not proceed smoothly, stable strength cannot be obtained. In Example 2 in which the solidification process of the binder up to 450 ° C. progresses uniformly, the strength after heating at 1400 ° C. is higher than in Comparative Example 2, and the dissipation of volatile components in the binder is stable, so the porosity is small. In the corrosion resistance test, the sample of Example 2 was excellent, and the sample of Comparative Example 2
The back surface of the has a low strength and a large amount of erosion. Regarding the surface oxidation, even in the case of Comparative Example 2, this sample did not add water at the time of molding, and therefore the degree of oxidation resistance was better than that of Comparative Example 1. However, in Comparative Example 2, since the dissipation of volatile components from the back surface continues even when heated to 450 ° C. or higher, the porosity is large, and compared with Example 2, it tends to be oxidized. As described above, according to the present invention, a highly durable amorphous refractory material containing a carbon-based binder can be obtained.

【0021】<ケース3>実施例3と比較例3を示す。
粉体の粒度構成としては表1に示すものをもちいた。こ
の粉体を重量で100部に対して、炭素系バインダーと
してピッチ粉末5部、液状フェノール樹脂15部を添加
し、酸化防止剤1部を混ぜ、混練後500Kg/cm2
で加圧成形し、500×500×250mmの大きさの
成形体を作製した。500×500mmの面を表面とし
て周りを断熱レンガで囲み、表面からの加熱を可能とす
る炉に設置した。加熱方法は前述と同様の第1法(比較
例3)と新たな第3法(実施例3)で行った。評価方法
は前述の例と同等の方法で行った。
<Case 3> Example 3 and Comparative Example 3 will be described.
As the particle size composition of the powder, the one shown in Table 1 was used. To 100 parts by weight of this powder, 5 parts of pitch powder as a carbon-based binder and 15 parts of liquid phenol resin were added, 1 part of antioxidant was mixed, and after kneading, 500 kg / cm 2
And pressure molding was carried out to prepare a molded body having a size of 500 × 500 × 250 mm. The surface was surrounded by a heat insulating brick with a surface of 500 × 500 mm as a surface, and it was installed in a furnace capable of heating from the surface. The heating method was the same as the first method (Comparative Example 3) and the new third method (Example 3). The evaluation method was the same method as the above example.

【0022】第3法:マイクロ波(2.45GHz)を
照射し、2時間で200℃まで昇温1時間保持、続いて
1時間で400℃まで昇温1時間保持した。その後、ガ
スバーナーを用い400℃から1400℃まで3時間で
昇温し1時間保持後炉冷した。結果を表3に示す。液状
の炭素系バインダーは、十分に混練することにより粉体
表面に良く付着するため、焼成後は均一な強度を発現し
やすいが、他方揮発分の散逸量も多いため、気孔率が大
きくなる傾向もある。実施例3では200℃まで昇温し
た後、200℃から400℃までの均一加熱に重点をお
いた。
Method 3: Irradiation with microwaves (2.45 GHz), heating to 200 ° C. for 2 hours and holding for 1 hour, and then heating to 400 ° C. for 1 hour and holding for 1 hour. Then, using a gas burner, the temperature was raised from 400 ° C. to 1400 ° C. in 3 hours, kept for 1 hour, and then cooled in the furnace. The results are shown in Table 3. The liquid carbon-based binder adheres well to the powder surface when it is sufficiently kneaded, so it is easy to develop uniform strength after firing, but on the other hand, the porosity tends to increase due to the large amount of volatile components dissipated. There is also. In Example 3, after raising the temperature to 200 ° C., emphasis was placed on uniform heating from 200 ° C. to 400 ° C.

【0023】400℃までのバインダーの固化過程が均
一に進み酸化も少ない実施例3では比較例3に比べ、1
400℃加熱後の強度も大きく、またバインダー中の揮
発成分の散逸も安定しているので気孔率も小さい。耐食
性試験では、実施例3の試料が優れ、比較例3の背面は
強度も小さく、侵食量も大きい。表面酸化については、
比較例3では、背面からの揮発分の散逸が450℃を越
えて加熱した時でも続くので気孔率は大きく、実施例3
に比べると酸化されやすい傾向を示す。以上のように、
本発明により、液状の炭素系バインダーを含む高耐用性
不定形耐火物を得ることができる。
Compared with Comparative Example 3, in Example 3 the solidification process of the binder up to 400 ° C. progressed uniformly and the oxidation was small.
The strength after heating at 400 ° C. is high, and the dissipation of volatile components in the binder is stable, so the porosity is also low. In the corrosion resistance test, the sample of Example 3 is excellent, and the back surface of Comparative Example 3 has low strength and high erosion amount. For surface oxidation,
In Comparative Example 3, since the dissipation of volatile matter from the back surface continues even when heated above 450 ° C., the porosity is large, and Example 3
Compared with, it tends to be oxidized. As mentioned above,
According to the present invention, a highly durable amorphous refractory material containing a liquid carbon-based binder can be obtained.

【表3】 [Table 3]

【0024】[0024]

【発明の効果】炭素系バインダーを含む不定形耐火物で
は、バインダーを安定して固化させることが不可欠であ
り、他方、酸素や水分の存在下で450℃を越えると酸
化消耗が大きくなる問題があるため、加熱方法が重要な
鍵をにぎる。ガスバーナー等による従来の加熱方式で
は、施工体の厚み方向に温度差を生じ、組織の劣化に伴
い、特に背面の物性が低下する。表面から不定形耐火物
が溶損していき、背面に近い部分が露出すると侵食が一
気に起こり、耐火物としての機能を成さない。そこで、
マイクロ波を用いた本発明による加熱方法を採れば、均
一で強固かつ高耐用性の不定形耐火物が得られ、耐用寿
命を格段に向上させる。
EFFECTS OF THE INVENTION In an amorphous refractory material containing a carbon-based binder, it is indispensable to solidify the binder in a stable manner. On the other hand, if the temperature exceeds 450 ° C. in the presence of oxygen or water, there is a problem that oxidation consumption increases. Therefore, the heating method holds an important key. In the conventional heating method using a gas burner or the like, a temperature difference occurs in the thickness direction of the construction body, and the physical properties particularly on the back surface deteriorate with the deterioration of the structure. Irregular refractory materials melt away from the surface, and when a portion near the back surface is exposed, erosion occurs at once and does not function as a refractory material. Therefore,
By adopting the heating method according to the present invention using microwaves, a uniform, strong and highly durable amorphous refractory material is obtained, and the service life is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素系バインダーを配合した成形体の加熱処理
温度と発現する強度、および加熱処理温度と成形体の酸
化率を示す図である。
FIG. 1 is a diagram showing heat treatment temperature and strength of a molded product containing a carbon-based binder, and the heat treatment temperature and the oxidation rate of the molded product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素系バインダーを含む不定形耐火物に、
水を加えて混練後成型する際に、マイクロ波を照射し、
水分を乾燥させ、さらに継続して照射することにより、
背面で150℃以上、かつ表面で450℃以下となるよ
う加熱して炭素系バインダーを固化させることを特徴と
する、不定形耐火物の加熱処理方法。
1. An amorphous refractory material containing a carbon-based binder,
When molding after adding water and kneading, microwave irradiation,
By drying the water and continuing irradiation,
A heat treatment method for an amorphous refractory material, which comprises heating the rear surface to 150 ° C. or higher and the front surface to 450 ° C. or lower to solidify the carbon-based binder.
【請求項2】炭素系バインダーを含む不定形耐火物を施
工後、マイクロ波を照射して背面で150℃以上、かつ
表面で450℃以下となるよう加熱して炭素系バインダ
ーを固化させることを特徴とする、不定形耐火物の加熱
処理方法。
2. After the amorphous refractory material containing a carbon-based binder is applied, it is irradiated with microwaves to heat the back surface at 150 ° C. or higher and the surface at 450 ° C. or lower to solidify the carbon-based binder. A method for heat treatment of an irregular shaped refractory material.
【請求項3】大気中でマイクロ波照射することを特徴と
する請求項1または2に記載の不定形耐火物の加熱処理
方法。
3. The heat treatment method for an amorphous refractory material according to claim 1 or 2, wherein microwave irradiation is performed in the atmosphere.
JP7125660A 1995-04-27 1995-04-27 Heat treatment of monolithic refractory Withdrawn JPH08295572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125660A JPH08295572A (en) 1995-04-27 1995-04-27 Heat treatment of monolithic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125660A JPH08295572A (en) 1995-04-27 1995-04-27 Heat treatment of monolithic refractory

Publications (1)

Publication Number Publication Date
JPH08295572A true JPH08295572A (en) 1996-11-12

Family

ID=14915507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125660A Withdrawn JPH08295572A (en) 1995-04-27 1995-04-27 Heat treatment of monolithic refractory

Country Status (1)

Country Link
JP (1) JPH08295572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249193A (en) * 2008-04-01 2009-10-29 Kyushu Refract Co Ltd Manufacturing method of refractory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249193A (en) * 2008-04-01 2009-10-29 Kyushu Refract Co Ltd Manufacturing method of refractory

Similar Documents

Publication Publication Date Title
CA1100661A (en) Method for preparing a magnesia carbon brick
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
JP2010059372A (en) Raw material for molding of carbon aggregate and method for manufacturing molding of carbon aggregate
EP0150092A2 (en) A carbon-containing refractory
JP5972362B2 (en) Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon
JP4886726B2 (en) Refractory manufacturing method
JP4802178B2 (en) Microwave heat treatment method for Al or / and Al-Mg alloy-added MgO-C brick
JPH08295572A (en) Heat treatment of monolithic refractory
JP3155217B2 (en) Carbon-containing refractory and production method thereof
JP2008278984A (en) Method of manufacturing electromagnetic induction heating cooker
JPH10212155A (en) Carbon-containing refractory and its production
JP7096692B2 (en) Magnesia brick manufacturing method and carbon pickup suppression refining method
JP3906500B2 (en) Method for producing binder for carbon-containing refractory
Derling et al. Microwave sintering of BaTiO3-based ceramics
JPH11223472A (en) Induction furnace
JP3013374B2 (en) Coating agent for carbonaceous molded insulation
JP3057859B2 (en) Production method and furnace wall structure of silica brick for coke oven.
JP2000319068A (en) Carbon/graphite composite molding
JPH11223471A (en) Induction furnace
JPH09132461A (en) Binder composition for refractory
SU831336A1 (en) Pickup preventing coating for casting moulds
JPS6212193B2 (en)
JPS6340758A (en) Manufacture of phosphorous graphite blended refractories
JPH0131446B2 (en)
JPS6328868B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702